JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 27, No. 3, August 2014 http://dx.doi.org/10.14403/jcms.2014.27.3.489

THE LEBESGUE DELTA INTEGRAL

JAE MYUNG PARK^{*}, DEOK HO LEE^{**}, JU HAN YOON^{***}, AND JONG TAE LIM^{****}

ABSTRACT. In this paper, we define the extension $f^* : [a, b] \to \mathbb{R}$ of a function $f : [a, b]_{\mathbb{T}} \to \mathbb{R}$ for a time scale \mathbb{T} and investigate the properties of the Lebesgue delta integral of f on $[a, b]_{\mathbb{T}}$ by using the function f^* .

1. Introduction and preliminaries

The Lebesgue delta integral was introduced by Bohner and Guseinov in [3]. In this paper, the relationship between Lebesgue and Lebesgue delta integral is established.

Let \mathbb{T} be a time scale. For every $x, y \in \mathbb{T}$ with x < y, we define the bounded intervals in \mathbb{T} by

 $[x,y)_{\mathbb{T}} = \{t \in \mathbb{T} : x \le t < y\} \quad \text{and} \quad [x,y]_{\mathbb{T}} = \{t \in \mathbb{T} : x \le t \le y\}.$

Now we define a countably additive measure m on the set

$$\mathcal{F} = \{ [x, y)_{\mathbb{T}} : x, y \in \mathbb{T}, x < y \}$$

that assigns to each interval $[x, y]_{\mathbb{T}}$ its length

$$m\Big([x,y)_{\mathbb{T}}\Big) = y - x.$$

Using m, we generate the outer measure m^* on $\mathcal{P}([a, b]_{\mathbb{T}})$, defined for each $E \in \mathcal{P}([a, b]_{\mathbb{T}})$ as

$$m^*(E) = \begin{cases} \inf \sum_i (y_i - x_i) & \text{if } b \notin E \\ +\infty & \text{if } b \in E, \end{cases}$$

where the infimum is taken over all countable collection $\{[x_i, y_i)_{\mathbb{T}}\}$ of intervals such that $E \subset \bigcup_i [x_i, y_i)_{\mathbb{T}}$.

Received May 22, 2014; Accepted June 30, 2014.

²⁰¹⁰ Mathematics Subject Classification: Primary 26A39; Secondary 26E70. Key words and phrases: time scales, Lesbesgue delta integral, δ -partition. Correspondence should be addressed to Ju Han Yoon, yoonjh@cbnu.ac.kr.

A set $E \subset [a, b]_{\mathbb{T}}$ is Δ -measurable if

$$m^{*}(A) = m^{*}(A \cap E) + m^{*}(A \cap ([a, b]_{\mathbb{T}} - E))$$

for each subset $A \subset [a, b]_{\mathbb{T}}$.

Defining the family

$$\mathcal{M}(m^*) = \{ E \subset [a, b]_{\mathbb{T}} : E \text{ is } \Delta - \text{measurable} \},\$$

the Lebesgue Δ -measure, denoted by μ_{Δ} , is the restriction of m^* to $\mathcal{M}(m^*)$.

2. The Lebesgue delta integral

DEFINITION 2.1. A function $f : [a, b]_{\mathbb{T}} \to \overline{\mathbb{R}} \equiv [-\infty, \infty]$ is Δ -measurable if for every $\alpha \in \mathbb{R}$, the set

$$f^{-1}([-\infty, \alpha)) = \{t \in [a, b]_{\mathbb{T}} : f(t) < \alpha\}$$

is Δ -measurable.

DEFINITION 2.2. A function $S : [a, b]_{\mathbb{T}} \to \mathbb{R}$ is simple if it only takes a finite number of different values $\alpha_1, \dots, \alpha_n$. If $A_j = \{t \in [a, b]_{\mathbb{T}} : S(t) = \alpha_j\}$, then

$$\mathcal{S} = \sum_{j=1}^{n} \alpha_j \chi_{A_j}.$$

DEFINITION 2.3. Let $E \subset [a, b]_{\mathbb{T}}$ be a Δ -measurable set and let $\mathcal{S}: [a, b]_{\mathbb{T}} \to [0, \infty)$ be a simple and Δ -measurable function with

$$\mathcal{S} = \sum_{j=1}^{n} \alpha_j \chi_{A_j}.$$

The Lebesgue Δ -integral of S on E is defined by

$$(L_{\Delta})\int_{E} \mathcal{S} = \sum_{j=1}^{n} \alpha_{j} \mu_{\Delta}(A_{j} \cap E).$$

