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EXISTENCE OF MILD SOLUTIONS IN THE o-NORM
FOR SOME PARTIAL FUNCTIONAL
INTEGRODIFFERENTIAL EQUATIONS WITH
NONLOCAL CONDITIONS

HyuN Ho JANG*

ABSTRACT. In this work, we discuss the existence of mild solutions
in the a-norm for some partial functional integrodifferential equa-
tions with infinite delay. We assume that the linear part generates
an analytic semigroup on a Banach space X and the nonlinear part
is a Lipschitz continuous function with respect to the fractional
power norm of the linear part.

1. Introduction

Byszewski [11] studied the problem of existence of solution of semi-
linear evolution equation with nonlocal conditions in Banach spaces.
Byszewski and Acka [13] established the existence and uniqueness and
continuous dependence of a mild solution of a semilinear functional dif-
ferential equation with nonlocal condition of the form

(1.1) u' () + Au(t) = f(t,ug),t € [0, 4],
(1.2) u(s) + [g(uey, - ug,)|(s) = ¢(s), s € [=r,0],

where 0 < t; < ... <t, <a(p € N), —A is the infinitestimal generator
of a Cy semigroup of operators on a Banach space, f, g and ¢ are given
functions and w(s) = u(t + s) for t € [0,al, s € [—r,0].

In this paper, we shall prove the existence and uniqueness of mild
solutions in the a-norm of a functional integrodifferential equation with
nonlocal conditions of the form
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(1.3) u'(t) + Au(t) = f(t,ut,/Otlc(t,T7 ur)dr),t € [0, al,
(14)  wu(s)+ [g(usy, - ug,)](s) = ¢(s) € Ba,s € (—o0,0],

where —A is the infinitestimal generator of Cy semigroup of operators
(T'(t))t>0 on a Banach space X and ¢ € C'((—00,0] : X) and the nonlin-
ear operators f, k, g are given functions satisfying some assumptions.

Theorems about the existence, uniqueness and stability of solutions
of differential, integrodifferential equations and functional-differential
abstract evolution equations with nonlocal conditions were studied by
Byszewski [11,12,13], Balachandran[5], Chandrasekara [6], and Lin and
Lu [18].

2. Preliminaries

Here we assume that X is a Banach space with norm || - ||, —A is the
infinitestinmal generator of a Cjy semigroup (7'(¢));>0 on X and

M = supsejo q) [IT(t)|| Bx)- In the sequel the operator norm || - [|p(x)
will be denoted by || - ||. To simplify the notation let us take Iy =
(=00,0],I = [0,a] and E = C((—00,0] : X),Y = C((—00,da] : X),Z =
C([0,a] : X). For a continuous function w : (—oo,a] — X, we denote wy,
a function belong to E and defined by w, = w(t + s) for t € I, s € Ij.
Let f:IXEXE—->X,k:IxIxFE—FEand¢c€kFE.

We make the following assumptions:
(A1) For every us,w, € Eand t € I, f(.,up,wy) € X
(A2) There exists a constant L > 0 such that

(e, wi) = F(E ye u)|| < LlJe = ylly +[|w = ully]

for x,y,w,u € Y,t € I.
(Az) There exists a constant K > 0 such that

k(t, s, 25) = k(t, 5, ys)|| < K|z —ylly

forz,yeY,sel.
(A4) Let g : B — E and there exists a constant G' > 0 such that

H[g(wtu ""wtp)](s) - [g(utu ""utp)](S)H < GHw - UHY

for w,u € Y,s € I.
(As) MaLa[l+ (14 aK) [3 Sxds]||w — ul|a < 1, where My, w, and Lq
are constants to be specified later.
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DEFINITION 2.1. ([19]) A function u € Y satisfying the conditions:

(1) u(t) =T#)¢(0) = T(®)[g(us, -, u, )} (0)
—i—/o T(t— s)f(s,us,/os k(s,0,ug)df)ds,t € I,
(i) U(S) + [Q(Utl, "'7utp)]<8) = ¢(8)7 selp

is said to be a mild solution of the nonlocal Cauchy problem.

