JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 27, No. 3, August 2014 http://dx.doi.org/10.14403/jcms.2014.27.3.363

SEPARATION AXIOMS ON BI-GENERALIZED TOPOLOGICAL SPACES

A. Deb Ray* and Rakesh Bhowmick**

ABSTRACT. In this paper, introducing various separation axioms on a bi-GTS, it has been observed that such separation axioms actually unify the well-known separation axioms on topological spaces. Several characterizations of such separation properties of a bi-GTS are established in terms of γ_{μ_i,μ_j} -closure operator, generalized cluster sets of functions and graph of functions.

1. Introduction and preliminaries

The concept of bi-Generalized topology (in short, bi-GTS) was introduced by Á. Császár and and E.Makai Jr. in [5]. We study certain separation axioms on bi-GTS and find their characterizations in terms of γ_{μ_i,μ_j} -closure operator [5], graph of a function and generalized cluster sets [2] of a function. It is worth noting that the well-known separation axioms of bi-topological and hence topological spaces, follow as special cases for suitable choices of the bi-GTs.

In the next section, we investigate the behaviour of a bi-GTS obeying separation properties, in terms of a generalized closure operator called γ_{μ_i,μ_j} -closure operator [5]; while in the last section, a bi-GTS under separation properties are discussed in the light of graph of a function and generalized cluster sets [2] of a function.

We now state certain useful definitions and quote several existing results that we require in the next two sections.

DEFINITION 1.1. ([4]) Let X be a nonempty set and μ be a collection of subsets of X (i.e. $\mu \subseteq \mathcal{P}(X)$). μ is called a generalized topology

Received December 06, 2013; Accepted July 10, 2014.

²⁰¹⁰ Mathematics Subject Classification: Primary 54A05, 54C50, 54D10, 54D15, 54E55.

Key words and phrases: $k_{\mu}\{x\}$, ij- $ck\{x\}$, pairwise R_0 , pairwise R_1 , pairwise Hausdorff, pairwise Urysohn, generalized cluster sets of functions.

Correspondence should be addressed to A. Deb Ray, atasi@hotmail.com.

(briefly GT) on X iff $\emptyset \in \mu$ and $G_{\lambda} \in \mu$ for $\lambda \in \Lambda \neq \emptyset$) implies $\cup_{\lambda \in \Lambda} G_{\lambda} \in \mu$. The pair (X, μ) is called a generalized topological space (briefly GTS). The elements of μ are called μ -open sets and their complements are called μ -closed sets. The generalized closure of a subset S of X, denoted by $c_{\mu}(S)$, is the intersection of all μ -closed sets containing S. The set of all μ -open sets containing an element $x \in X$ is denoted by $\mu(x)$.

For a topological space (X, τ) , set of all open, δ -open [18], semi open [10] and pre open [11] subsets of X are denoted respectively by $\tau(X)$, $\Delta(X)$, SO(X) and PO(X).

Let μ_1, μ_2 be two GTs on a non-empty set X. Then (X, μ_1, μ_2) is called bi-Generalized topological space (briefly bi-GTS).

DEFINITION 1.2. ([5]) On a bi-GTS $(X, \mu_1, \mu_2), \gamma_{\mu_i, \mu_j} : P(X) \to P(X)$ is defined by

$$\gamma_{\mu_i,\mu_i}(A) = \{ x \in X : c_{\mu_i} M \cap A \neq \phi \text{ for all } M \in \mu_i(x) \},\$$

for each $A \subseteq X, i, j = 1, 2(i \neq j)$. $\theta(\mu_i, \mu_j), \delta(\mu_i, \mu_j) \subseteq P(X)$, defined respectively by

 $\theta(\mu_i, \mu_j) = \{A \subset X : \text{for each } x \in A \text{ there exists } M \in \mu_i(x) \text{ such that } c_{\mu_i}M \subset A\}, i, j = 1, 2(i \neq j),$

and

 $\delta(\mu_i, \mu_j) = \{A \subseteq X : \text{ for each } x \in A \exists \mu_j - closed \text{ set } Q \text{ with } x \in i_{\mu_i} Q \subseteq A\}, i, j = 1, 2(i \neq j),$

also form GTs on X. The elements of $\theta(\mu_i, \mu_j)$ (resp. $\delta(\mu_i, \mu_j)$) are called $\theta(\mu_i, \mu_j)$ (resp. $\delta(\mu_i, \mu_j)$)-open and the complements are called $\theta(\mu_i, \mu_j)$ (resp. $\delta(\mu_i, \mu_j)$)-closed.

THEOREM 1.3. ([5]) Let (X, μ_1, μ_2) be a bi-GTS and $A \subseteq X$. Then the following hold:

- (1) $\theta(\mu_i, \mu_j) \subseteq \delta(\mu_i, \mu_j) \subseteq \mu_i$.
- (2) $A \subseteq \gamma_{\mu_i,\mu_j}(A) \subseteq c_{\theta(\mu_i,\mu_j)}(A).$
- (3) A is $\theta(\mu_i, \mu_j)$ -closed iff $A = \gamma_{\mu_i, \mu_j}(A)$.