DEFINITION 2.4. Let $E \subset [a, b]_{\mathbb{T}}$ be a Δ -measurable set and let $f : [a, b]_{\mathbb{T}} \to [0, \infty]$ be a Δ -measurable function. The Lebesgue Δ -integral of f on E is defined by

$$(L_{\Delta})\int_{E} f = \sup(L_{\Delta})\int_{E} \mathcal{S}_{g}$$

where the supremum is taken on all simple Δ -measurable functions S such that $0 \leq S \leq f$ on $[a, b]_{\mathbb{T}}$.

DEFINITION 2.5. Let $E \subset [a, b]_{\mathbb{T}}$ be a Δ -measurable set and let $f : [a, b]_{\mathbb{T}} \to \overline{\mathbb{R}}$ be a Δ -integrable function. The function f is Lebesgue Δ -integrable(or L_{Δ} -integrable) on E if at least one of the elements

$$(L_{\Delta})\int_{E}f^{+}$$
 or $(L_{\Delta})\int_{E}f^{-}$

is finite, where the positive and negative parts of f, f^+ and f^- respectively, are defined as

$$f^+ = \max\{f, 0\}$$
 and $f^- = \max\{-f, 0\}.$

In this case, the Lebesgue Δ -integral of f on E is defined by

$$(L_{\Delta})\int_{E} f = (L_{\Delta})\int_{E} f^{+} - (L_{\Delta})\int_{E} f^{-}.$$

Let $\{(a_k, b_k)\}_{k=1}^{\infty}$ be the sequence of all contiguous intervals of $[a, b]_{\mathbb{T}}$ in [a, b].

For a function $f:[a,b]_{\mathbb{T}} \to \mathbb{R}$, define the extension $f^*:[a,b] \to \mathbb{R}$ of f by

$$f^*(t) = \begin{cases} f(a_k) & \text{if } t \in (a_k, b_k) \text{ for some } k \\ f(t) & \text{if } t \in [a, b]_{\mathbb{T}}. \end{cases}$$

From [4, Theorem 5.1], we can easily get the following theorem.

THEOREM 2.6. Let $f : [a, b]_{\mathbb{T}} \to \mathbb{R}$ be a Δ -measurable function and let $f^* : [a, b] \to \mathbb{R}$ be the extension of f to [a, b]. Then f is L_{Δ} -integrable on $[a, b]_{\mathbb{T}}$ if and only if f^* is Lebesgue integrable on [a, b]. In that case,

$$(L_{\Delta})\int_{a}^{b}f = (L)\int_{a}^{b}f^{*}.$$

THEOREM 2.7. Let f be L_{Δ} -integrable on $[a, b]_{\mathbb{T}}$. Then f is L_{Δ} -integrable on every subinterval $[c, d]_{\mathbb{T}}$ of $[a, b]_{\mathbb{T}}$.

Proof. Let f be a L_{Δ} -integrable function on $[a, b]_{\mathbb{T}}$. By Theorem 2.6, $f^* : [a, b] \to \mathbb{R}$ is Lebesgue integrable on [a, b]. By the property of the Lebesgue integral, f^* is Lebesgue integrable on every subinterval $[c, d] \subset [a, b]$. By Theorem 2.6, f is L_{Δ} -integrable on every subinterval $[c, d]_{\mathbb{T}} \subset [a, b]_{\mathbb{T}}$.

