DOI QR코드

DOI QR Code

Integral Imaging and Digital Holography Techniques for Three-dimensional Sensing, Imaging and Display (Invited Paper)

3차원 입체영상 센싱, 이미징 및 디스플레이를 위한 집적영상 및 디지털 홀로그래피 기술

  • Kim, Seung-Cheol (HoloDigilog Human Media Research Center (HoloDigilog), 3D Display Research Center (3DRC), Kwangwoon University) ;
  • Shin, Dong-Hak (Institute of Ambient Intelligence, Dongseo University) ;
  • Kim, Eun-Soo (HoloDigilog Human Media Research Center (HoloDigilog), 3D Display Research Center (3DRC), Kwangwoon University)
  • 김승철 (광운대학교 전자공학과, 홀로디지로그 휴먼미디어 연구센터, 차세대 3D 디스플레이 연구센터) ;
  • 신동학 (동서대학교 엠비언트 인텔리전스 연구소) ;
  • 김은수 (광운대학교 전자공학과, 홀로디지로그 휴먼미디어 연구센터, 차세대 3D 디스플레이 연구센터)
  • Received : 2014.05.30
  • Accepted : 2014.07.24
  • Published : 2014.08.25

Abstract

In this paper, state-of-the-art digital holography and integral imaging have been introduced as practical three-dimensional imaging and display technology. Operational principles and recent research and development activities of these technologies have been discussed, as well as a vision of their future.

본 논문에서는 기존 스테레오 3D 방식의 문제를 해결할 수 있는 집적영상 및 디지털 홀로그래피 방식을 포함하는 공간영상방식의 3차원 영상기술에 대해 소개하고 최근의 국내외 연구개발 동향에 대해 알아본다. 또한 이를 기반으로 향후 연구개발 방향을 전망한다.