THEOREM 1.4. ([14]) Let (X, μ_1, μ_2) be a bi-GTS. Then for any μ_j open set A we have $\gamma_{\mu_i,\mu_j}(A) = c_{\mu_i}(A)$.

THEOREM 1.5. For any subset A in a bi-GTS $(X, \mu_1, \mu_2), \gamma_{\mu_i, \mu_j}(A) = \cap \{c_{\mu_i}V : A \subseteq V \in \mu_j\}.$

Let μ_1, μ_2 be two GTs on a non-empty set X and $A \subseteq X$. A is said to be $r(\mu_i, \mu_j)$ -open (resp. $r(\mu_i, \mu_j)$ -closed) [5] if $A = i_{\mu_i}(c_{\mu_j}(A))$ (resp. $A = c_{\mu_i}(i_{\mu_j}(A))$).

THEOREM 1.6. ([5]) $x \in c_{\delta(\mu_i,\mu_j)}A$ iff $A \cap R \neq \phi$ for every $r(\mu_i,\mu_j)$ open set R containing x.

Let (X, μ_1, μ_2) and (Y, η_1, η_2) be two bi-GTS. The GT $\nu_i (i = 1, 2)$ on the cartesian product $X \times Y$ is defined by $\nu_i = \mu_i \times \eta_j$ for $i, j = 1, 2(i \neq j)$; Then $(X \times Y, \nu_1, \nu_2)$ is again a bi-GTS. Also, for the bi-GTS $(X, \mu_1, \mu_2), (X \times X, \nu_1, \nu_2)$ is a bi-GTS where $\nu_i = \mu_i \times \mu_j$ for $i, j = 1, 2(i \neq j)$.

2. Separation axioms in terms of γ_{μ_i,μ_i} -closure operator

In this section, we introduce different separation axioms on a bi-GTS and establish their interrelationships. Also, such separation axioms are characterized here using generalized closure operator, called γ_{μ_i,μ_j} closure operator.

DEFINITION 2.1. Let μ be a GT on a non-empty set X. Then for any $A \subseteq X$, $k_{\mu}A = \bigcap \{U \in \mu : A \subseteq U\}.$

DEFINITION 2.2. Let (X, μ_1, μ_2) be a bi-GTS. Then for any point $x \in X$ we define $ij - ck(A) = (c_{\mu_i}A) \cap (k_{\mu_j}A)$; for i, j = 1, 2 $(i \neq j)$.

If $A = \{x\}$, we will write $ij - ck\{x\}$ for $ij - ck(\{x\})$.

LEMMA 2.3. Let x be an arbitrary point in a bi-GTS (X, μ_1, μ_2) . Then

- (1) $y \in ji\text{-}ck\{x\}$ iff $ij\text{-}ck\{x\} \subseteq ij\text{-}ck\{y\}$.
- (2) $c_{\mu_i}(ij ck\{x\}) = c_{\mu_i}\{x\}.$
- (3) $k_{\mu_i}(ij\text{-}ck\{x\}) = k_{\mu_i}\{x\}.$
- (4) $\gamma_{\mu_i,\mu_j}(ij\text{-}ck\{x\}) = \gamma_{\mu_i,\mu_j}\{x\}.$
- (5) for any μ_j -open set U containing $x, k_{\mu_j}\{x\} \subseteq U$.
- (6) for any μ_i -closed set F containing $x, c_{\mu_i}(ij\text{-}ck\{x\}) \subseteq F$.
- (7) $k_{\mu_i}(k_{\mu_i}A) = k_{\mu_i}A$ for $A \subseteq X$.
- (8) $\gamma_{\mu_i,\mu_j}(k_{\mu_j}A) = \gamma_{\mu_i,\mu_j}A$ for $A \subseteq X$; $i, j = 1, 2 \ (i \neq j)$.

Proof.

(1) Let, $y \in ji\text{-}ck\{x\}$. Suppose $z \in ij\text{-}ck\{x\}$. Now $y \in ji\text{-}ck\{x\}$ implies $y \in c_{\mu_j}\{x\}, y \in k_{\mu_i}\{x\}$ and $z \in ij\text{-}ck\{x\}$ implies $z \in c_{\mu_i}\{x\}, z \in k_{\mu_j}\{x\}$. Again $z \in c_{\mu_i}\{x\}$ and $y \in k_{\mu_i}\{x\}$ together imply $z \in c_{\mu_i}\{y\}$. Also $y \in c_{\mu_j}\{x\}$ and $z \in k_{\mu_j}\{x\}$ together imply $z \in k_{\mu_j}\{y\}$. So, $z \in c_{\mu_i}\{y\} \cap k_{\mu_j}\{y\} = ij\text{-}ck\{y\}$. Hence $ij\text{-}ck\{x\} \subseteq ij\text{-}ck\{y\}$.