THEOREM 2.8. Let f and g be L_{Δ} -integrable on $[a, b]_{\mathbb{T}}$ and α, β be real numbers. Then $\alpha f + \beta g$ is L_{Δ} -integrable on $[a, b]_{\mathbb{T}}$ and

$$(L_{\Delta})\int_{a}^{b}(\alpha f + \beta g) = \alpha(L_{\Delta})\int_{a}^{b} f + \beta(L_{\Delta})\int_{a}^{b} g.$$

Proof. Let f and g be L_{Δ} -integrable on $[a, b]_{\mathbb{T}}$. By Theorem 2.6, $\alpha f^* + \beta g^*$ is Lebesgue integrable on [a, b] and

$$(L) \int_{a}^{b} (\alpha f^{*} + \beta g^{*}) = \alpha \ (L) \int_{a}^{b} f^{*} + \beta \ (L) \int_{a}^{b} g^{*}.$$

By Theorem 2.6, $\alpha f + \beta g$ is L_{Δ} -integrable on $[a, b]_{\Delta}$ and

$$(L_{\Delta})\int_{a}^{b}(\alpha f + \beta g) = \alpha \ (L_{\Delta})\int_{a}^{b} f + \beta \ (L_{\Delta})\int_{a}^{b} g.$$

THEOREM 2.9. Let $c \in \mathbb{T}$ with a < c < b. If f is L_{Δ} -integrable on each of intervals $[a, c]_{\mathbb{T}}$ and $[c, b]_{\mathbb{T}}$, then f is L_{Δ} -integrable on $[a, b]_{\mathbb{T}}$ and

$$(L_{\Delta})\int_{a}^{b} f = (L_{\Delta})\int_{a}^{c} f + (L_{\Delta})\int_{c}^{b} f.$$

Proof. If f is L_{Δ} -integrable on each of intervals $[a, c]_{\mathbb{T}}$ and $[c, b]_{\mathbb{T}}$, then f^* is Lebesgue integrable in [a, c] and [c, b]. By the property of the Lebesgue integral, f^* is Lebesgue integrable on [a, b] and

$$(L)\int_{a}^{b} f^{*} = (L)\int_{a}^{c} f^{*} + (L)\int_{c}^{b} f^{*}$$

By Theorem 2.6, f is L_{Δ} -integrable on $[a, b]_{\mathbb{T}}$ and

$$(L_{\Delta})\int_{a}^{b} f = (L_{\Delta})\int_{a}^{c} f + (L_{\Delta})\int_{c}^{b} f.$$

THEOREM 2.10. Let $\{f_n\}$ be a monotone sequence of L_{Δ} -integrable functions on $[a, b]_{\mathbb{T}}$. Suppose that $\lim_{n\to\infty} (L_{\Delta}) \int_a^b f_n$ is finite. If $\lim_{n\to\infty} f_n(t) = f(t)$, then f is L_{Δ} -integrable and

$$(L_{\Delta})\int_{a}^{b}f = \lim_{n \to \infty} (L_{\Delta})\int_{a}^{b}f_{n}.$$

Proof. Let $\{f_n\}$ be a monotone sequence of L_{Δ} -integrable functions on $[a, b]_{\mathbb{T}}$. Then $\{f_n^*\}$ is a monotone sequence of Lebesgue integrable functions on [a, b]. Since $(L_{\Delta}) \int_a^b f_n = (L) \int_a^b f_n^*$ for each n, $\lim_{n\to\infty} (L) \int_a^b f_n^*$ is finite and $\lim_{n\to\infty} f_n^*(t) = f^*(t)$ by the hypothesis.

 $\lim_{n\to\infty} (L) \int_a^b f_n^* \text{ is finite and } \lim_{n\to\infty} f_n^*(t) = f^*(t) \text{ by the hypothesis.}$ By the property of the Lebesgue integral, f^* is Lebesgue integrable on [a, b] and $(L) \int_a^b f^* = \lim_{n\to\infty} (L) \int_a^b f_n^*$. By Theorem 2.6, f is L_{Δ} -integrable on $[a, b]_{\mathbb{T}}$ and

The Lebesgue delta integral

$$(L_{\Delta})\int_{a}^{b} f = \lim_{n \to \infty} (L_{\Delta})\int_{a}^{b} f_{n}.$$

Recall that a bounded function $f : [a, b]_{\mathbb{T}} \to \mathbb{R}$ is R_{Δ} -integrable on $[a, b]_{\mathbb{T}}$ if there exists a number A such that for each $\epsilon > 0$ there exists $\delta > 0$ such that

$$\left|\sum_{i=1}^{n} f(\xi_i)(t_i - t_{i-1}) - A\right| < \epsilon$$

for every δ -partition $\mathcal{P} = \{(\xi_i, [t_{i-1}, t_i])\}_{i=1}^n$ of $[a, b]_{\mathbb{T}}$.

