SOME APPLICATION OF THE UNION OF TWO \mathbb{k}-CONFIGURATIONS IN \mathbb{P}^{2}

Yong-Su SHIN*

Abstract

It has been proved that the union of two linear starconfigurations in \mathbb{P}^{2} of type s and t for either $3 \leq t \leq 10$ or $\binom{t}{2}-1 \leq$ s with $3 \leq t$ has maximal Hilbert function. We extend the condition to $\left[\frac{1}{2}\binom{t}{2}\right] \leq s$, so that it is true for either $3 \leq t \leq 10$ or $\left[\frac{1}{2}\binom{t}{2}\right] \leq s$ with $3 \leq t$, which extends the result of [6].

1. Introduction

Let $R=\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\bigoplus_{i \geq 0} R_{i}$ be the standard graded polynomial ring in $(n+1)$-variables over an infinite field \mathbb{k} and $A=R / I$ where I is a homogeneous ideal in R. Then $A=\bigoplus_{i \geq 0} A_{i}$ is also a graded ring. The Hilbert function of A is the function

$$
\mathbf{H}(A, t)=\operatorname{dim}_{\mathbb{k}} R_{t}-\operatorname{dim}_{\mathbb{k}} I_{t}
$$

If $I:=I_{\mathbb{X}}$ is the ideal of a subscheme \mathbb{X} in \mathbb{P}^{n}, then we denote the Hilbert function of \mathbb{X} by

$$
\mathbf{H}_{\mathbb{X}}(t):=\mathbf{H}\left(R / I_{\mathbb{X}}, t\right)
$$

(see $[2,3])$. Let \mathbb{X} be a set of s points in \mathbb{P}^{2}. We say that \mathbb{X} has maximal Hilbert function (for sets of s points) if

$$
\mathbf{H}_{\mathbb{X}}(t)=\min \left\{s,\binom{t+2}{2}\right\}
$$

for every $t \geq 0$.
Let $F_{1}, F_{2}, \ldots, F_{r}$ be general forms in $R=\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ with $r \geq$
3. Then $\bigcap_{1 \leq i<j \leq r}\left(F_{i}, F_{j}\right)=\left(\tilde{F}_{1}, \ldots, \tilde{F}_{r}\right)$, where $\tilde{F}_{i}=\frac{\prod_{j=1}^{r} F_{j}}{F_{i}}$ for $i=$ $1, \ldots, r$ (see [1, Proposition 2.1]). The variety \mathbb{X} in \mathbb{P}^{n} of the ideal

[^0]$\bigcap_{1 \leq i<j \leq r}\left(F_{i}, F_{j}\right)=\left(\tilde{F}_{1}, \ldots, \tilde{F}_{r}\right)$ is called a star-configuration in \mathbb{P}^{n} of type r. Furthermore, if the F_{i} are all general linear forms in R, the star-configuration \mathbb{X} is called a linear star-configuration in \mathbb{P}^{n} of type r.

In this paper, we construct the specific union of two \mathbb{k}-configurations in \mathbb{P}^{2} having maximal Hilbert function. As an application, we prove that if \mathbb{X} is the union of two linear star-configurations in \mathbb{P}^{2} of type s and t, then \mathbb{X} has maximal Hilbert function for $3 \leq t$ and $\left[\frac{1}{2}\binom{t}{2}\right] \leq s$, which generalizes the interesting result of [6].

2. The union of two \mathbb{k}-configurations in \mathbb{P}^{2}

In this section we will compute the Hilbert functions of some general unions of particular configurations of points in \mathbb{P}^{2}. We first recall some standard facts and definitions (see $[2,3]$).