Keywords

References

  1. G. Lippmann, "Epreuves reversibles donnant la sensation du relief," J. Phys. (Paris) 7, 821-825 (1908).
  2. H. E. Ives, "Optical properties of a Lippmann lenticulated sheet," J. Opt. Soc. Amer. 21, 171-176 (1931). https://doi.org/10.1364/JOSA.21.000171
  3. T. Okoshi, A. Yano, and Y. Fukumori, "Curved triple-mirror screen for projection-type three-dimensional display," Appl. Opt. 10, 482-489 (1971). https://doi.org/10.1364/AO.10.000482
  4. T. Okoshi, "Three-dimensional displays," Proc. IEEE 68, 548-564 (1980). https://doi.org/10.1109/PROC.1980.11695
  5. J.-H. Park, S. Jung, H. Choi, and B. Lee, "Viewingangle-enhanced integral imaging by elemental image resizing and elemental lens switching," Appl. Opt. 41, 6875-6883 (2002). https://doi.org/10.1364/AO.41.006875
  6. J.-S. Jang and B. Javidi, "Three-dimensional synthetic aperture integral imaging," Opt. Lett. 27, 1144-1146 (2002). https://doi.org/10.1364/OL.27.001144
  7. A. Stern and B. Javidi, "3D computational synthetic aperture integral imaging (COMPSAII)," Opt. Express 11, 2466-2451 (2003).
  8. A. Stern and B. Javidi, "Three dimensional sensing, visualization, and processing using integral imaging," Proc. IEEE 94, 591-607 (2006). https://doi.org/10.1109/JPROC.2006.870696
  9. J. Arai, M. Okui, T. Yamashita, and F. Okano, "Integral three-dimensional television using a 2000-scanning-line video system," Appl. Opt. 45, 1704-1712 (2006). https://doi.org/10.1364/AO.45.001704
  10. R. Martinez-Cuenca, G. Saavedra, A. Pons, B. Javidi, and M. Martinez-Corral, "Facet braiding: A fundamental problem in integral imaging," Opt. Lett. 32, 1078-1080 (2007). https://doi.org/10.1364/OL.32.001078
  11. J.-S. Jang and B. Javidi, "Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics," Opt. Lett. 27, 324-326 (2002). https://doi.org/10.1364/OL.27.000324
  12. J.-S. Jang and B. Javidi, "Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor," Appl. Opt. 42, 1996-2002 (2003). https://doi.org/10.1364/AO.42.001996
  13. D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, "Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique," Appl. Opt. 45, 4631-4637 (2006). https://doi.org/10.1364/AO.45.004631
  14. Y. Piao, M. Zhang, and E.-S. Kim, "Resolution-enhanced magnification of a far three-dimensional object image by using the moving-direct-pixel-mapping method in scalable integral-imaging system," Japan. J. of Appl. Phys. 51, 022502-022508 (2012).
  15. J.-Y. Jang, D. Shin, and E.-S. Kim, "Optical threedimensional refocusing from elemental images based on a sifting property of the periodic $\delta$-function array in integral-imaging," Opt. Express 22, 1533-1550 (2014). https://doi.org/10.1364/OE.22.001533
  16. C.-W. Chen, M. Cho, Y.-P. Huang, and B. Javidi, "Improved viewing zones for projection type integral imaging 3D display using adaptive liquid crystal prism array," J. Display Technol. 10, 198-203 (2014). https://doi.org/10.1109/JDT.2013.2293272
  17. D.-H. Shin, S.-H. Lee, and E.-S. Kim, "Optical display of true 3D objects in depth-priority integral imaging using an active sensor," Opt. Commun. 275, 330-334 (2007). https://doi.org/10.1016/j.optcom.2007.03.072
  18. D.-H. Shin, B. Lee, and E.-S. Kim, "Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens," Appl. Opt. 45, 7375-7381 (2006). https://doi.org/10.1364/AO.45.007375
  19. J.-S. Jang, F. Jin, and B. Javidi, "Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields," Opt. Lett. 28, 1421-1423 (2003). https://doi.org/10.1364/OL.28.001421
  20. J.-S. Jang and B. Javidi, "Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperturesizes," Opt. Lett. 28, 1924-1926 (2003). https://doi.org/10.1364/OL.28.001924
  21. J.-S. Jang, Y.-S. Oh, and B. Javidi, "Spatiotemporally multiplexed integral imaging projector for large-scale highresolution three-dimensional display," Opt. Express 12, 557-563 (2004). https://doi.org/10.1364/OPEX.12.000557
  22. J.-S. Jang and B. Javidi, "Three-dimensional projection integral imaging using micro-convex-mirror arrays," Opt. Express 12, 1077-1083 (2004). https://doi.org/10.1364/OPEX.12.001077
  23. A. Castro, Y. Frauel, and B. Javidi, "Integral imaging with large depth of field using an asymmetric phase mask," Opt. Express 15, 10266-10273 (2007). https://doi.org/10.1364/OE.15.010266
  24. R. Martinez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, "Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system," Opt. Express 15, 16255-16260 (2007). https://doi.org/10.1364/OE.15.016255
  25. M. Martinez-Corral, H. Navarro, R. Martinez-Cuenca, G. Saavedra, and B. Javidi, "Full parallax 3-D TV with programmable display parameters," Opt. Phot. News 22 , 50 (2011). https://doi.org/10.1364/OPN.22.12.000050