Conversely, let ij- $ck\{x\} \subseteq ij$ - $ck\{y\}$. Since, $x \in ij$ - $ck\{x\} \subseteq ij$ - $ck\{y\}$, So

 $x \in c_{\mu_i}\{y\} \text{ and } x \in k_{\mu_j}\{y\}. \text{ Now } x \in c_{\mu_i}\{y\} \text{ implies } y \in k_{\mu_i}\{x\}. \text{ Also} x \in k_{\mu_j}\{y\} \text{ implies } y \in c_{\mu_j}\{x\}. \text{ So, } y \in c_{\mu_j}\{x\} \cap k_{\mu_i}\{x\} = ji \cdot ck\{x\}.$ (2) Let $z \in c_{\mu_i}(ij \cdot ck\{x\}).$ Therefore for all $U \in \mu_i(z), U \cap (ij \cdot ck\{x\}) \neq \phi$ and so $U \cap (c_{\mu_i}\{x\}) \neq \phi$ i.e. $z \in c_{\mu_i}(c_{\mu_i}\{x\}) = c_{\mu_i}\{x\}.$ Hence $c_{\mu_i}(ij \cdot ck\{x\}) \subseteq c_{\mu_i}\{x\}.$

Conversely, $\{x\} \subseteq ij\text{-}ck\{x\}$ implies $c_{\mu_i}\{x\} \subseteq c_{\mu_i}(ij\text{-}ck\{x\})$. Thus $c_{\mu_i}(ij\text{-}ck\{x\}) = c_{\mu_i}\{x\}$.

(3) Let $y \in k_{\mu_j}(ij\text{-}ck\{x\})$ but $y \notin k_{\mu_j}\{x\}$. Then there exists $U \in \mu_j(x)$ such that $y \notin U$. Also, $y \in k_{\mu_j}(ij\text{-}ck\{x\}) \Rightarrow ij\text{-}ck\{x\} \cap c_{\mu_j}\{y\} \neq \phi \Rightarrow c_{\mu_j}\{y\} \cap k_{\mu_j}\{x\} \neq \phi$. Hence there exists $z \in c_{\mu_j}\{y\} \cap k_{\mu_j}\{x\}$. Then every μ_j -open neighbourhood of x contains y, a contradiction.

(4) Let, $y \in \gamma_{\mu_i,\mu_j}(ij\text{-}ck\{x\})$ and if possible let $y \notin \gamma_{\mu_i,\mu_j}\{x\}$. Then there exists $U \in \mu_i(y)$ such that $x \notin c_{\mu_j}U$. Again $y \in \gamma_{\mu_i,\mu_j}(ij\text{-}ck\{x\})$ implies $c_{\mu_j}U \cap ij\text{-}ck\{x\} \neq \phi$ i.e. $c_{\mu_j}U \cap k_{\mu_j}\{x\} \neq \phi$ and so there exists $z \in c_{\mu_j}U \cap k_{\mu_j}\{x\}$. Again since, $x \in X \setminus c_{\mu_j}U \in \mu_j$ and $z \in k_{\mu_j}\{x\}$, so, $z \in X \setminus c_{\mu_j}U$, which is not possible. Hence, $\gamma_{\mu_i,\mu_j}(ij\text{-}ck\{x\}) \subseteq \gamma_{\mu_i,\mu_j}\{x\}$. Conversely, $x \in ij\text{-}ck\{x\}$ implies $\gamma_{\mu_i,\mu_j}\{x\} \subseteq \gamma_{\mu_i,\mu_j}(ij\text{-}ck\{x\})$.

- (5) Let, $z \in k_{\mu_i}\{x\}$ and $U \in \mu_j(x)$. Clearly $z \in U$. Thus $k_{\mu_i}\{x\} \subseteq U$.
- (6) By (2) $c_{\mu_i}(ij ck\{x\}) = c_{\mu_i}\{x\}$ and cosequently $c_{\mu_i}(ij ck\{x\}) \subseteq F$.
- (7) R.H.S \subseteq L.H.S. We now show that L.H.S \subseteq R.H.S. Let $y \notin R.H.S$. Then there exists a μ_i open set containing A s.t $y \notin U$. Again $A \subseteq U$ and $U \in \mu_i$ implies that $k_{\mu_i}\{A\} \subseteq U$ and consequently $y \notin R.H.S$.

(8) $R.H.S \subseteq L.H.S$. We now show that L.H.S \subseteq R.H.S. Let $y \notin R.H.S$. Then there exists a μ_i open set U containing y s.t. $c_{\mu_j}U \cap A = \phi$, Consequently $c_{\mu_j}U \cap k_{\mu_j}\{A\} = \phi$ (Since, $k_{\mu_j}\{A\}$ is the intesection of all μ_j open set containing A). Hence $y \notin L.H.S$.

