JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 27, No. 3, August 2014 http://dx.doi.org/10.14403/jcms.2014.27.3.393

EXISTENCE OF MILD SOLUTIONS IN THE α-NORM FOR SOME PARTIAL FUNCTIONAL INTEGRODIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS

Hyun Ho Jang*

ABSTRACT. In this work, we discuss the existence of mild solutions in the α -norm for some partial functional integrodifferential equations with infinite delay. We assume that the linear part generates an analytic semigroup on a Banach space X and the nonlinear part is a Lipschitz continuous function with respect to the fractional power norm of the linear part.

1. Introduction

Byszewski [11] studied the problem of existence of solution of semilinear evolution equation with nonlocal conditions in Banach spaces. Byszewski and Acka [13] established the existence and uniqueness and continuous dependence of a mild solution of a semilinear functional differential equation with nonlocal condition of the form

(1.1)
$$u'(t) + Au(t) = f(t, u_t), t \in [0, a],$$

(1.2)
$$u(s) + [g(u_{t_1}, ..., u_{t_p})](s) = \phi(s), s \in [-r, 0],$$

where $0 < t_1 < ... < t_p \le a(p \in \mathbf{N})$, -A is the infinitestimal generator of a C_0 semigroup of operators on a Banach space, f, g and ϕ are given functions and $u_t(s) = u(t+s)$ for $t \in [0, a], s \in [-r, 0]$.

In this paper, we shall prove the existence and uniqueness of mild solutions in the α -norm of a functional integrodifferential equation with nonlocal conditions of the form

Received January 27, 2014; Revised April 03, 2014; Accepted June 30, 2014. 2010 Mathematics Subject Classification: Primary 34K06, 34K20, 34K30, 47D06. Key words and phrases: an analytic semigroup, α -norm, nonlocal conditions.

(1.3)
$$u'(t) + Au(t) = f(t, u_t, \int_0^t k(t, \tau, u_\tau) d\tau), t \in [0, a].$$

(1.4)
$$u(s) + [g(u_{t_1}, ..., u_{t_p})](s) = \phi(s) \in B_\alpha, s \in (-\infty, 0],$$

where -A is the infinitestimal generator of C_0 semigroup of operators $(T(t))_{t\geq 0}$ on a Banach space X and $\phi \in C((-\infty, 0] : X)$ and the nonlinear operators f, k, g are given functions satisfying some assumptions.

Theorems about the existence, uniqueness and stability of solutions of differential, integrodifferential equations and functional-differential abstract evolution equations with nonlocal conditions were studied by Byszewski [11,12,13], Balachandran[5], Chandrasekara [6], and Lin and Lu [18].

2. Preliminaries

Here we assume that X is a Banach space with norm $|| \cdot ||, -A$ is the infinitestinmal generator of a C_0 semigroup $(T(t))_{t \ge 0}$ on X and

$$\begin{split} M &= \sup_{t \in [0,a]} ||T(t)||_{B(X)}. \text{ In the sequel the operator norm } || \cdot ||_{B(X)} \\ \text{will be denoted by } || \cdot ||. \text{ To simplify the notation let us take } I_0 &= (-\infty, 0], I = [0, a] \text{ and } E = C((-\infty, 0] : X), Y = C((-\infty, a] : X), Z = C([0, a] : X). \text{ For a continuous function } w : (-\infty, a] \to X, \text{ we denote } w_t \\ \text{a function belong to } E \text{ and defined by } w_t = w(t+s) \text{ for } t \in I, s \in I_0. \\ \text{Let } f : I \times E \times E \to X, k : I \times I \times E \to E \text{ and } \phi \in E. \end{split}$$

We make the following assumptions:

- (A_1) For every $u_t, w_t \in E$ and $t \in I, f(., u_t, w_t) \in X$
- (A_2) There exists a constant L > 0 such that

$$|f(t, x_t, w_t) - f(t, y_t, u_t)|| \le L[||x - y||_Y + ||w - u||_Y]$$

for $x, y, w, u \in Y, t \in I$.

 (A_3) There exists a constant K > 0 such that

$$||k(t, s, x_s) - k(t, s, y_s)|| \le K||x - y||_Y$$

for $x, y \in Y, s \in I$.

 (A_4) Let $g: E^P \to E$ and there exists a constant G > 0 such that

$$||[g(w_{t_1}, ..., w_{t_p})](s) - [g(u_{t_1}, ..., u_{t_p})](s)|| \le G||w - u||_Y$$

for
$$w, u \in Y, s \in I_0$$
.