We will discuss the following abstract partial differential equations
with infinite delay:

(2.1) u'(t) + Az(t) = F(t,u),t € [0, a]
(2.2) u(s) + [g(uty, -, ug, )|(s) = ¢(s), s € (=00, 0],

where —A generates an analytic semigroup (7'(¢));>0 on a Banach space
X, B is a Banach space of functions mapping (—oo, 0] to X and satisfying
some axioms that will be introduced later. For 0 < o < 1, A* denotes
the fractional power of A ; we assume that F' is defined on a subspace
B, with values in X, where B, is defined by

By, ={¢p € B:¢(0) € D(A?) for # <0 and A%p € B},
the function A%¢ is defined by
(4°6)(6) = A*(6(6)) for 6 < 0.

We suppose that F' is Lipschitz continuous with respect to the frac-
tional power norm of A%. For every t > 0, the history function x; € B,
is defined by

x(0) = z(t + 0) for 6 < 0.

We will discuss the existence of a mild solution in the a-norm for
equations(2.1),(2.2). Recall that when f is Lipschitz continuous in B
with respect to the X-norm, the equation has been exensively studied
by several authors;for more details we refer to [1,5,9] and the references
therein.

This work is motivated by the papers of Benkhalti[7] and Balhachan-
dran[4], where the authors studied the existence and stability in the a-
norm for partial functional differential equations with finite delay; they
assumed that F' : C, = C([-r,0] : D(A%)) — X is continuous, where
Cy is the Banach space of continuous functions from [—r, 0] to D(A®),
endowed with the following norm

1¢lla = sup [A%(0)].

—r<6<0
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The authors investigated several results regarding the existence, the reg-
ularity, and the stability of solutions in C,. Recently, in [3], the author
established several results about the existence and the stability in the
a-norm for neutral partial functional differential equations.

Let us recall some results that will be used throughout this work.
Assume that,
(H1) —A s the infinitestimal generator of an analytic semigroup (7'(t))+>0
on a Banach space X and 0 € p(A) where p(A) is the resolvent set of A.

Then, there exist constants M > 1 and w € R such that ||T(¢)|| <
Me*! for t > 0. Without loss of generality, we assume that w > 0. If the
assumption 0 € p(A) is not satisfied, one can substitute the operator A
for the operator (A — oI) with o large enough so that 0 € p(A — o)
and so we can always assume that 0 € p(A).

For the fractional power (A%, D(A®)) , for 0 < o < 1, and its inverse
A~ one has the following known result.

THEOREM 2.2. ([19]) Let 0 < a < 1 and assume that (H1) holds.
Then

(i) D(A®) is a Banach space with the norm ||x||, = ||A%|| for z €
D(A%),

(ii) T(t) : X — D(A*)for t > 0,

(i) AT (t)x = T(t)A% for x € A% and t > 0,

(iv) for every t > 0, A“T(t) is bounded on X and there exists My > 0
such that

ewt

AT @)]| < Mo~ for t >0,
(v) A=% is a bounded linear operator on X with D(A%) = Im(A~%),
(vi) if0 < a < B3 <1, then D(A?) — D(A®),
(vii) there exists N, > 0 such that

([(T'(t) = I)A™%|| < Nat® for t > 0.
In the sequel, we denote by X, the Banach space D(A%, || ||a). Recall
that A~ is given by the following formulas

sin(ra) / £t 4+ A) Lt
0

AT =
o
or . o
A = —— 7 T(t)dt.
), T
Both integrals converge in the uniform operator topology. Consequently,
if T(t) is compact for every t > 0, then A% is compact for every 0 < a <
1.
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Moreover, if 0 < a < < 1, then A" : X — X, is also compact.

From now on, we use an axiomatic definition of the phase space B
which was first introduced by Hale and Kato in [16]. We assume that B
is the normed space of functions mapping (—oo, 0] into X and satisfying
the following fundamental axioms:

(A) there exist a positive constant N, a locally bounded function M (-)
on [0,00) and a continuous function K(-) on [0,00), such that if
x : (—00,a] — X is continuous on [o,a| with z, € B, for some
o < a, then for all t € [0, al,
(1) xy € B
(ii) t — x4 is continuous with respect to || - || on [0, al,
(i) NJz(t)] < [[zillp < K(t—0) supyeocs [2(5)| + Mt — o) o]
(B) B is a Banach space.

LEMMA 2.3 ([17]). Let Coo be the space of continuous funtions map-
ping (—o0, 0] into X with compact supports and Cf, be the subspace of
functions with supports included in [—a,0] endowed with the uniform
topology. Then Cf, — B.