COROLLARY 2.4. For any point x in a bi-GTS (X, μ_1, μ_2) the following hold :

- (1) For any μ_i -open set U containing x, ij-ck $\{x\} \subseteq U$.
- (2) For any μ_i -closed set F containing $x, ij-ck\{x\} \subseteq F$.
- (3) For any point x, ij- $ck(\{ij$ - $ck\{x\}) = ij$ - $ck\{x\}$.

Proof.

- (1) Follows from (5) of Lemma 2.3 and definition of $ij-ck\{x\}$.
- (2) Follows from (6) of Lemma 2.3 and definition of $c_{\mu_i}\{x\}$.
- (3) Follows from (2) and (3) of Lemma 2.3.

DEFINITION 2.5. A bi-GTS (X, μ_1, μ_2) is said to be pairwise R_0 -space if for each μ_i -open set G and for each $x \in G$, $c_{\mu_j}\{x\} \subseteq G$; for i, j = 1, 2 $(i \neq j)$.

Separation axioms on bi-GTS

μ_1	μ_2	pairwise R_0
au	au	R_0 [8]
SO(X)	SO(X)	semi R_0 [7]
PO(X)	PO(X)	pre R_0 [3]

THEOREM 2.6. If (X, μ_1, μ_2) is pairwise R_0 , then for each $x \in X$, $\gamma_{\mu_j,\mu_i}\{x\} \setminus c_{\mu_i}\{x\}$ is a union of μ_j -closed sets; for i, j = 1, 2 $(i \neq j)$.

Proof. Let, $y \in \gamma_{\mu_j,\mu_i}\{x\} \setminus c_{\mu_i}\{x\}$. Then $y \in X \setminus c_{\mu_i}\{x\}$. Since X is pairwise R_0 , $c_{\mu_i}\{x\} \cap c_{\mu_j}\{y\} = \phi$. Now $y \in \gamma_{\mu_j,\mu_i}\{x\}$ implies $c_{\mu_j}\{y\} \subseteq \gamma_{\mu_j,\mu_i}\{x\}$. Thus $c_{\mu_j}\{y\} \subseteq \gamma_{\mu_j,\mu_i}\{x\} \setminus c_{\mu_i}\{x\}$. Consequently $\gamma_{\mu_j,\mu_i}\{x\} \setminus c_{\mu_i}\{x\}$ is a union of c_{μ_j} -closed sets.

THEOREM 2.7. If for every pair of distinct point x, y in a bi-GTS (X, μ_1, μ_2) , either $c_{\mu_i}\{x\} = c_{\mu_j}\{y\}$ or $c_{\mu_i}\{x\} \cap c_{\mu_j}\{y\} = \phi$, for i, j = 1, 2 $(i \neq j)$, then (X, μ_1, μ_2) is pairwise R_0 .

Proof. Let G be a μ_i -open set containing $y \in X$. For any $x \in X \setminus G$ as $y \notin c_{\mu_i}\{x\}, c_{\mu_i}\{x\} \neq c_{\mu_j}\{y\}$. By the hypothesis, $c_{\mu_i}\{x\} \cap c_{\mu_j}\{y\} = \phi$ which gives $x \notin c_{\mu_j}\{y\}$; i.e. there exists $V_x \in \mu_j(x)$ such that $y \notin V_x$. Let $A = \bigcup \{V_x : x \in X \setminus G\}$. Then $y \notin A$ and $A \in \mu_j$. So $X \setminus A$ is a μ_j -closed set containing y. Also $X \setminus G \subseteq A$ i.e. $X \setminus A \subseteq G$. Therefore $c_{\mu_j}\{y\} \subseteq G$ and hence (X, μ_1, μ_2) is pairwise R_0 .

DEFINITION 2.8. A bi-GTS (X, μ_1, μ_2) is said to be pairwise R_1 if for any two points $x, y \in X$ such that $x \notin c_{\mu_i}\{y\}$, there are μ_i -open set U containing x and μ_j -open set V containing y such that $U \cap V = \phi$; where i, j = 1, 2 $(i \neq j)$.

μ_1	μ_2	pairwise R_1
τ	au	R_1 [8]
SO(X)	SO(X)	semi R_1 [7]
PO(X)	PO(X)	pre R_1 [3]

REMARK 2.9. Every pairwise R_1 space is pairwise R_0 .

Proof. Let (X, μ_1, μ_2) be pairwise R_1 . Let G be a μ_i open set and $x \in G$. If $X \setminus G = \phi$ then the proof is obvious. So let us consider the case $X \setminus G \neq \phi$ and $y \notin G$. Consequently $x \notin c_{\mu_i}\{y\}$. Since X is pairwise R_1 there exist $U_y \in \mu_i(x)$ and $V_y \in \mu_j(y)$ s.t. $U_y \cap V_y = \phi$. Let $V = \bigcup_{y \notin G} V_y$ and $F = X \setminus V$. Then F is a μ_j closed set containing x s.t. $F \subseteq G$ i.e. $c_{\mu_j}\{x\} \subseteq G$. Hence X is pairwise R_0 .