THEOREM 2.11. If $f : [a,b]_{\mathbb{T}} \to \mathbb{R}$ is R_{Δ} -integrable on $[a,b]_{\mathbb{T}}$, then f is L_{Δ} -integrable on $[a,b]_{\mathbb{T}}$. In this case, $(R_{\Delta}) \int_{a}^{b} f = (L_{\Delta}) \int_{a}^{b} f$.

Proof. Suppose that f is R_{Δ} -integrable on $[a, b]_{\mathbb{T}}$. Then by [10, Thoerem 2.6], f^* is Riemann integrable on [a, b] and $(R_{\Delta}) \int_a^b f = (R) \int_a^b f^*$. Since f^* is Lebesgue integrable on [a, b], f is L_{Δ} -integrable on $[a, b]_{\mathbb{T}}$ and

$$(L_{\Delta})\int_{a}^{b} f = (L)\int_{a}^{b} f^{*} = (R)\int_{a}^{b} f^{*} = (R_{\Delta})\int_{a}^{b} f.$$

References

- [1] R. Agarwal and M. Bohner, *Basic calculus on time scales and some of its applications*, Results Math. **35** (1999), 3-22.
- [2] S. Avsec, B. Bannish, B. Johnson, and S. Meckler, *The Henstock-Kurzweil delta integral on unbounded time scales*, PanAmerican Math. J. 16 (2006), no. 3, 77-98.
- [3] M. Bohner, and A. Perterson(Eds.), Advance in Dynamic Equations on times scales, Birkhäuser Boston, Inc. Bostop, MA, 2003.
- [4] A. Cabada and D. R. Vivero, Expression of the Lebesgue Δ-integral on time scales as a usual Lebesgue Integral; application to the calculus of Δ-antiderivatives, Math. Comp. Modell. 43 (2006), 194-207.
- [5] G. Sh. Guseinov, Intergration on time scales, J. Math. Anal. Appl. 285 (2003), 107-127.
- [6] G. Sh. Guseinov and B. Kaymakcalan, Basics of Riemann delta and nabla integration on time scales, J. Difference Equations Appl. 8 (2002), 1001-1027.
- [7] J. M. Park, D. H. Lee, J. H. Yoon, and J. T. Lim, *The Henstock and Henstock delta Integrals*, J. Chungcheong Math. Soc. **26** (2013), no. 2, 291-298.
- [8] J. M. Park, D. H. Lee, J. H. Yoon, Y. K. Kim, and J. T. Lim, The relation between Henstock integral and Henstock delta Integral on time scales, J. Chungcheong Math. Soc. 26 (2013), no. 3, 625-630.

493

J. M. Park, D. H. Lee, J. H. Yoon, and J. T. Lim

- [9] J. M. Park, D. H. Lee, J. H. Yoon, and J. T. Lim, The relation between McShane integral and McShane delta Integral, J. Chungcheong Math. Soc. 27 (2014), no. 1, 113-121.
- [10] J. M. Park, D. H. Lee, J. H. Yoon, Y. K. Kim, and J. T. Lim, *The Riemann Delta Integral on time scales*, J. Chungcheong Math. Soc. (to appear).
- [11] A. Perterson and B. Thompson, *Henstock-Kurzweil Delta and Nabla Integral*, J. Math. Anal. Appl. **323** (2006), 162-178.
- [12] C. W. Swartz and D. S. Kurtz, Theories of Integration: The Integrals of Riemann Lebesgue, Henstock-Kurzweil, and Mcshane, World Scientific, 2004.
- [13] B. S. Thomson, Henstock-Kurzweil integrals on time scales, Pan American Math J. 18 (2008), no. 1, 1-19.

*

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: parkjm@cnu.ac.kr

**

Department of Mathematics Education KongJu National University Kongju 314-701, Republic of Korea *E-mail*: dhlee@kongju.ac.kr

Department of Mathematics Education Chungbuk National University Chungju 360-763, Republic of Korea *E-mail*: yoonjh@cbnu.ac.kr

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: shiniljt@gmail.com