DOI QR코드

DOI QR Code

Neuronal Activity-Dependent Regulation of MicroRNAs

  • Sim, Su-Eon (Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University) ;
  • Bakes, Joseph (Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University) ;
  • Kaang, Bong-Kiun (Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University)
  • Received : 2014.05.19
  • Accepted : 2014.05.26
  • Published : 2014.07.31

Abstract

MicroRNAs are non-coding short (~23 nucleotides) RNAs that mediate post-transcriptional regulation through sequence-specific gene silencing. The role of miRNAs in neuronal development, synapse formation and synaptic plasticity has been highlighted. However, the role of neuronal activity on miRNA regulation has been less focused. Neuronal activity-dependent regulation of miRNA may finetune gene expression in response to synaptic plasticity and memory formation. Here, we provide an overview of miRNA regulation by neuronal activity including high-throughput screening studies. We also discuss the possible molecular mechanisms of activity-dependent induction and turnover of miRNAs.

Keywords

References

  1. Ashraf, SI, McLoon, AL, Sclarsic, SM, and Kunes, S (2006). Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell. 124, 191-205. https://doi.org/10.1016/j.cell.2005.12.017
  2. Banerjee, S, Neveu, P, and Kosik, KS (2009). A coordinated local translational control point at the synapse involving relief from silencing and MOV10 degradation. Neuron. 64, 871-884. https://doi.org/10.1016/j.neuron.2009.11.023
  3. Bartel, DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116, 281-297. https://doi.org/10.1016/S0092-8674(04)00045-5
  4. Bhattacharyya, SN, Habermacher, R, Martine, U, Closs, EI, and Filipowicz, W (2006). Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell. 125, 1111-1124. https://doi.org/10.1016/j.cell.2006.04.031
  5. Campos-Melo, D, Droppelmann, CA, He, Z, Volkening, K, and Strong, MJ (2013). Altered microRNA expression profile in amyotrophic lateral sclerosis: a role in the regulation of NFL mRNA levels. Mol Brain. 6, 26. https://doi.org/10.1186/1756-6606-6-26
  6. Cao, X, Pfaff, SL, and Gage, FH (2007). A functional study of miR-124 in the developing neural tube. Genes Dev. 21, 531-536. https://doi.org/10.1101/gad.1519207
  7. Chai, S, Cambronne, XA, Eichhorn, SW, and Goodman, RH (2013). MicroRNA-134 activity in somatostatin interneurons regulates H-Ras localization by repressing the palmitoylation enzyme, DHHC9. Proc Natl Acad Sci USA. 110, 17898-17903. https://doi.org/10.1073/pnas.1317528110
  8. Chandrasekar, V, and Dreyer, J-L (2009). microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity. Mol Cell Neurosci. 42, 350-362. https://doi.org/10.1016/j.mcn.2009.08.009
  9. Chen, Y-L, and Shen, C-KJ (2013). Modulation of mGluR-dependent MAP1B translation and AMPA receptor endocytosis by microRNA miR-146a-5p. J Neurosci. 33, 9013-9020. https://doi.org/10.1523/JNEUROSCI.5210-12.2013
  10. Cheng, H-YM, Papp, JW, Varlamova, O, Dziema, H, Russell, B, Curfman, JP, Nakazawa, T, Shimizu, K, Okamura, H, and Impey, S (2007). microRNA modulation of circadian-clock period and entrainment. Neuron. 54, 813-829. https://doi.org/10.1016/j.neuron.2007.05.017
  11. Cheng, L-C, Pastrana, E, Tavazoie, M, and Doetsch, F (2009). miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci. 12, 399-408. https://doi.org/10.1038/nn.2294