But the converse is not true. This follows from the following example.

A. Deb Ray and Rakesh Bhowmick

EXAMPLE 2.10. Let us consider the set $X = \{a, b, c\}$. Let $\mu_1 = \mu_2 = \mu = \{\phi, \{a, b\}, \{b, c\}, \{c, a\}, X\}$. Then $a \notin c_{\mu_i}\{b\} = \{b\}$ but every μ -open set containing them intersect each other. i.e. X is not pairwise R_1 . Again for every μ_i -open set G and for each $x \in G$, $c_{\mu_j}\{x\} \subseteq G$, for i, j = 1, 2. i.e X is pairwise R_0 .

THEOREM 2.11. Let (X, μ_1, μ_2) be a bi-GTS. Then the following are equivalent:

- (a) X is pairwise R_1 .
- (b) ij- $ck\{x\} = \gamma_{\mu_i,\mu_j}\{x\}$, for each $x \in X$.
- (c) ij-ck{x} is $\theta(\mu_i, \mu_j)$ -closed set, for each $x \in X$.
- (d) $\gamma_{\mu_i,\mu_j}\{x\} = c_{\mu_i}\{x\}$, for each $x \in X$.
- (e) $\gamma_{\mu_i,\mu_j}\{x\} = k_{\mu_j}\{x\}$, for each $x \in X$.
- (f) $c_{\mu_i}\{x\}$ is $\theta(\mu_i, \mu_j)$ -closed, for each $x \in X$.
- (g) $k_{\mu_j}\{x\}$ is $\theta(\mu_i, \mu_j)$ -closed, for each $x \in X$.
- (h) If F is μ_i -closed set containing x, then $\gamma_{\mu_i,\mu_j}\{x\} \subseteq F$, for each $x \in X$.
- (i) If U is a μ_j -open set containing x, then for each $x \in X$, $\gamma_{\mu_i,\mu_j}\{x\} \subseteq U$; $i, j = 1, 2 \ (i \neq j)$.

Proof.

 $\begin{array}{l} (a) \Rightarrow (b): \text{ Let } x \in X. \text{ Also let } y \in X \text{ be such that } y \notin ij\text{-}ck\{x\}, \text{ then } y \notin c_{\mu_i}\{x\} \cap k_{\mu_j}\{x\}. \text{ Now if } y \notin k_{\mu_j}\{x\} \text{ then } x \notin c_{\mu_j}\{y\}. \text{ since } X \text{ is pairwise } R_1, \text{ there exist } U \in \mu_j(x) \text{ and } V \in \mu_i(y) \text{ such that } U \cap V = \phi. \text{ Then } y \notin c_{\mu_i}\{x\}. \text{ Thus } y \notin k_{\mu_j}\{x\} \text{ implies } y \notin c_{\mu_i}\{x\}. \text{ If possible let } y \in \gamma_{\mu_i,\mu_j}\{x\}, \text{ then for all } \mu_i\text{-open set } W \text{ containing } y, x \in c_{\mu_j}W. \text{ Since } y \notin c_{\mu_i}\{x\} \text{ and } X \text{ is pairwise } R_1 \text{ there exist } W_1 \in \mu_i(y) \text{ and } W_2 \in \mu_j(x) \text{ such that } W_1 \cap W_2 = \phi \text{ i.e. } x \notin c_{\mu_j}W_1, \text{ a contradiction. So } y \notin \gamma_{\mu_i,\mu_j}\{x\} \text{ and hence } \gamma_{\mu_i,\mu_j}\{x\}. \end{array}$

On the other hand if $y \in ij\text{-}ck\{x\}$, then $y \in c_{\mu_i}\{x\} \subseteq \gamma_{\mu_i,\mu_j}\{x\}$ so that $ij\text{-}ck\{x\} \subseteq \gamma_{\mu_i,\mu_j}\{x\}$.

- $(b) \Leftrightarrow (c)$: follows from lemma 2.3.
- $(b) \Rightarrow (d)$: This is evident from the fact that $ij\text{-}ck\{x\} \subseteq c_{\mu_i}\{x\} \subseteq \gamma_{\mu_i,\mu_j}\{x\}$, for each $x \in X$.

Conversely, if $y \notin \gamma_{\mu_i,\mu_j}\{x\}$, then there exists $W \in \mu_i(y)$ such that

 $x \notin c_{\mu_j} W \supseteq c_{\mu_j} \{y\}$ and so $y \notin k_{\mu_j} \{x\}$. Thus $k_{\mu_j} \{x\} \subseteq \gamma_{\mu_i,\mu_j} \{x\}$ and hence $\gamma_{\mu_i,\mu_j} \{x\} = k_{\mu_j} \{x\}$.