Definition 2.1. $A \mathbb{k}$-configuration of points in \mathbb{P}^{2} is a finite set \mathbb{X} of points in \mathbb{P}^{2} which satisfy the following conditions: there exist integers $1 \leq d_{1}<\cdots<d_{m}$, and subsets $\mathbb{X}_{1}, \ldots, \mathbb{X}_{m}$ of \mathbb{X}, and distinct lines $\mathbb{L}_{1}, \ldots, \mathbb{L}_{m} \subseteq \mathbb{P}^{2}$ such that
(a) $\mathbb{X}=\bigcup_{i=1}^{m} \mathbb{X}_{i}$,
(b) $\left|\mathbb{X}_{i}\right|=d_{i}$ and $\mathbb{X}_{i} \subset \mathbb{L}_{i}$ for each $i=1, \ldots, m$, and
(c) $\mathbb{L}_{i}(1<i \leq m)$ does not contain any points of \mathbb{X}_{j} for all $j<i$.

In this case, the \mathbb{k}-configuration in \mathbb{P}^{2} is said to be of type $\left(d_{1}, \ldots, d_{m}\right)$.
Remark 2.2. Any two \mathbb{k}-configurations in \mathbb{P}^{2} of the same type have the same minimal free resolution, and so the same Hilbert function ([2, $3])$. We recall that if \mathbb{X} is a linear star-configuration in \mathbb{P}^{2} of type r with $3 \leq r$, then \mathbb{X} is a \mathbb{k}-configuration in \mathbb{P}^{2} of type $\mathcal{T}=(1,2, \ldots, r-1)$ (see $[2,3]$ for the definition of a (standard) \mathbb{k}-configuration in \mathbb{P}^{n}).

The following lemma is immediate from the definition of a \mathbb{k}-configura tion in \mathbb{P}^{n}, and so we omit the proof.

Lemma 2.3. Let \mathbb{X} be a \mathbb{k}-configuration in \mathbb{P}^{2} of type $\mathcal{T}=(1,2,3, \ldots$, $d-1, d+1, d+2, \ldots, s)$ with $s \geq 3$. Then \mathbb{X} has maximal Hilbert function

$$
\mathbf{H}_{\mathbb{X}}: \begin{array}{llll}
1 & \binom{1+2}{2} & \cdots & \binom{2+(s-2)}{2} \quad\binom{2+(s-1)}{2}-d \rightarrow .
\end{array}
$$

We introduce the following example for the proof of Proposition 2.5.
Example 2.4. Let \mathbb{X} and \mathbb{Y} be linear star-configurations in \mathbb{P}^{2} of type s and t defined by linear forms L_{1}, \ldots, L_{s} and M_{1}, \ldots, M_{t}, respectively.

Figure 1. a \mathbb{k}-configuration in \mathbb{P}^{2} of type $(2,3,4,5,6)$

Figure 2. a \mathbb{k}-configuration in \mathbb{P}^{2} of type $(1,2, \ldots, 8)$
(a) Let $t=5$ and $s=5$. As shown in Figure $1, \mathbb{X} \cup \mathbb{Y}$ is a \mathbb{k} configuration in \mathbb{P}^{2} of type $(2,3,4,5,6)$.
(b) Let $t=6$ and $s=7$. As shown in Figure $2, \mathbb{X} \cup \mathbb{Y}$ is a \mathbb{k} configuration in \mathbb{P}^{2} of type $(1,2, \ldots, 8)$.

Proposition 2.5. Let \mathbb{X} and \mathbb{Y} be linear star-configurations in \mathbb{P}^{2} of type s and t, respectively, with $3 \leq t \leq s$. If $s \geq\left[\frac{1}{2}\binom{t}{2}\right]$, then $\mathbb{X} \cup \mathbb{Y}$ has maximal Hilbert function.

Proof. By Corollary 2.2 in [6], the result hold for $s \geq\binom{ t}{2}-1$. So we assume that $\left[\begin{array}{l}1 \\ 2\end{array}\binom{t}{2}\right] \leq s<\binom{t}{2}-1$.