  12. Cohen, JE, Lee, PR, Chen, S, Li, W, and Fields, RD (2011). MicroRNA regulation of homeostatic synaptic plasticity. Proc Natl Acad Sci USA. 108, 11650-11655. https://doi.org/10.1073/pnas.1017576108
  13. Conaco, C, Otto, S, Han, J-J, and Mandel, G (2006). Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA. 103, 2422-2427. https://doi.org/10.1073/pnas.0511041103
  14. Eacker, SM, Keuss, MJ, Berezikov, E, Dawson, VL, and Dawson, TM (2011). Neuronal activity regulates hippocampal miRNA expression. PLoS One. 6, e25068. https://doi.org/10.1371/journal.pone.0025068
  15. Fiore, R, Khudayberdiev, S, Christensen, M, Siegel, G, Flavell, SW, Kim, TK, Greenberg, ME, and Schratt, G (2009). Mef2-mediated transcription of the miR379-410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J. 28, 697-710. https://doi.org/10.1038/emboj.2009.10
  16. Gantier, MP, McCoy, CE, Rusinova, I, Saulep, D, Wang, D, Xu, D, Irving, AT, Behlke, MA, Hertzog, PJ, and Mackay, F (2011). Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Res. 39, 5692-5703. https://doi.org/10.1093/nar/gkr148
  17. Gao, J, Wang, W-Y, Mao, Y-W, Graff, J, Guan, J-S, Pan, L, Mak, G, Kim, D, Su, SC, and Tsai, L-H (2010). A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature. 466, 1105-1109. https://doi.org/10.1038/nature09271
  18. Griggs, EM, Young, EJ, Rumbaugh, G, and Miller, CA (2013). MicroRNA-182 regulates amygdala-dependent memory formation. J Neurosci. 33, 1734-1740. https://doi.org/10.1523/JNEUROSCI.2873-12.2013
  19. He, M, Liu, Y, Wang, X, Zhang, MQ, Hannon, GJ, and Huang, ZJ (2012). Cell-type-based analysis of microRNA profiles in the mouse brain. Neuron. 73, 35-48. https://doi.org/10.1016/j.neuron.2011.11.010
  20. Hollander, JA, Im, H-I, Amelio, AL, Kocerha, J, Bali, P, Lu, Q, Willoughby, D, Wahlestedt, C, Conkright, MD, and Kenny, PJ (2010). Striatal microRNA controls cocaine intake through CREB signalling. Nature. 466, 197-202. https://doi.org/10.1038/nature09202
  21. Huber, KM, Kayser, MS, and Bear, MF (2000). Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science. 288, 1254-1256. https://doi.org/10.1126/science.288.5469.1254
  22. Im, H-I, and Kenny, PJ (2012). MicroRNAs in neuronal function and dysfunction. Trends Neurosci. 35, 325-334. https://doi.org/10.1016/j.tins.2012.01.004
  23. Im, H-I, Hollander, JA, Bali, P, and Kenny, PJ (2010). MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat Neurosci. 13, 1120-1127. https://doi.org/10.1038/nn.2615
  24. Klein, ME, Lioy, DT, Ma, L, Impey, S, Mandel, G, and Goodman, RH (2007). Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci. 10, 1513-1514. https://doi.org/10.1038/nn2010
  25. Kocerha, J, Faghihi, MA, Lopez-Toledano, MA, Huang, J, Ramsey, AJ, Caron, MG, Sales, N, Willoughby, D, Elmen, J, and Hansen, HF (2009). MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction. Proc Natl Acad Sci USA. 106, 3507-3512. https://doi.org/10.1073/pnas.0805854106
  26. Krol, J, Busskamp, V, Markiewicz, I, Stadler, MB, Ribi, S, Richter, J, Duebel, J, Bicker, S, Fehling, HJ, and Schubeler, D (2010). Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell. 141, 618-631. https://doi.org/10.1016/j.cell.2010.03.039
  27. Kye, M-J, Liu, T, Levy, SF, Xu, NL, Groves, BB, Bonneau, R, Lao, K, and Kosik, KS (2007). Somatodendritic microRNAs identified by laser capture and multiplex RT-PCR. RNA. 13, 1224-1234. https://doi.org/10.1261/rna.480407