 $(e) \Rightarrow (d)$: Let, $y \in \gamma_{\mu_i,\mu_j}\{x\} = k_{\mu_j}\{x\}$, then $x \in c_{\mu_j}\{y\}$. Now $y \notin c_{\mu_i}\{x\}$ implies $x \notin k_{\mu_i}\{y\} = \gamma_{\mu_j,\mu_i}\{y\} \supseteq c_{\mu_j}\{y\}$ which is a contradiction. Consequently, $\gamma_{\mu_i,\mu_j}\{x\} \subseteq c_{\mu_i}\{x\}$. The other part, i.e. $c_{\mu_i}\{x\} \subseteq \gamma_{\mu_i,\mu_j}\{x\}$ is obvious.

 $(a) \Rightarrow (f)$: Follows from (b), (c) and (d).

 $\begin{array}{l} (f) \Rightarrow (d): \{x\} \subseteq c_{\mu_i}\{x\} \text{ gives } \gamma_{\mu_i,\mu_j}\{x\} \subseteq \gamma_{\mu_i,\mu_j}(c_{\mu_i}\{x\}) = c_{\mu_i}\{x\} \text{ and} \\ c_{\mu_i}\{x\} \subseteq \gamma_{\mu_i,\mu_j}\{x\} \text{ is obvious. Hence } \gamma_{\mu_i,\mu_j}\{x\} = c_{\mu_i}\{x\} \text{ for each } x \in X. \\ (a) \Rightarrow (g): \text{ It follows from } (b), (c) \text{ and } (e). \end{array}$

 $(g) \Rightarrow (e)$: Since $k_{\mu_j}\{x\}$ is $\theta(\mu_i, \mu_j)$ -closed for each $x \in X$, $\gamma_{\mu_i, \mu_j}(k_{\mu_j}\{x\})$ = $k_{\mu_i}\{x\}$ and so (e) follows from Corollary 2.4.

 $(h) \Rightarrow (d)$: For each $x \in X$, $c_{\mu_i}\{x\}$ is a μ_i -closed set containing x and hence by (h), $\gamma_{\mu_i,\mu_j}\{x\} \subseteq c_{\mu_i}\{x\}$. Again since $c_{\mu_i}\{x\} \subseteq \gamma_{\mu_i,\mu_j}\{x\}$ is obvious, we have $c_{\mu_i}\{x\} = \gamma_{\mu_i,\mu_j}\{x\}$. The implications " $(b) \Rightarrow (h)$ ", " $(b) \Rightarrow$ (i)" and " $(i) \Rightarrow (e)$ " follow respectively from (4.), (3.) and (2.) of corollary 2.4.

COROLLARY 2.12. If (X, μ_1, μ_2) is pairwise R_1 -space, then $\gamma_{\mu_i,\mu_j}\{x\}$ is $\theta(\mu_i, \mu_j)$ -closed for each $x \in X$.

DEFINITION 2.13. For any subset A of a bi-GTS (X, μ_1, μ_2) we define $\gamma'_{\mu_i,\mu_j}(A) = \{x \in X : \gamma_{\mu_i,\mu_j}\{x\} \cap A \neq \phi\}; i, j = 1, 2 \ (i \neq j).$

It is easy to observe from the above definition that for $A, B \subseteq X$, (i) $A \subseteq k_{\mu_i}A \subseteq \gamma'_{\mu_i,\mu_j}A$, (ii) $A \subseteq B \Rightarrow \gamma'_{\mu_i,\mu_j}A \subseteq \gamma'_{\mu_i,\mu_j}B$ and (iii) $\gamma'_{\mu_i,\mu_j}(A \cup B) = \gamma'_{\mu_i,\mu_j}A \cup \gamma'_{\mu_i,\mu_j}B$.

DEFINITION 2.14. ([2]) Let (X, μ_1, μ_2) be two bi-GTS. Then X is said to be pairwise-Hausdorff if for $x \neq y$ in X, there exist $U \in \mu_i(x)$, $V \in \mu_j(y)$ such that $U \cap V = \emptyset$. i, j = 1, 2 $(i \neq j)$.

μ_1	μ_2	pairwise-Hausdorff
au	au	T_2
SO(X)	SO(X)	semi T_2 [12]
PO(X)	PO(X)	pre T_2 [9]

Every pairwise Hausdorff space is also a pairwise R_1 space. The example below shows that the converse is not neccessarily true.

EXAMPLE 2.15. Let us consider the set $X = \{a, b, c\}$. Let $\mu_1 = \mu_2 = \mu = \{\phi, \{a\}, \{b, c\}, X\}$. Then for the point b and c there exist no pair of disjoint μ -open containing them. i.e. X is not pairwise Hausdorff. But

for any two points $x, y \in X$ s.t. $x \in c_{\mu_1}\{y\}$, there are μ_1 -open set U containing x and μ_2 -open set V containing y s.t. $U \cap V = \phi$. i.e. X is pairwise R_1 .