Let \mathbb{X} and \mathbb{Y} be defined by lines $\mathbb{L}_{1}, \ldots, \mathbb{L}_{s}$ and $\mathbb{M}_{1}, \ldots, \mathbb{M}_{t}$, respectively, where \mathbb{L}_{i} and \mathbb{M}_{j} are defined by linear forms L_{i} and M_{j}. By Theorems 3.1 and 3.2 in [4], the result holds for $t=3$ and 4 . So we assume that $t \geq 5$. Recall that \mathbb{X} and \mathbb{Y} are \mathbb{k}-configurations in \mathbb{P}^{2} of type $(1,2, \ldots, s-1)$ and $(1,2, \ldots, t-1)$, respectively. For convenience and simplicity of the figure, we shall use Figure 3. First, we use the matrix

$$
\begin{array}{llll}
1 & 2 & \cdots & s-1
\end{array}
$$

as a standard \mathbb{k}-configuration (a linear star-configuration \mathbb{X}) in \mathbb{P}^{2} of type $(1,2, \ldots, s-1)$ in Figure 3, i.e., we consider \mathbb{X} a standard \mathbb{k}-configuration in \mathbb{P}^{2}. Second, we spread out the $\binom{t}{2}$-points of the other \mathbb{k}-configuration (linear star-configuration \mathbb{Y}) in \mathbb{P}^{2} of type $(1,2, \ldots, t-1)$ as points on a line, and make a partition as follows:
s-points lie on the line \mathbb{N}_{1}
the other $\left.\alpha:=\binom{t}{2}-s\right)$-points lie on the line \mathbb{N}_{2}.

Figure 3. $(1,2, \ldots, s-\alpha, s-\alpha+2, \ldots, s-1, s, s+1)$

Notice that it is always possible for every line \mathbb{L}_{i} to pass through either a single point or two points in \mathbb{Y} for $1 \leq i \leq s$. More precisely, we can prove this by induction on t, and it suffices to show when $s=\left[\begin{array}{l}\frac{1}{2}\binom{t}{2}\end{array}\right]$. By Example 2.4 (a) and (b), if $t=5$ or $t=6$, then it holds.

Now suppose $t>6$. Consider a set \mathbb{Z} of $2(t-2)$-points on two lines \mathbb{M}_{t-1} and \mathbb{M}_{t} except a single point \wp defined by M_{t-1} and M_{t}. Then we make $(t-2)$-lines $\mathbb{L}_{s-t+3}, \ldots, \mathbb{L}_{s}$ pass through two distinct points in \mathbb{Z} (see Example $2.4(\mathrm{~b}))$. Note that $\mathbb{W}:=\mathbb{Y}-(\mathbb{Z} \cup\{\wp\})$ is a linear star-configuration in \mathbb{P}^{2} of type $(t-2)$ defined by M_{1}, \ldots, M_{t-2}, and

$$
\begin{aligned}
s-(t-2)-\left[\frac{1}{2}\binom{t-2}{2}\right] & =\left[\frac{1}{2}\binom{t}{2}\right]-(t-2)-\left[\frac{1}{2}\binom{t-2}{2}\right] \\
& \geq \frac{1}{2}\left(\binom{t}{2}-1\right)-(t-2)-\frac{1}{2}\binom{(t-2}{2} \\
& =0 .
\end{aligned}
$$

In other words, $s-(t-2)-\left[\frac{1}{2}\binom{t-2}{2}\right]=0$ or 1 .
Case 1. Let $s-(t-2)-\left[\frac{1}{2}\binom{t-2}{2}\right]=0$. By induction on t, we can make $s-(t-2)$ lines $\mathbb{L}_{1}, \ldots, \mathbb{L}_{s-t+2}$ pass through two distinct points in \mathbb{W} (see Example $2.4(\mathrm{a})$). Hence $\mathbb{X} \cup(\mathbb{Y}-\{\wp\})$ is a \mathbb{k}-configuration in \mathbb{P}^{2} of type $(2,3, \ldots, s+1)$, and so $\mathbb{X} \cup \mathbb{Y}$ is a \mathbb{k}-configuration in \mathbb{P}^{2} of type $(1,2,3, \ldots, s+1)$.

