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SIMPLICITY OF GROUPS OF EVEN ORDER

Minjung Choi* and Seungkook Park**

Abstract. In this paper, we show that groups of order 2npq, where
p, q are primes of the from p = 2n − 1, q = 2n−1 + p with n ≥ 3,
are not simple and groups of order 2npqt for t ≥ 2, where p, q are
odd primes of the form p = 2m− 1, q = 2n− 1 with m < n, are not
simple.

1. Introduction

A nontrivial group is called a simple group if it has no nontrivial
proper normal subgroup. Simple groups have been studied for quite a
long time. Every finite simple abelian group is isomorphic to a cyclic
group of prime order. Feit and Thompson [2] showed that groups of odd
order are solvable and hence nonabelian simple groups must be of even
order, that is, nonabelian groups of odd order are not simple. In 1904,
Burnside [1] proved that groups of order paqb, where p, q are primes and
a, b are nonnegative integers, are solvable. Thus nonabelian groups of
order paqb, where p, q are primes and a, b are nonnegative integers, are
not simple. In 2009, Salunke and Gotmare [3] showed that if a group
G has order 2m, where m is an odd number, then G has a subgroup of
index 2 and hence G is not simple. The simplicity of groups of order
2npmql, where p, q are primes and n ≥ 2, m ≥ 1, l ≥ 1, are not known.
In this paper, we show that groups of order 2npq, where p, q are primes
of the from p = 2n − 1, q = 2n−1 + p with n ≥ 3, are not simple and
groups of order 2npqt for t ≥ 2, where p, q are odd primes of the form
p = 2m − 1, q = 2n − 1 with m < n, are not simple.
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2. Main results

We give the definition of Mersenne prime and some examples.

Definition 2.1. A Mersenne prime is a prime number of the form
2n − 1.

Example 2.2. The first four Mersenne primes are 3, 7, 31 and 127
when n = 2, 3, 5 and 7.

Lemma 2.3. Let n be an integer greater than or equal to 3. Let
p = 2n − 1 and q = 2n−1 + p. Then

2ip 6≡ 1 (mod q) for i = 1, 2, . . . , n− 1.

Proof. Let x = 2ip for some 1 ≤ i ≤ n− 1. We divide the ranges of i
into two cases, odd and even.

Case 1. i is odd.
Let X = x− 2iq + 2i−1q − 2i−2q + · · · − 2q + q. Then

X = 2i(2n − 1)− 2i(2n + 2n−1 − 1)

+ 2i−1(2n + 2n−1 − 1)− · · · − 2(2n + 2n−1 − 1) + (2n + 2n−1 − 1)

= (2n+i − 2i)− (2n+i + 2n+i−1 − 2i)

+ (2n+i−1 + 2n+i−2 − 2i−1)− · · · − (2n+1 + 2n − 2) + (2n + 2n−1 − 1)

= 2n−1 − 2i−1 + · · ·+ 2− 1.

Let y = −2i−1 + · · ·+2−1. Then X = 2n−1 +y. Since i is odd, we have
y = (−2i−1 + 2i−2) + · · ·+ (−22 + 2)− 1 < 0. Thus

X = 2n−1 + y < 2n−1 < 2n−1 + 2n − 1 = q.

On the other hand,

X = 2n−1+y > 2i+y = 2i−2i−1+2i−2−· · ·+2−1 = 2i−1+2i−3+· · ·+1 ≥ 1.

Thus 1 < X < q. Since x ≡ X (mod q), x ≡ X 6≡ 1 (mod q).

Case 2. i is even.
Let Z = x− 2iq + 2i−1q − 2i−2q + · · · − 22q + 2q. Then

Z = 2i(2n − 1)− 2i(2n + 2n−1 − 1) + 2i−1(2n + 2n−1 − 1)

− · · · − 22(2n + 2n−1 − 1) + 2(2n + 2n−1 − 1)

= (2n+i − 2i)− (2n+i + 2n+i−1 − 2i) + (2n+i−1 + 2n+i−2 − 2i−1)

− · · · − (2n+2 + 2n+1 − 22) + (2n+1 + 2n − 2)

= 2n − 2i−1 + · · ·+ 22 − 2
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Let w = −2i−1 + · · · + 22 − 2. Then Z = 2n + w. Since i is even,
w = (−2i−1 + 2i−2) + · · ·+ (−23 + 22)− 2 < 0. Thus

Z = 2n + w < 2n < 2n + p = q.

On the other hand,

Z = 2n +w > 2i +w = 2i−2i−1 + · · ·+22−2 = 2i−1 +2i−3 + · · ·+2 > 1.

Thus 1 < Z < q. Since x ≡ Z (mod q), x ≡ Z 6≡ 1 (mod q).

Proposition 2.4. Let n be an integer greater than or equal to 3. Let
G be a group of order 2npq where p, q are primes of the form p = 2n− 1
and q = 2n−1 + p. Then G is not simple.