(A₅) $M_{\alpha}L_{a}[1+(1+aK)\int_{0}^{a}\frac{e^{\omega s}}{s^{\alpha}}ds]||w-u||_{\alpha}<1$, where M_{α} , ω , and L_{a} are constants to be specified later.

DEFINITION 2.1. ([19]) A function $u \in Y$ satisfying the conditions:

(i)
$$u(t) = T(t)\phi(0) - T(t)[g(u_{t_1}, ..., u_{t_p})](0)$$

 $+ \int_0^t T(t-s)f(s, u_s, \int_0^s k(s, \theta, u_\theta)d\theta)ds, t \in I,$
(ii) $u(s) + [g(u_{t_1}, ..., u_{t_p})](s) = \phi(s), s \in I_0$

is said to be a mild solution of the nonlocal Cauchy problem.

We will discuss the following abstract partial differential equations with infinite delay:

(2.1)
$$u'(t) + Ax(t) = F(t, u_t), t \in [0, a]$$

(2.2)
$$u(s) + [g(u_{t_1}, ..., u_{t_p})](s) = \phi(s), s \in (-\infty, 0],$$

where -A generates an analytic semigroup $(T(t))_{t\geq 0}$ on a Banach space X, B is a Banach space of functions mapping $(-\infty, 0]$ to X and satisfying some axioms that will be introduced later. For $0 < \alpha < 1, A^{\alpha}$ denotes the fractional power of A; we assume that F is defined on a subspace B_{α} with values in X, where B_{α} is defined by

$$B_{\alpha} = \{ \phi \in B : \phi(\theta) \in D(A^{\alpha}) \text{ for } \theta \le 0 \text{ and } A^{\alpha} \phi \in B \},\$$

the function $A^{\alpha}\phi$ is defined by

$$(A^{\alpha}\phi)(\theta) = A^{\alpha}(\phi(\theta))$$
 for $\theta \leq 0$.

We suppose that F is Lipschitz continuous with respect to the fractional power norm of A^{α} . For every $t \geq 0$, the history function $x_t \in B_{\alpha}$ is defined by

$$x_t(\theta) = x(t+\theta)$$
 for $\theta \le 0$.

We will discuss the existence of a mild solution in the α -norm for equations(2.1),(2.2). Recall that when f is Lipschitz continuous in B with respect to the X-norm, the equation has been exensively studied by several authors; for more details we refer to [1,5,9] and the references therein.

This work is motivated by the papers of Benkhalti[7] and Balhachandran[4], where the authors studied the existence and stability in the α norm for partial functional differential equations with finite delay; they assumed that $F: C_{\alpha} = C([-r, 0] : D(A^{\alpha})) \to X$ is continuous, where C_{α} is the Banach space of continuous functions from [-r, 0] to $D(A^{\alpha})$, endowed with the following norm

$$||\phi||_{\alpha} = \sup_{-r \le \theta \le 0} |A^{\alpha}\phi(\theta)|.$$

The authors investigated several results regarding the existence, the regularity, and the stability of solutions in C_{α} . Recently, in [3], the author established several results about the existence and the stability in the α -norm for neutral partial functional differential equations.

Let us recall some results that will be used throughout this work. Assume that,

(H1) -A is the infinitestimal generator of an analytic semigroup $(T(t))_{t\geq 0}$ on a Banach space X and $0 \in \rho(A)$ where $\rho(A)$ is the resolvent set of A.

Then, there exist constants $M \geq 1$ and $\omega \in \mathbf{R}$ such that $||T(t)|| \leq Me^{\omega t}$ for $t \geq 0$. Without loss of generality, we assume that $\omega > 0$. If the assumption $0 \in \rho(A)$ is not satisfied, one can substitute the operator A for the operator $(A - \sigma I)$ with σ large enough so that $0 \in \rho(A - \sigma I)$ and so we can always assume that $0 \in \rho(A)$.

For the fractional power $(A^{\alpha}, D(A^{\alpha}))$, for $0 < \alpha < 1$, and its inverse $A^{-\alpha}$, one has the following known result.