THEOREM 2.16. For any bi-GTS (X, μ_1, μ_2) the following are equivalent :

- (a) X is pairwise Hausdorff.
- (b) For each $x \in X$, $\{x\} = \gamma_{\mu_i,\mu_j}\{x\} \cup \gamma_{\mu_j,\mu_i}\{x\}$.
- (c) For any two distinct points x, y of X, $\gamma_{\mu_i,\mu_j}\{x\} \cap \gamma_{\mu_j,\mu_i}\{y\} = \phi$.
- (d) For any subset A of X, $A = \gamma'_{\mu_i,\mu_j}(A)$; i, j = 1, 2 $(i \neq j)$.

Proof.

 $(a) \Rightarrow (b)$: Let $y \in X$ such that $y \neq x$. Then there exist $U \in \mu_i(x)$ and $V \in \mu_j(y)$ such that $U \cap V = \phi$. Thus $x \notin c_{\mu_i}V$ and hence $y \notin \gamma_{\mu_j,\mu_i}\{x\}$. Similarly $y \notin \gamma_{\mu_i,\mu_j}\{x\}$. Consequently, $\{x\} = \gamma_{\mu_i,\mu_j}\{x\} \cup \gamma_{\mu_j,\mu_i}\{x\}$. $(b) \Rightarrow (c)$: straightforward.

 $(c) \Rightarrow (d): A \subseteq \gamma'_{\mu_i,\mu_j}(A)$ is evident. Now let $x \in \gamma'_{\mu_i,\mu_j}(A)$ so that $\gamma_{\mu_i,\mu_j}\{x\} \cap A \neq \phi$. let $y \in X$ such that $y \neq x$. Then $\gamma_{\mu_i,\mu_j}\{y\} \cap \gamma_{\mu_i,\mu_j}\{x\} = \phi$ and consequently, $y \notin \gamma_{\mu_i,\mu_j}\{x\}$. Thus $x \in A$ and hence $\gamma'_{\mu_i,\mu_j}(A) \subseteq A$.

 $(d) \Rightarrow (a)$: Let x and y be any two distinct points of X. Now, $\{x\} = \gamma'_{\mu_i,\mu_j}\{x\}$ implies $y \notin \gamma'_{\mu_i,\mu_j}\{x\}$ and hence $x \notin \gamma_{\mu_i,\mu_j}\{y\}$. So there exists a $U \in \mu_i(x)$ such that $y \notin c_{\mu_j}U$, i.e. $y \in (X \setminus c_{\mu_j}U) (= V, \text{ say }) \in \mu_j$ and $U \cap V = \phi$. Hence the bi-GTS is pairwise Hausdorff. \Box

COROLLARY 2.17. The following statements are equivalent for a bi-GTS (X, μ_1, μ_2) :

- (a) X is pairwise Hausdorff.
- (b) For each $x \in X$, $\{x\} = \gamma_{\mu_1,\mu_2}\{x\}$, i.e. every singleton of X is $\theta(\mu_1,\mu_2)$ -closed.
- (c) For each $x \in X$, $\{x\} = \gamma_{\mu_2,\mu_1}\{x\}$, i.e. every singleton of X is $\theta(\mu_2,\mu_1)$ -closed.

DEFINITION 2.18. A bi-GTS (X, μ_1, μ_2) is said to be pairwise Urysohn if for any two distinct point x, y of X, there exist $U \in \mu_1(x)$ and $V \in \mu_2(x)$ such that $c_{\mu_2}U \cap c_{\mu_1}V = \phi$.

μ_1	μ_2	Pairwise Urysohn
τ	au	Urysohn [19]
SO(X)	SO(X)	semi-Urysohn [1]
PO(X)	PO(X)	pre-Urysohn [16]

Every pairwise Urysohn space is also a pairwise Hausdorff space. The converse does not always hold. This follows from the following example.

EXAMPLE 2.19. Let $X = \{a, b, c, d, e\}$. Let us consider $\mu = \mu_1 = \mu_2 = \{\phi, \{a, b\}, \{c, d\}, \{a, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, \{a, c, e\}, \{b, c, d, e\}, \{a, c, d, e\}, \{a, b, d, e\}, \{a, b, c, e\}, \{a, b, c, d\}, X\}$. Then for every pair of distinct x, y there exist disjoint μ -open set U, V containing x, y respectively. i.e. X is pairwise Hausdorff. But if we take a and c then there exist no pair of μ -open set U, V containing x, y respectively s.t. $c_{\mu_2}U \cap c_{\mu_1}V = \phi$. i.e. X is not pairwise Urysohn.