  26. M. Martinez-Corral, B. Javidi, R. Martinez-Cuenca, and G. Saavedra, "Formation of real, orthoscopic integral images by smart pixel mapping," Opt. Express 13, 9175-9180 (2005). https://doi.org/10.1364/OPEX.13.009175
  27. A. O. Yontem and L. Onural, "Integral imaging using phase-only LCoS spatial light modulators as Fresnel lenslet arrays," J. Opt. Soc. Am. A 28, 2359-2375 (2011). https://doi.org/10.1364/JOSAA.28.002359
  28. R. Zaharia, A. Aggoun, and M. McCormick, "Adaptive 3D-DCT compression algorithm for continuous parallax 3D integral imaging," Signal Processing: Image Communication 17, 231-242 (2002). https://doi.org/10.1016/S0923-5965(01)00020-0
  29. D.-Q. Pham, N. Kim, K.-C. Kwon, J.-H. Jung, K. Hong, B. Lee, and J.-H. Park, "Depth enhancement of integral imaging by using polymer-dispersed liquid-crystal films and dual-depth configuration," Opt. Lett. 35, 3135-3137 (2010). https://doi.org/10.1364/OL.35.003135
  30. S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, "Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging," Opt. Lett. 31, 2852-2854 (2006). https://doi.org/10.1364/OL.31.002852
  31. J. Hahn, Y. Kim, and B. Lee, "Uniform angular resolution integral imaging display with boundary folding mirrors," Appl. Opt. 48, 504-511 (2009). https://doi.org/10.1364/AO.48.000504
  32. J. Kim, J.-H. Jung, C. Jang, and B. Lee, "Real-time capturing and 3D visualization method based on integral imaging," Opt. Express 21, 18742-18753 (2013). https://doi.org/10.1364/OE.21.018742
  33. J.-H. Jung, S.-g. Park, Y. Kim, and B. Lee, "Integral imaging using a color filter pinhole array on a display panel," Opt. Express 20, 18744-18756 (2012). https://doi.org/10.1364/OE.20.018744
  34. G. Baasantseren, J.-H. Park, K.-C. Kwon, and N. Kim, "Viewing angle enhanced integral imaging display using two elemental image masks," Opt. Express 17, 14405-14417 (2009). https://doi.org/10.1364/OE.17.014405
  35. J. Yeom, K. Hong, S.-g. Park, J. Hong, S.-W. Min, and B. Lee, "Bi-sided integral imaging with 2D/3D convertibility using scattering polarizer," Opt. Express 21, 31189-31200 (2013). https://doi.org/10.1364/OE.21.031189
  36. S.-W. Min, M. Hahn, J. Kim, and B. Lee, "Three-dimensional electro-floating display system using an integral imaging method," Opt. Express 13, 4358-4369 (2005). https://doi.org/10.1364/OPEX.13.004358
  37. J.-Y. Jang, H.-S. Lee, S. Cha, and S.-H. Shin, "Viewing angle enhanced integral imaging display by using a high refractive index medium," Appl. Opt. 50, B71-B76 (2011). https://doi.org/10.1364/AO.50.000B71
  38. S.-P. Hong, Y.-S. Oh, and E.-S. Kim, "Practical implementation of a depth feeling-enhanced two-plane electro-floating display system using three-dimensional integral images," J. Soc. Info. Display 17, 423-431 (2009). https://doi.org/10.1889/JSID17.5.423
  39. D.-H. Shin, B. Lee, and E.-S. Kim, "Improved viewing quality of 3-D images in computational integral imaging reconstruction based on lenslet array model," ETRI J. 28, 521-524 (2006). https://doi.org/10.4218/etrij.06.0206.0014
  40. T. Saishu, K. Taira, R. Fukushima, and Y. Hirayama, "Distortion control in a one-dimensional integral imaging autostereoscopic display system with parallel optical beam groups," SID Symposium Digest of Technical Papers 35, 1438-1441 (2004).
  41. F. Okano, J. Arai, K. Mitani, and M. Okui, "Real-time integral imaging based on extremely high resolution video system," Proc. IEEE 94, 490-501 (2006). https://doi.org/10.1109/JPROC.2006.870687
  42. J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, "Integral threedimensional television using a 33-megapixel imaging system," J. Display Technol. 6, 422-430 (2010). https://doi.org/10.1109/JDT.2010.2050192
  43. Y. Maeda, D. Miyazaki, T. Mukai, and S. Maekawa, "Volumetric display using rotating prism sheets arranged in a symmetrical configuration," Opt. Express 21, 27074-27086 (2013). https://doi.org/10.1364/OE.21.027074
  44. L. Hongen, K. Nomura, and T. Dohi, "Long visualization depth autostereoscopic display using light field rendering based integral videography," in Proc. Virtual Reality Conference (25-29 March, 2006), p. 314.
  45. T. Koike, M. Kobayashi, and M. Oikawa, "Integral videography display with field sequential LCD," Proc. Stereoscopic Displays and Applications XIX, 680319 (2008).
  46. S. Sawada and H. Kakeya, "Coarse integral volumetric imaging with flat screen and wide viewing angle," Proc. SPIE 7863, 78631L (2011).
  47. K. Yanaka and H. Motegi, "Input system for moving integral imaging using full HD camcoder and fly's eye lens," in Proc. 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video (4-6 May, 2009), pp. 1-4.
  48. D. Li, X. Zhao, Y. Yang, Z. Fang, and X. Yuan, "Tunable viewing scope of three-dimensional integral imaging," Appl. Opt. 50, H230-H236 (2011). https://doi.org/10.1364/AO.50.00H230