  28. Kye, MJ, Neveu, P, Lee, Y-S, Zhou, M, Steen, JA, Sahin, M, Kosik, KS, and Silva, AJ (2011). NMDA mediated contextual conditioning changes miRNA expression. PLoS One. 6, e24682. https://doi.org/10.1371/journal.pone.0024682
  29. Landgraf, P, Rusu, M, Sheridan, R, Sewer, A, Iovino, N, Aravin, A, Pfeffer, S, Rice, A, Kamphorst, AO, and Landthaler, M (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 129, 1401-1414. https://doi.org/10.1016/j.cell.2007.04.040
  30. Lee, S-JR, Escobedo-Lozoya, Y, Szatmari, EM, and Yasuda, R (2009). Activation of CaMKII in single dendritic spines during long-term potentiation. Nature. 458, 299-304. https://doi.org/10.1038/nature07842
  31. Lee, K, Kim, J-H, Kwon, O-B, An, K, Ryu, J, Cho, K, Suh, Y-H, and Kim, H-S (2012). An activity-regulated microRNA, miR-188, controls dendritic plasticity and synaptic transmission by down-regulating neuropilin-2. J Neurosci. 32, 5678-5687. https://doi.org/10.1523/JNEUROSCI.6471-11.2012
  32. Lin, Q, Wei, W, Coelho, CM, Li, X, Baker-Andresen, D, Dudley, K, Ratnu, VS, Boskovic, Z, Kobor, MS, and Sun, YE (2011). The brain-specific microRNA miR-128b regulates the formation of fear-extinction memory. Nat Neurosci. 14, 1115-1117. https://doi.org/10.1038/nn.2891
  33. Lugli, G, Larson, J, Martone, ME, Jones, Y, and Smalheiser, NR (2005). Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. J Neurochem. 94, 896-905. https://doi.org/10.1111/j.1471-4159.2005.03224.x
  34. Lugli, G, Torvik, VI, Larson, J, and Smalheiser, NR (2008). Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J Neurochem. 106, 650-661. https://doi.org/10.1111/j.1471-4159.2008.05413.x
  35. Magill, ST, Cambronne, XA, Luikart, BW, Lioy, DT, Leighton, BH, Westbrook, GL, Mandel, G, and Goodman, RH (2010). microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci USA. 107, 20382-20387. https://doi.org/10.1073/pnas.1015691107
  36. Makeyev, EV, Zhang, J, Carrasco, MA, and Maniatis, T (2007). The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell. 27, 435-448. https://doi.org/10.1016/j.molcel.2007.07.015
  37. Martin, KC, Casadio, A, Zhu, H, Rose, JC, Chen, M, Bailey, CH, and Kandel, ER (1997). Synapse-specific, long-term facilitation of Aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell. 91, 927-938. https://doi.org/10.1016/S0092-8674(00)80484-5
  38. Matsuzaki, M, Honkura, N, Ellis-Davies, GC, and Kasai, H (2004). Structural basis of long-term potentiation in single dendritic spines. Nature. 429, 761-766. https://doi.org/10.1038/nature02617
  39. Mellios, N, Sugihara, H, Castro, J, Banerjee, A, Le, C, Kumar, A, Crawford, B, Strathmann, J, Tropea, D, and Levine, SS (2011). miR-132, an experience-dependent microRNA, is essential for visual cortex plasticity. Nat Neurosci. 14, 1240-1242. https://doi.org/10.1038/nn.2909
  40. Nudelman, AS, DiRocco, DP, Lambert, TJ, Garelick, MG, Le, J, Nathanson, NM, and Storm, DR (2010). Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus. 20, 492-498.
  41. Padamsey, Z, and Emptage, NJ (2011). Imaging synaptic plasticity. Mol Brain. 4, 36. https://doi.org/10.1186/1756-6606-4-36
  42. Pai, B, Siripornmongcolchai, T, Berentsen, B, Pakzad, A, Vieuille, C, Pallesen, S, Pajak, M, Simpson, TI, Armstrong, JD, and Wibrand, K (2014). NMDA receptor-dependent regulation of miRNA expression and association with Argonaute during LTP in vivo. Front Cell Neurosci. 7, 285.
  43. Park, CS, and Tang, S-J (2009). Regulation of microRNA expression by induction of bidirectional synaptic plasticity. J Mol Neurosci. 38, 50-56. https://doi.org/10.1007/s12031-008-9158-3