THEOREM 2.2. ([19]) Let $0 < \alpha < 1$ and assume that (H1) holds. Then

(i) $D(A^{\alpha})$ is a Banach space with the norm $||x||_{\alpha} = ||A^{\alpha}x||$ for $x \in D(A^{\alpha})$,

- (ii) $T(t): X \to D(A^{\alpha})$ for t > 0,
- (iii) $A^{\alpha}T(t)x = T(t)A^{\alpha}x$ for $x \in A^{\alpha}$ and $t \ge 0$,
- (iv) for every t > 0, $A^{\alpha}T(t)$ is bounded on X and there exists $M_{\alpha} > 0$ such that

$$||A^{\alpha}T(t)|| \le M_{\alpha} \frac{e^{\omega t}}{t^{\alpha}} \text{ for } t > 0$$

(v) $A^{-\alpha}$ is a bounded linear operator on X with $D(A^{\alpha}) = Im(A^{-\alpha})$,

- (vi) if $0 < \alpha < \beta < 1$, then $D(A^{\beta}) \to D(A^{\alpha})$,
- (vii) there exists $N_{\alpha} > 0$ such that

$$|(T(t) - I)A^{-\alpha}|| \le N_{\alpha}t^{\alpha} \text{ for } t > 0.$$

In the sequel, we denote by X_{α} the Banach space $D(A^{\alpha}, || \cdot ||_{\alpha})$. Recall that $A^{-\alpha}$ is given by the following formulas

$$A^{-\alpha} = \frac{\sin(\pi\alpha)}{\alpha} \int_0^\infty t^{-\alpha} (tI + A)^{-1} dt$$

or

$$A^{-\alpha} = \frac{1}{\Gamma(\alpha)} \int_0^\infty t^{\alpha-1} T(t) dt.$$

Both integrals converge in the uniform operator topology. Consequently, if T(t) is compact for every t > 0, then A^{α} is compact for every $0 < \alpha < 1$.

Moreover, if $0 < \alpha < \beta < 1$, then $A^{-\beta} : X \to X_{\alpha}$ is also compact.

From now on, we use an axiomatic definition of the phase space B which was first introduced by Hale and Kato in [16]. We assume that B is the normed space of functions mapping $(-\infty, 0]$ into X and satisfying the following fundamental axioms:

- (A) there exist a positive constant N, a locally bounded function $M(\cdot)$ on $[0,\infty)$ and a continuous function $K(\cdot)$ on $[0,\infty)$, such that if $x: (-\infty, a] \to X$ is continuous on $[\sigma, a]$ with $x_{\sigma} \in B$, for some $\sigma < a$, then for all $t \in [\sigma, a]$,
 - (i) $x_t \in B$
 - (ii) $t \to x_t$ is continuous with respect to $|| \cdot ||$ on $[\sigma, a]$,
- (iii) $N|x(t)| \le ||x_t||_B \le K(t-\sigma) \sup_{\sigma \le s \le t} |x(s)| + M(t-\sigma)||x_\sigma||_B$. (B) *B* is a Banach space.

LEMMA 2.3 ([17]). Let C_{00} be the space of continuous functions mapping $(-\infty, 0]$ into X with compact supports and C_{00}^a be the subspace of functions with supports included in [-a, 0] endowed with the uniform topology. Then $C_{00}^a \to B$.

Let $B_{\alpha} = \{ \phi \in B : \phi(\theta) \in D(A^{\alpha}) \text{ for } \theta \leq 0 \text{ and } A^{\alpha}\phi \in B \}$ and provided B_{α} with the following norm

$$||\phi||_{B_{\alpha}} = ||A^{\alpha}\phi||_B$$
 for $\phi \in B_{\alpha}$.

 $(H_2) A^{-\alpha}\phi \in B$ for $\phi \in B$, where the function $A^{-\alpha}\phi$ is defined by

$$(A^{-\alpha}\phi)(\theta) = A^{-\alpha}(\phi(\theta))$$
 for $\theta \le 0$

LEMMA 2.4 ([17]). Assume that (H_1) and (H_2) hold. Then B_{α} is a Banach space.

3. Main theorem

THEOREM 3.1. Assume that the functions f and g satisfy assumptions (A), (H_1) , (H_2) , $(A_1) - (A_5)$. Then the nonlocal Cauchy problem (1.3)-(1.4) has a unique mild solution.