  49. S. Li, H. Li, Z. Zheng, Y. Peng, S. Wang, and X. Liu, "Full-parallax three-dimensional display using new directional diffuser," Chin. Opt. Lett. 9, 081202-081202 (2011). https://doi.org/10.3788/COL201109.081202
  50. H.-J. Kang, N. Kim, H.-H. Song, S.-K. Kim, T. Kim, W.-S. Choi, M.-S. Yoon, S.-C. Kim, S.-H. Lee, E.-S. Kim, H.-J. Choi, H. Kim, J.-H. Park, S.-W. Min, K.-H. Choi, D.-K. Nam, S.-H. Hong, W.-M. Jung, and K.-H. Seo, "State of the art in digital holography," Inf. Disp. 12, 18-50 (2011).
  51. D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948). https://doi.org/10.1038/161777a0
  52. M. Lucente, "Interactive computation of holograms using a look-up table," J. Electron. Imag. 2, 28-34 (1993). https://doi.org/10.1117/12.133376
  53. S.-C. Kim and E.-S. Kim, "Effective generation of digital holograms of 3-D objects using a novel look-up table method," Appl. Opt. 47, D55-D62 (2008). https://doi.org/10.1364/AO.47.000D55
  54. S.-C. Kim, J.-H. Yoon, and E.-S. Kim, "Fast generation of 3-D video holograms by combined use of data compression and look-up table techniques," Appl. Opt. 47, 5986-5995 (2008). https://doi.org/10.1364/AO.47.005986
  55. S.-C. Kim and E.-S. Kim, "Fast computation of hologram patterns of a 3-D object using run-length encoding and novel look-up table methods," Appl. Opt. 48, 1030-1041 (2009). https://doi.org/10.1364/AO.48.001030
  56. S.-C. Kim, K.-D. Na, and E.-S. Kim, "Accelerated computation of computer-generated holograms of a 3-D object with N${\times}$N-point principle fringe patterns in the novel look-up table method," Opt. Laser Eng. 51, 185-196 (2013). https://doi.org/10.1016/j.optlaseng.2012.10.013
  57. S.-C. Kim, X.-B. Dong, M.-W. Kwon, and E.-S. Kim, "Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table," Opt. Express 21, 11568-11584 (2013). https://doi.org/10.1364/OE.21.011568
  58. T. Yatagai, "Stereoscopic approach to 3-D display using computer-generated holograms," Appl. Opt. 15, 2722-2729 (1976). https://doi.org/10.1364/AO.15.002722
  59. H. Kang, F. Yarai, L. Onural, and H. Yoshikawa, "Real-time fringe pattern generation with high quality," in Proc. Advances in Imaging, OSA Technical Digest (Optical Society of America, 2009), paper DTuB7.
  60. H. Kang, F. Yaras, and L. Onural, "Quality comparison and acceleration for digital hologram generation method based on segmentation," in Proceedings of 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video, (IEEE, 2009).
  61. T. Hamano and H. Yoshikawa, "Image-type CGH by means of e-beam printing," in Practical Holography XII, S. A. Benton, ed., Proc. SPIE 3293, 170-180 (1998).
  62. T. Yamaguchi, G. Okabe, and H. Yoshikawa, "Real-time image plane full-color and full-parallax holographic video display system," Opt. Eng. 46, 125801 (2007). https://doi.org/10.1117/1.2823485
  63. M.-W. Kwon, S.-C. Kim, and E.-S Kim, "GPU-based implementation of one-dimensional novel-look-up-table for real-time computation of Fresnel hologram patterns of three-dimensional objects," Opt. Eng. 53, 035103 (2014). https://doi.org/10.1117/1.OE.53.3.035103
  64. T. Shimobaba and T. Ito, "Special-purpose computer for holography HORN-4 with recurrence algorithm," Comput. Phys. Commun. 148, 160-170 (2002). https://doi.org/10.1016/S0010-4655(02)00473-3
  65. T. Ito, T. Yabe, M. Okazaki, and M. Yanagi, "Special purpose computer holography HORN-1 for reconstruction of virtual image in three dimensions," Comput. Phys. Commun. 82, 104-110 (1994). https://doi.org/10.1016/0010-4655(94)90159-7
  66. T. Ito, H. Eldeib, K. Yoshida, S. Takahashi, T. Yabe, and T. Kunugi, "Special-purpose computer for holography HORN-2," Comp. Phys. Commun. 93, 13-20 (1996). https://doi.org/10.1016/0010-4655(95)00125-5
  67. P. St-Hilaire, S. A. Benton, M. Lucente, and P. M. Hubel, "Color images with the MIT holographic video display," in Practical Holography VI, S. A. Benton, ed., Proc. SPIE 1667, 73-84 (1992).
  68. D. Smalley, Q. Smithwick, and V. M. Bove, Jr., "Holographic video display based on guided-wave acousto- optic devices," Proc. SPIE Practical Holography XXI, 6488, 64880L (2007).
  69. D. E. Smalley, "Holovideo on a stick: Integrated optics for holographic video displays," Ph. D. Thesis (2013).
  70. http://www.seereal.com
  71. M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. D. Wood, "3D electronic holography display system using a 100 megapixel spatial light modulator," Proc. SPIE 5249, 297-308 (2004).
  72. http://www.tuat.ac.jp/-e-takaki/
  73. M. Park, B. G. Chae, H.-E. Kim, J. Hahn, H. Kim, C. H. Park, K. Moon, and J. Kim, "Digital holographic display system with large screen based on viewing window movement for 3D video service," ETRI J. 36, 232-241 (2014). https://doi.org/10.4218/etrij.14.2113.0086

Cited by

  1. Characteristics and Categorization of Fashion Films vol.66, pp.4, 2016, https://doi.org/10.7233/jksc.2016.66.4.128