Let B, = {¢p € B : ¢(0) € D(A*) for # < 0 and A% € B} and
provided B, with the following norm

19llB. = [|A%¢||B for ¢ € Ba.
(H2) A=“¢ € B for ¢ € B, where the function A~“¢ is defined by
(A7%¢)(0) = A=%(¢(0)) for <0

LEMMA 2.4 ([17]). Assume that (H;) and (Hz) hold. Then B, is a
Banach space.

3. Main theorem

THEOREM 3.1. Assume that the functions f and g satisfy assump-
tions (A), (H1),(H2), (A1) — (As). Then the nonlocal Cauchy problem
(1.3)-(1.4) has a unique mild solution.

Proof. Let a > 0 and C([0,a] : X,) be a set of continuous functions
and X, provided with the uniform topology.
For ¢ € B,,, we define the set

A={ueC(0,d]: Xa): u(0) = ¢(0)}.

Let u € A and @ an extension of u on (—o0,a] by
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ﬂ:{ u(t), t €10,q]
o(t), t<O0.

Let P be the operator defined on A by

P(u)(t) = T(t)$(0) = T(t)[g(ur,, ..., ur,)](0)

+/Ot T(t—s)f(s,us, /OS k(s,0,ug)df)ds,t € [0, al.

We claim that P(A) C A. In fact, let u € A, tp € [0,a] and tg < t < a.
Then

AY(P(u)(t) — P(u)(to))
=T (t)A%¢(0) — T'(t0) A%(0)

to s
+ / AT (t —s) — T(to — 8))f(s,us,/ k(s,0,up)dd)ds
0 0

t s
+ [ ATt — s)f(s,us,/ k(s,0,up)df)ds,t € [0, al.
to 0

Since
T(t)Aa¢(O) — T(to)Aa¢(O) —0ast—ty

and
to

ATt — 5) — T(to — ) f (5, s, / (s, 0, u9)d0)ds
0 0

(Tt —to) — 1) /0 " AT (ty — $)f (5. s, /0 k(5. 0, up)d0)ds,

it follows that

/to AXNT(t —s) —T(to — s)) f(s, us, /8 k(s,0,ug)df)ds — 0 as t — ty.
0 0

Moreover,

t s
AT (¢ — s)f(s,us,/ k(. 0, ug)d0)||ds — 0 as £ — to.
0

to
Consequently,

A%(P(u)(t) — P(u)(to)) — 0 as t — to and t > to.
Arguing as above, one can show that if 3 > 0, then,
AY(P(u)(t) — P(u)(to)) — 0 as t — tp and t < to.

This implies that P(u) € A for all u € A. In order to show that P has
a unique fixed point in A, we use the strict contraction principle.
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In fact, let w,u € A and ¢ € [0, a]. Then,

(P(w)(t) = P(u)(t))
= —T®)]g(wry; s wi, )(0) = g(uty . ur, ) (0)]

+/0 T(t—s)[f(s,ws,/o k(s,&,wg)dG)—f(s,us,/o k(s, 0, ug)d6)|ds

Taking the a-norm, we obtain

(P (w)(t) = P(w)(®))l|a

< HT H H[ (wt17" wtp)(o) Q(Ut1w--7utp)(0)]|’oc
/ ||T t — 3 H H[ (S w37/ (3797w9)d6) - f(87u87/0 k(3707u9)d9)]||ad8
< HT H H[ (wt17” wtp)(o) g(utu”'?utp)(o)ma

+/O ||T(t—s)|]a[L|w—u|]a+H/O k(s,&,wg)dO)—/O k(s, 0, ug)d0||o]ds

ewt t w(t—s)
SMataGHw—uHa—l—MaL/ ~[llw —ulla + aK||w — u||a]ds
o (t—s)
ws

a
e
< Mo Lg[1+ (1+ aK)/ S—ads]Hw — Ula,
0

where L, = max{%tG, L} and ||w — u||q denotes the supremum norm
in C([0,a] : X,). If we choose a such that

ws

a
MoLa[l + (1+ aK)/ Za
0

ds]||w — ul|a < 1,

then P is a strict contractioin on A and it has a unique fixed point x
which is the unique mild solution of equation on (—o0, al. O
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