  44. Rajasethupathy, P, Fiumara, F, Sheridan, R, Betel, D, Puthanveettil, SV, Russo, JJ, Sander, C, Tuschl, T, and Kandel, E (2009). Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron. 63, 803-817. https://doi.org/10.1016/j.neuron.2009.05.029
  45. Remenyi, J, van den Bosch, MW, Palygin, O, Mistry, RB, McKenzie, C, Macdonald, A, Hutvagner, G, Arthur, JSC, Frenguelli, BG, and Pankratov, Y (2013). miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity. PLoS One. 8, e62509. https://doi.org/10.1371/journal.pone.0062509
  46. Schratt, GM, Tuebing, F, Nigh, EA, Kane, CG, Sabatini, ME, Kiebler, M, and Greenberg, ME (2006). A brain-specific microRNA regulates dendritic spine development. Nature. 439, 283-289. https://doi.org/10.1038/nature04367
  47. Siegel, G, Obernosterer, G, Fiore, R, Oehmen, M, Bicker, S, Christensen, M, Khudayberdiev, S, Leuschner, PF, Busch, CJ, and Kane, C (2009). A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol. 11, 705-716. https://doi.org/10.1038/ncb1876
  48. Sutton, MA, and Schuman, EM (2006). Dendritic protein synthesis, synaptic plasticity, and memory. Cell. 127, 49-58. https://doi.org/10.1016/j.cell.2006.09.014
  49. Tapocik, JD, Barbier, E, Flanigan, M, Solomon, M, Pincus, A, Pilling, A, Sun, H, Schank, JR, King, C, and Heilig, M (2014). microRNA-206 in rat medial prefrontal cortex regulates BDNF expression and alcohol drinking. J Neurosci. 34, 4581-4588. https://doi.org/10.1523/JNEUROSCI.0445-14.2014
  50. Tognini, P, Putignano, E, Coatti, A, and Pizzorusso, T (2011). Experience-dependent expression of miR-132 regulates ocular dominance plasticity. Nat Neurosci. 14, 1237-1239. https://doi.org/10.1038/nn.2920
  51. van Rooij, E, Sutherland, LB, Qi, X, Richardson, JA, Hill, J, and Olson, EN (2007). Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 316, 575-579. https://doi.org/10.1126/science.1139089
  52. van Spronsen, M, van Battum, EY, Kuijpers, M, Vangoor, VR, Rietman, ML, Pothof, J, Gumy, LF, van IJcken, WF, Akhmanova, A, and Pasterkamp, RJ (2013). Developmental and activity-dependent miRNA expression profiling in primary hippocampal neuron cultures. PLoS One. 8, e74907. https://doi.org/10.1371/journal.pone.0074907
  53. Vo, N, Klein, ME, Varlamova, O, Keller, DM, Yamamoto, T, Goodman, RH, and Impey, S (2005). A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci USA. 102, 16426-16431. https://doi.org/10.1073/pnas.0508448102
  54. Wayman, GA, Davare, M, Ando, H, Fortin, D, Varlamova, O, Cheng, H-YM, Marks, D, Obrietan, K, Soderling, TR, and Goodman, RH (2008). An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci USA. 105, 9093-9098. https://doi.org/10.1073/pnas.0803072105
  55. Wibrand, K, Panja, D, Tiron, A, Ofte, ML, Skaftnesmo, KO, Lee, CS, Pena, JT, Tuschl, T, and Bramham, CR (2010). Differential regulation of mature and precursor microRNA expression by NMDA and metabotropic glutamate receptor activation during LTP in the adult dentate gyrus in vivo. Eur J Neurosci. 31, 636-645. https://doi.org/10.1111/j.1460-9568.2010.07112.x
  56. Xiong, X, Kang, X, Zheng, Y, Yue, S, and Zhu, S (2013). Identification of loop nucleotide polymorphisms affecting microRNA processing and function. Mol Cells. 36, 518-526. https://doi.org/10.1007/s10059-013-0171-1
  57. Yu, J-Y, Chung, K-H, Deo, M, Thompson, RC, and Turner, DL (2008). MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp Cell Res. 314, 2618-2633. https://doi.org/10.1016/j.yexcr.2008.06.002