Proof. Let a > 0 and $C([0, a] : X_{\alpha})$ be a set of continuous functions and X_{α} provided with the uniform topology. For $\phi \in B_{\alpha}$, we define the set

$$\Lambda = \{ u \in C([0, a] : X_{\alpha}) : u(0) = \phi(0) \}.$$

Let $u \in \Lambda$ and \tilde{u} an extension of u on $(-\infty, a]$ by

$$\tilde{u} = \begin{cases} u(t), & t \in [0, a] \\ \phi(t), & t \le 0. \end{cases}$$

Let P be the operator defined on Λ by

$$P(u)(t) = T(t)\phi(0) - T(t)[g(u_{t_1}, ..., u_{t_p})](0) + \int_0^t T(t-s)f(s, u_s, \int_0^s k(s, \theta, u_\theta)d\theta)ds, t \in [0, a].$$

We claim that $P(\Lambda) \subset \Lambda$. In fact, let $u \in \Lambda, t_0 \in [0, a]$ and $t_0 < t < a$. Then

$$\begin{aligned} A^{\alpha}(P(u)(t) - P(u)(t_{0})) \\ &= T(t)A^{\alpha}\phi(0) - T(t_{0})A^{\alpha}\phi(0) \\ &+ \int_{0}^{t_{0}} A^{\alpha}(T(t-s) - T(t_{0}-s))f(s,u_{s},\int_{0}^{s}k(s,\theta,u_{\theta})d\theta)ds \\ &+ \int_{t_{0}}^{t}A^{\alpha}T(t-s)f(s,u_{s},\int_{0}^{s}k(s,\theta,u_{\theta})d\theta)ds, t \in [0,a]. \end{aligned}$$

Since

1

$$T(t)A^{\alpha}\phi(0) - T(t_0)A^{\alpha}\phi(0) \to 0 \text{ as } t \to t_0$$

and

$$\int_{0}^{t_{0}} A^{\alpha}(T(t-s) - T(t_{0}-s))f(s, u_{s}, \int_{0}^{s} k(s, \theta, u_{\theta})d\theta)ds$$

= $(T(t-t_{0}) - I)\int_{0}^{t_{0}} A^{\alpha}T(t_{0}-s)f(s, u_{s}, \int_{0}^{s} k(s, \theta, u_{\theta})d\theta)ds,$

it follows that

$$\int_0^{t_0} A^{\alpha}(T(t-s) - T(t_0 - s))f(s, u_s, \int_0^s k(s, \theta, u_{\theta})d\theta)ds \to 0 \text{ as } t \to t_0.$$

Moreover,

$$\int_{t_0}^t ||A^{\alpha}T(t-s)f(s,u_s,\int_0^s k(s,\theta,u_{\theta})d\theta)||ds \to 0 \text{ as } t \to t_0.$$

Consequently,

$$A^{\alpha}(P(u)(t) - P(u)(t_0)) \to 0 \text{ as } t \to t_0 \text{ and } t > t_0.$$

Arguing as above, one can show that if $t_0 > 0$, then,

$$A^{\alpha}(P(u)(t) - P(u)(t_0)) \to 0 \text{ as } t \to t_0 \text{ and } t < t_0.$$

This implies that $P(u) \in \Lambda$ for all $u \in \Lambda$. In order to show that P has a unique fixed point in Λ , we use the strict contraction principle.

In fact, let $w, u \in \Lambda$ and $t \in [0, a]$. Then,

$$\begin{aligned} &(P(w)(t) - P(u)(t)) \\ &= -T(t)[g(w_{t_1}, ..., w_{t_p})(0) - g(u_{t_1}, ..., u_{t_p})(0)] \\ &+ \int_0^t T(t-s)[f(s, w_s, \int_0^s k(s, \theta, w_\theta) d\theta) - f(s, u_s, \int_0^s k(s, \theta, u_\theta) d\theta)] ds \end{aligned}$$

Taking the α -norm, we obtain

$$\begin{split} &||(P(w)(t) - P(u)(t))||_{\alpha} \\ &\leq ||T(t)||_{\alpha}||[g(w_{t_{1}}, ..., w_{t_{p}})(0) - g(u_{t_{1}}, ..., u_{t_{p}})(0)]||_{\alpha} \\ &+ \int_{0}^{t} ||T(t - s)||_{\alpha}||[f(s, w_{s}, \int_{0}^{s} k(s, \theta, w_{\theta})d\theta) - f(s, u_{s}, \int_{0}^{s} k(s, \theta, u_{\theta})d\theta)]||_{\alpha} ds \\ &\leq ||T(t)||_{\alpha}||[g(w_{t_{1}}, ..., w_{t_{p}})(0) - g(u_{t_{1}}, ..., u_{t_{p}})(0)]||_{\alpha} \\ &+ \int_{0}^{t} ||T(t - s)||_{\alpha}[L||w - u||_{\alpha} + ||\int_{0}^{s} k(s, \theta, w_{\theta})d\theta) - \int_{0}^{s} k(s, \theta, u_{\theta})d\theta||_{\alpha}]ds \\ &\leq M_{\alpha} \frac{e^{\omega t}}{t^{\alpha}} G||w - u||_{\alpha} + M_{\alpha} L \int_{0}^{t} \frac{e^{\omega(t - s)}}{(t - s)^{\alpha}}[||w - u||_{\alpha} + aK||w - u||_{\alpha}]ds \\ &\leq M_{\alpha} L_{a}[1 + (1 + aK) \int_{0}^{a} \frac{e^{\omega s}}{s^{\alpha}} ds]||w - u||_{\alpha}, \end{split}$$

