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THE LEBESGUE DELTA INTEGRAL
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ABSTRACT. In this paper, we define the extension f* : [a,b] — R
of a function f : [a,b]r — R for a time scale T and investigate the
properties of the Lebesgue delta integral of f on [a, b]r by using the
function f*.

1. Introduction and preliminaries

The Lebesgue delta integral was introduced by Bohner and Guseinov
in [3]. In this paper, the relationship between Lebesgue and Lebesgue
delta integral is established.

Let T be a time scale. For every x,y € T with z < y, we define the
bounded intervals in T by

[z, y)r={teT:x<t<y} and [z,ylr={teT:z<t<y}
Now we define a countably additive measure m on the set

that assigns to each interval [z, y)r its length

m([az, y)T> =y —x.

Using m, we generate the outer measure m* on P([a, b|r), defined for
each E € P([a,b]T) as

m*(E) = inf) (yi—a;) if b¢FE
I S if bekE,

where the infimum is taken over all countable collection {[z;,y;)T} of
intervals such that E C U;[z;, yi)T-
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A set E C [a,b]r is A—measurable if
m*(A) =m*(ANE)+m*(An ([a,b]r — E))

for each subset A C [a, b]r.
Defining the family

M(m*) ={F C [a,b]T : E is A — measurable},

the Lebesgue A—measure, denoted by ua, is the restriction of m* to

2. The Lebesgue delta integral

DEFINITION 2.1. A function f : [a, bl — R = [~00, o0] is A—measurable
if for every a € R, the set

FH (=00, 0)) = {t € [a,b]r : f(t) <}

is A—measurable.

DEFINITION 2.2. A function S : [a, b]r — R is simple if it only takes a
finite number of different values vy, -+, . If Aj = {t € [a,b]r : S(t) =

a;}, then
n
S = ZanAj.
j=1

DEFINITION 2.3. Let E C [a,blr be a A—measurable set and let
S : [a, by — [0,00) be a simple and A—measurable function with

S = Z anAj .
j=1
The Lebesgue A—integral of S on FE is defined by
(La) [ §= Y aua(a;nE),
E -
7j=1

DEFINITION 2.4. Let E C [a,b|r be a A—measurable set and let f :

[a, b]T — [0, 00] be a A—measurable function. The Lebesgue A—integral
of f on E is defined by

(LA)/Ef:SHP(LA)/E&

where the supremum is taken on all simple A—measurable functions S
such that 0 < S < f on [a, b].
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DEFINITION 2.5. Let E C [a,bly be a A—measurable set and let
f :[a,blr — R be a A—integrable function. The function f is Lebesgue
A—integrable(or La—integrable) on F if at least one of the elements

(L) / ftoor (La) /E I

is finite, where the positive and negative parts of f, f* and f~ respec-
tively, are defined as
fT=max{f,0} and f~ = max{—f,0}.
In this case, the Lebesgue A—integral of f on FE is defined by

<LA>éf=<LA>/Ef+—<LA>/Ef—.

Let {(ax,bx)}7>, be the sequence of all contiguous intervals of [a, b]T
in [a,b].
For a function f : [a, bl — R, define the extension f* : [a,b] — R of
f by
£t = flag) if t€ (ag,b;) for some k
|l f@) i tea, by

From [4, Theorem 5.1], we can easily get the following theorem.

THEOREM 2.6. Let f : [a,bly — R be a A—measurable function and
let f* : [a,b] — R be the extension of f to[a,b]. Then f is La—integrable
on [a,b]r if and only if f* is Lebesgue integrable on [a,b]. In that case,

<LA>/abf=<L>/:f*.

THEOREM 2.7. Let f be La—integrable on [a,b]r. Then f is La—inte
grable on every subinterval [c,d]t of [a,b]T.

Proof. Let f be a La—integrable function on [a,b]y. By Theorem
2.6, f* : [a,b] — R is Lebesgue integrable on [a,b]. By the property
of the Lebesgue integral, f* is Lebesgue integrable on every subinterval
[c,d] C [a,b]. By Theorem 2.6, f is La—integrable on every subinterval
[C,dh‘ C [a, b]T. ]

THEOREM 2.8. Let f and g be La—integrable on [a,b]T and «, [ be
real numbers. Then af + B¢ is La—integrable on [a,b]T and

(L) / '(@f + Bg) = a(La) / f (L) / 'y
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Proof. Let f and g be La—integrable on [a,b]r. By Theorem 2.6,
af* + Bg* is Lebesgue integrable on [a, b] and

<L>/ab<af + 8g") /f 48 /

By Theorem 2.6, af + (g is La—integrable on [a, b]a and
b

<LA>/ab<af+ﬁg>=a<LA>/abf+ﬁ<LA>/a 9
O

THEOREM 2.9. Let ¢ € T with a < ¢ < b. If f is La—integrable on
each of intervals [a,c|r and [c,b]r, then f is La—integrable on [a, b

and
<LA>/:f=<LA>/:f+<LA>/be.

Proof. It f is Lan—integrable on each of intervals [a,c|r and [c,b]r,
then f* is Lebesgue integrable in [a, ¢] and [c, b]. By the property of the
Lebesgue integral, f* is Lebesgue integrable on [a, b] and

/f— /f+ /f

By Theorem 2.6, f is La—integrable on [a, bJT and
LA/f LA/f+LA/f

THEOREM 2.10. Let {f,} be a monotone sequence of L —integrable

O]

functions on [a, bjr. Suppose that lim, o (LA) f; fn is finite. If
limy, oo fn(t) = f(t), then f is Lan—integrable and

b
) [ 1=t 2s) [ 1o

Proof. Let {f,} be a monotone sequence of La—integrable func-
tions on [a,b]r. Then {f}} is a monotone sequence of Lebesgue in-

tegrable functions on [a,b]. Since (La) f; fn = (L) ff 1 for each n,
limy, o0 (L) ff £ is finite and lim, .~ f;5(t) = f*(¢t) by the hypothesis.

By the property of the Lebesgue integral, f* is Lebesgue integrable on
[a,b] and (L) f; f* = limy, (L) ff fr. By Theorem 2.6, f is La—inte
grable on [a, b] and
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) [ 1= pmes) [ 1.
O

Recall that a bounded function f : [a, bl — R is Ra—integrable on
[a,b]T if there exists a number A such that for each € > 0 there exists
0 > 0 such that

‘if(fi)(ti —tiq) — A’ <€
=1

for every d—partition P = {(&;, [ti—1,t]) }7q of [a,b]T.

THEOREM 2.11. If f : [a,b]r — R is Ra—integrable on [a,b|T, then
f is La—integrable on [a, b]r. In this case, (RA) fff = (La) fff.

Proof. Suppose that f is Ra—integrable on [a, b]t. Then by [10, Tho-
erem 2.6], f* is Riemann integrable on [a,b] and (Ra) f;f =(R) f; I
Since f* is Lebesgue integrable on [a,b], f is La—integrable on [a,b]T

and

(1]
2l

B8l

(4]

5]
(6]
(7l

(8]

(LA)/abfZ(L)/abf*:(R)/abf*Z(RA)/abf-
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