Proof. We will assume that G is simple and deduce a contradiction.
Let nq be the number of Sylow q-subgroups in G. Then by the Sylow’s
theorem, nq | 2np and nq ≡ 1 (mod q). Since nq | 2np, the number
nq must be one of 1, 2, . . . , 2n, p, 2p, . . . , 2np. Since nq ≡ 1 (mod q) and
1 < p < q, nq 6= p. Also nq 6= 2i for i = 1, 2, . . . , n because of the fact
that 1 < 2i < 2n + 2n−1 − 1 = q for i = 1, 2, . . . , n. By Lemma 2.3,
nq 6= 2ip for i = 1, 2, . . . , n− 1. Thus nq = 1 or 2np. If nq = 1, that is, if
there is only one Slyow q-subgroup, then it must be a normal subgroup
of G which is a contradiction. Now we consider the case when nq = 2np.
There are 2np Sylow q-subgroups of order q. Note that distinct Sylow
q-subgroups intersect in 1. Therefore the number of elements of order
q is 2np(q − 1). The number of elements of order not equal to q is
|G| − 2np(q − 1) = 2np. Next we consider the number of Sylow p-
subgroups. Since np ≡ 1 (mod p) and np 6= 1, np ≥ p + 1 = 2n. Thus
the number of elements of order p is greater than or equal to 2n(p− 1).
Hence the number of elements of order not equal to q and p is less than
or equal to |G| − 2np(q − 1)− 2n(p− 1) = 2n which implies that G has
one Sylow 2-subgroup. Thus G contains a normal Sylow 2-subgroup of
order 2n which is a contradiction. Therefore G is not simple.

Remark 2.5. A5 is the smallest non-abelian simple group of order
60. Note that 60 = 22(22 − 1)(2 + 22 − 1) is of the form 2npq where p, q
are primes of the form p = 2n − 1 and q = 2n−1 + p with n = 2.

We give some examples of Proposition 2.4.

Example 2.6. Groups of order 616 = 23(23−1)(22+23−1), 46624 =
25(25−1)(24 +25−1) or 3104896 = 27(27−1)(26 +27−1) are not simple
by Proposition 2.4.
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Proposition 2.7. Let G be group of order 2npqt where t ≥ 2 and p,
q are odd primes of the form p = 2m − 1, q = 2n − 1 with 2 ≤ m < n.
Then G is not simple.

Proof. Suppose that G is simple. Let nq be the number of Sy-
low q-subgroups. Then nq|2np. Thus the number nq must be one of
1, 2, 22, . . . , 2n−1, 2n, p, 2p, . . . , 2np. Since G is simple, nq 6= 1. Let a = 2i

for some 1 ≤ i ≤ n − 1. Since 1 < a < q and 1 < p < q, a 6≡ 1 (mod q)
and p 6≡ 1 (mod q). Thus nq 6= a and nq 6= p. Let nq = 2ip for some
1 ≤ i ≤ n. We divide the ranges of i into two parts, 1 ≤ i ≤ n−m and
n−m < i ≤ n.

Case 1. 1 ≤ i ≤ n−m.
Since nq = 2ip = 2i(2m − 1) ≤ 2n−m(2m − 1) = 2n − 2n−m < 2n − 1 = q
and nq = 2i(2m − 1) ≥ 2(2m − 1) = 2p > 1, nq = 2ip 6≡ 1(mod q).

Case 2. n−m < i ≤ n.

nq = 2ip = 2i(2m − 1) = 2m+i − 2i

> 2m+i − 2i+(m−1) = 2m+i−1 ≥ 2n > 2n − 1 = q.

Let k = i− (n−m) and let A = nq − 2k−1q + 2k−2q − · · · − q. Then

A = nq − 2k−1q + 2k−2q − · · · − q

= 2i(2m − 1)− 2k−1(2n − 1) + 2k−2(2n − 1)− · · · − (2n − 1)

= (2i+m − 2i)− (2n+k−1 − 2k−1)− (2n+k−2 − 2k−2)− · · · − (2n − 1)

= 2m+i − 2i − 2n(2k−1 + 2k−2 + · · ·+ 1) + (2k−1 + 2k−2 + · · ·+ 1)

= 2n+k − 2i − 2n(2k − 1) + (2k − 1)

= 2n − 1 + 2k − 2i.

If k = 1, then

A = 2n − 1 + 2k − 2i = 2n − 1 + 2− 2n−m+1 = 2n−m(2m − 2) + 1 > 1.

If 1 < k ≤ m, that is, n−m + 1 < i ≤ n, then

A = 2n − 1 + 2k − 2i > 2n − 1 + 2− 2i ≥ 1.

On the other hand, since 2k − 2i < 0, we have

A = 2n − 1 + 2k − 2i < 2n − 1 = q.

Thus 1 < A < q. Since nq ≡ A (mod q), nq ≡ A 6≡ 1 (mod q). Hence
nq 6= 2ip. Therefore nq = 2n. Let N is a normalizer of Sylow q-subgroup.
Then |G : N | = 2n. Let G act on the 2n left cosets of N by g · xN =
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(gx)N , where g ∈ G and xN is a left coset of N . Then we get a
permutation representation

ρ : G → S2n .

Since ker ρ is a normal subgroup of G and G is simple, ker ρ = 1. Thus
G is isomorphic with a subgroup of S2n . Hence |G| | |S2n |, that is,
2n(2m−1)(2n−1)t | (2n)!. Then (2m−1)qt | q! which is a contradiction.
Therefore G is not simple.

We give some examples of Proposition 2.7.

Example 2.8. Groups of order 1176 = 23(22−1)(23−1)2, 6673184 =
25(23−1)(25−1)3 or 266027988992 = 211(25−1)(211−1)2 are not simple
by the Proposition 2.7.
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