Cited by

  1. Prenatal exposure to valproic acid increases miR-132 levels in the mouse embryonic brain vol.8, pp.1, 2017, https://doi.org/10.1186/s13229-017-0149-5
  2. Plasticity-related microRNA and their potential contribution to the maintenance of long-term potentiation vol.8, 2015, https://doi.org/10.3389/fnmol.2015.00004
  3. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases vol.17, pp.6, 2016, https://doi.org/10.3390/ijms17060842
  4. Repeated propofol anesthesia induced downregulation of hippocampal miR-132 and learning and memory impairment of rats vol.1670, 2017, https://doi.org/10.1016/j.brainres.2017.04.011
  5. Social isolation mediated anxiety like behavior is associated with enhanced expression and regulation of BDNF in the female mouse brain vol.158, 2016, https://doi.org/10.1016/j.physbeh.2016.02.032
  6. Intramuscular injection of mechano growth factor E domain peptide regulated expression of memory-related sod, miR-134 and miR-125b-3p in rat hippocampus under simulated weightlessness vol.38, pp.12, 2016, https://doi.org/10.1007/s10529-016-2210-4
  7. Bladder overactivity involves overexpression of MicroRNA 132 and nerve growth factor vol.167, 2016, https://doi.org/10.1016/j.lfs.2016.10.025
  8. Regulation of mRNA stability by ARE-binding proteins in synaptic plasticity and memory vol.124, 2015, https://doi.org/10.1016/j.nlm.2015.08.004
  9. MicroRNA Target Recognition: Insights from Transcriptome-Wide Non-Canonical Interactions vol.39, pp.5, 2016, https://doi.org/10.14348/molcells.2016.0013
  10. Yin–yang actions of histone methylation regulatory complexes in the brain vol.8, pp.12, 2016, https://doi.org/10.2217/epi-2016-0090
  11. MicroRNAs and psychiatric disorders: From aetiology to treatment vol.167, 2016, https://doi.org/10.1016/j.pharmthera.2016.07.006
  12. microRNAs as neuroregulators, biomarkers and therapeutic agents in neurodegenerative diseases vol.73, pp.4, 2016, https://doi.org/10.1007/s00018-015-2093-x
  13. MicroRNAs of the miR379–410 cluster: New players in embryonic neurogenesis and regulators of neuronal function vol.2, pp.1, 2015, https://doi.org/10.1080/23262133.2015.1004970
  14. MicroRNA-134 regulates poliovirus replication by IRES targeting vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-12860-z
  15. Non-Contingent Exposure to Amphetamine in Adolescence Recruits miR-218 to Regulate Dcc Expression in the VTA vol.43, pp.4, 2018, https://doi.org/10.1038/npp.2017.284
  16. MicroRNA-132 in the Adult Dentate Gyrus is Involved in Opioid Addiction Via Modifying the Differentiation of Neural Stem Cells pp.1995-8218, 2019, https://doi.org/10.1007/s12264-019-00338-z
  17. Sensational MicroRNAs: Neurosensory Roles of the MicroRNA-183 Family vol.57, pp.1, 2014, https://doi.org/10.1007/s12035-019-01717-3
  18. Non-coding RNAs in neuropathic pain vol.4, pp.1, 2014, https://doi.org/10.1042/ns20190099
  19. The Role of Stress Granules in the Neuronal Differentiation of Stem Cells vol.43, pp.10, 2020, https://doi.org/10.14348/molcells.2020.0135
  20. Ocular dominance plasticity: Molecular mechanisms revisited vol.528, pp.17, 2020, https://doi.org/10.1002/cne.25001
  21. Post-learning micro- and macro-structural neuroplasticity changes with time and sleep vol.191, pp.None, 2021, https://doi.org/10.1016/j.bcp.2020.114369