Case 2. Let $s-(t-2)-\left[\begin{array}{c}\left.\frac{1}{2}\binom{t-2}{2}\right]=1 \text {. By induction on } t, \mathbb{L}_{2}, \ldots, \mathbb{L}_{s-t+2}, ~\end{array}\right.$ pass through two distinct points in \mathbb{W}, which implies that $\mathbb{X} \cup(\mathbb{Y}-\{\wp\})$ is a \mathbb{k}-configuration in \mathbb{P}^{2} of type $(3,4, \ldots, s+1)$, and so $\mathbb{X} \cup \mathbb{Y}$ is a \mathbb{k}-configuration in \mathbb{P}^{2} of type $(1,3,4, \ldots, s+1)$.

Therefore, it is from Cases 1, 2, and Lemma 2.3 that $\mathbb{X} \cup \mathbb{Y}$ has maximal Hilbert function, as we wished.

If we couple the results in $[4,5]$ with Proposition 2.5 , we obtain the following proposition.

Proposition 2.6. Let \mathbb{X} and \mathbb{Y} be linear star-configurations in \mathbb{P}^{2} of type s and t, respectively, with $3 \leq t \leq s$. If either $3 \leq t \leq 10$ or $\left[\frac{1}{2}\binom{t}{2}\right] \leq s$, then $\mathbb{X} \cup \mathbb{Y}$ has maximal Hilbert function.

3. Additional comments and a question

First, the concept of a star-configuration in \mathbb{P}^{n} has been developed to calculate the dimension of secant varieties to the variety of reducible forms (see [4]). We extend the definition of a star-configuration in \mathbb{P}^{n}, i.e., we call the variety \mathbb{X} of the ideal

$$
\bigcap_{1 \leq i_{1}<\cdots<i_{r} \leq s}\left(F_{i_{1}}, \ldots, F_{i_{r}}\right)
$$

a star-configuration in \mathbb{P}^{n} of type (r, s) with $2 \leq r$. In particular, if $r=n$, then \mathbb{X} is a set of points in \mathbb{P}^{n}, which is call a point star-configuration in \mathbb{P}^{n} of type s.

Hence we have a natural question of the union of two linear point star-configuration in \mathbb{P}^{n}.

Question 3.1. Let L_{1}, \ldots, L_{s} and M_{1}, \ldots, M_{t} be general linear forms in $R=\mathbb{k}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$. Assume that \mathbb{X} and \mathbb{Y} are linear point starconfigurations in \mathbb{P}^{n} defined by L_{i} 's and M_{j} 's. Does $\mathbb{X} \cup \mathbb{Y}$ have maximal Hilbert function?

References

[1] J. Ahn and Y. S. Shin. The Minimal Free Resolution of a Fat Star-Configuration in \mathbb{P}^{n}, Algebra Colloquium 21 (2014), no. 1, 157-166.
[2] A. V. Geramita, T. Harima, and Y. S. Shin. Extremal point sets and Gorenstein ideals, Adv. Math. 152 (2000), no. 1, 78-119.
[3] A. V. Geramita and Y. S. Shin. \mathbb{k}-configurations in \mathbb{P}^{3} All have extremal resolutions, J. Algebra 213 (1999), no. 1, 351-368.
[4] Y. S. Shin, Secants to The Variety of Completely Reducible Forms and The Union of Star-Configurations, J. of Algebra and its Applications 11 (2012), no. 6, 1250109 (27 pages).
[5] Y. S. Shin, On the Hilbert Function of the Union of Two Linear Starconfigurations in \mathbb{P}^{2}, J. of the Chungcheong Math. Soc. 25 (2012), no. 3, 553562.
[6] Y. S. Shin, Some Examples of The Union of Two Linear Star-configurations in \mathbb{P}^{2} Having Generic Hilbert Function, J. of the Chungcheong Math. Soc. 26 (2013), no. 2, 403-409.
*
Department of Mathematics
Sungshin Women's University
Seoul 136-742, Republic of Korea
E-mail: ysshin@sungshin.ac.kr

[^0]: Received March 26, 2014; Accepted June 30, 2014.
 2010 Mathematics Subject Classification: Primary 13A02; Secondary 16W50.
 Key words and phrases: Hilbert function, \mathbb{k}-configuration in \mathbb{P}^{2}, star-configuration in \mathbb{P}^{2}.

 This research was supported by a grant from Sungshin Women's University in 2013.