where $L_a = \max\{\frac{e^{\omega t}}{t^{\alpha}}G, L\}$ and $||w - u||_{\alpha}$ denotes the supremum norm in $C([0, a] : X_{\alpha})$. If we choose a such that

$$M_{\alpha}L_{a}[1 + (1 + aK)\int_{0}^{a} \frac{e^{\omega s}}{s^{\alpha}} ds]||w - u||_{\alpha} < 1,$$

then P is a strict contraction on Λ and it has a unique fixed point x which is the unique mild solution of equation on $(-\infty, a]$.

Acknowledgement.

The author would like to thank the referees for the careful reading of the manuscript, whose useful suggestions are highly appreciated.

References

 M. Adimy, H. Bouzahir, and K. Ezzinbi, Existence for a class of partial functional differential equations with infinite delay, Nonlinear Analysis Theory, Methods and Applications 46 (2001), 91-112.

- [2] M. Adimy, H. Bouzahir, and K. Ezzinbi, Local existence and stability for some partial functional differential equations with infinite delay, Nonlinear Analysis Theory, Methods and Applications 48 (2002), 323-348.
- [3] M. Adimy and K. Ezzinbi, Existence and stability in the α-norm for some partial functional differential equations of neutral type, Annali di Matematica 185 (2006), no. 3, 437-460.
- [4] K. Balachandran and J. Y. Park, Existence of a mild solution of a functional integrodifferential equation with nonlocal condition, Bull. Korean Math. Soc. 38 (2001), 175-182.
- [5] K. Balachandran and M. Chandrasekaran, Existence of solution of a delay differential equation with nonlocal condition, Indian J. Pure Appl. Math. 27 (1996), 443-449.
- [6] K. Balachandran and M. Chandrasekaran, Existence of solutions of nonlinear integrodifferential equation with nonlocal conditions, Indian J. Appl.Stoch. Anal. 10 (1997), 27-288.
- [7] R. Benkhalti and K. Ezzinbi, Existence and stability in the α-norm for some partial functional differential equations with infinite delay, Differential and Integral Equations 19 (2006), 545-572.
- [8] R. Benkhalti and K. Ezzinbi, Existence and stability for some partial neutral functional differential equations, Differential and Integral Equations 17 (2004), 1426-1436.
- [9] R. Benkhalti, H. Bourzahir, and K. Ezzinbi, Existence of a periodic solution for some partial functional differential equations with infinite delay, Journal of Mathematical Analysis and Applications 256 (2001), 257-280.
- [10] H. Bouzahir and K. Ezzinbi, Global Attractor for a class of partial functional differential equations with infinite delay, Fields Institute Communications 29 (2001), 63-71.
- [11] L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162 (1991), 494-505.
- [12] L. Byszewski, Existence, uniqueness and asymptotic stability of solutions of abstract nonlocal Cauchy problem, Dynamic Systems and Applications 5 (1996), 595-605.
- [13] L. Byszewski and H. Acka, On a mild solution of a semilinear functionaldifferential evolution nonlocal problem, J. Appl. Math. Stoch. Anal. 10 (1997), 265-271.
- [14] K. Ezzinbi, Existence and stability for some partial functional differential equations with infinite delay, Electronic Journal of Differential Equations 2003 (2003), 1-13.
- [15] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Amer. Math. Soc., Providence, RI, 1988.
- [16] J. K. Hale and J. Kato, Phase space for retarded equations with unbounded delay, Funkcial Ekvac 21 (1978), 11-41.
- [17] J. K. Hale and S. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.

- [18] Y. Lin and J. H. Liu, Semilinear integrodifferential equations with nonlocal Cauchy problem, NonLinear Analysis, Methods and Appl. 26 (1996), 1023-1033.
- [19] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences 44 Springer-Verlag, New York, 1983
- [20] C. C. Tarvis and G. F. Web, Existence, stability and compactness in the α -norm for partial functional differential equations, Transactions of the American Mathematical Society **240** (1978), 129-143.

*

CNU Center for Innovative Engineering Education Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: hhchang@cnu.ac.kr