DEFINITION 2.20. Let (X, μ_1, μ_2) be a bi-GTS. Then for any subset A of X we define,

 $P(A) = (\cap \{\gamma_{\mu_1,\mu_2}(\gamma_{\mu_1,\mu_2}U) : A \subseteq U \in \mu_2\}) \cup (\cap \{\gamma_{\mu_2,\mu_1}(\gamma_{\mu_2,\mu_1}U) : A \subseteq U \in \mu_1\}).$

LEMMA 2.21. For any point x in a bi-GTS $(X, \mu_1, \mu_2), p_1[(X \times \{x\}) \cap \gamma_{\nu_i,\nu_j} \Delta] = p_2[(\{x\} \times X) \cap \gamma_{\nu_j,\nu_i} \Delta]; i, j = 1, 2 \ (i \neq j).$

Proof. Let $y \notin L.H.S$. This implies that $(y, x) \notin \gamma_{\nu_i,\nu_j}\Delta$. So there exists $V \in \mu_i(y)$ and $U \in \mu_j(x)$ such that $c_{\nu_j}(V \times U) \cap \Delta = \phi$ i.e. $(c_{\mu_j}V \times c_{\mu_i}U) \cap \Delta = \phi$ which gives $c_{\mu_j}V \cap c_{\mu_i}U = \phi$. Thus we have $(c_{\mu_i}U \times c_{\mu_j}V) \cap \Delta = \phi$ i.e. $c_{\nu_i}(U \times V) \cap \Delta = \phi$ which gives $(x, y) \notin \gamma_{\mu_j,\mu_i}\Delta$ i.e. $y \notin R.H.S$.

By reversing the above arguments we can similarly show that $y \notin R.H.S.$ implies $y \notin L.H.S.$

LEMMA 2.22. If
$$(X, \mu_1, \mu_2)$$
 is a bi-GTS and $x \in X$, then

$$P(\{x\}) = p_1[(X \times \{x\}) \cap \gamma_{\nu_i,\nu_j}\Delta] \cup p_2[(\{x\} \times X) \cap \gamma_{\nu_i,\nu_j}\Delta]$$

$$= p_1[(X \times \{x\}) \cap \gamma_{\nu_1,\nu_2}\Delta] \cup p_1[(X \times \{x\}) \cap \gamma_{\nu_2,\nu_1}\Delta]$$

$$= p_2[(\{x\} \times X) \cap \gamma_{\nu_1,\nu_2}\Delta] \cup p_2[(\{x\} \times X) \cap \gamma_{\nu_2,\nu_1}\Delta]$$

Proof. In view of Lemma 2.21 it is sufficies to show that $P(\{x\}) = p_1[(X \times \{x\}) \cap \gamma_{\nu_1,\nu_2} \Delta] \cup p_1[(X \times \{x\}) \cap \gamma_{\nu_2,\nu_1} \Delta]$. Now, if $y \notin P(\{x\})$ then there exist $U_2 \in \mu_2(x)$ and $U_1 \in \mu_1(x)$ such that $y \notin \gamma_{\mu_1,\mu_2}(\gamma_{\mu_1,\mu_2}U_2)$ and $y \notin \gamma_{\mu_2,\mu_1}(\gamma_{\mu_2,\mu_1}U_1)$. Consequently we have $V_1 \in \mu_1(y)$ and $V_2 \in \mu_2(y)$ such that $c_{\mu_2}V_1 \cap \gamma_{\mu_1,\mu_2}U_2 = \phi = c_{\mu_1}V_2 \cap \gamma_{\mu_2,\mu_1}U_1$ i.e. $c_{\mu_2}V_1 \cap c_{\mu_1}U_2 = \phi = c_{\mu_1}V_2 \cap c_{\mu_2}U_1$ (by Theorem 1.4). Then $(c_{\mu_2}V_1 \times c_{\mu_1}U_2) \cap \Delta = \phi = (c_{\mu_1}V_2 \times c_{\mu_2}U_1) \cap \Delta$ i.e. $c_{\nu_2}(V_1 \times U_2) \cap \Delta = \phi = c_{\nu_1}(V_2 \times U_1) \cap \Delta$ which gives $(y, x) \notin \gamma_{\nu_1,\nu_2}\Delta$ and $(y, x) \notin \gamma_{\nu_2,\nu_1}\Delta$. Hence $y \notin p_1[(X \times \{x\}) \cap \gamma_{\nu_1,\nu_2}\Delta]$ and $y \notin p_1[(X \times \{x\}) \cap \gamma_{\nu_2,\nu_1}\Delta]$ so that $y \notin R.H.S$. By reversing the above argument we can similarly show that $y \notin R.H.S$. implies $y \notin L.H.S$. □

THEOREM 2.23. For a bi-GTS (X, μ_1, μ_2) the following are equivalent:

- (1) X is pairwise Urysohn.
- (2) For each $x \in X, \{x\} = P(\{x\}).$
- (3) $\Delta = (\gamma_{\nu_1,\nu_2}\Delta) \cup (\gamma_{\nu_2,\nu_1}\Delta).$

Proof.

(1) \Rightarrow (2): Let $x \in X$ and y be any point of X with $y \neq x$. Then there exist $U \in \mu_1(x)$ and $V \in \mu_2(y)$ such that $c_{\mu_2}U \cap c_{\mu_1}V = \phi$ and so we have $\gamma_{\mu_2,\mu_1}U \cap c_{\mu_1}V = \phi$ (by Theorem 1.4) so that $y \notin \gamma_{\mu_2,\mu_1}(\gamma_{\mu_2,\mu_1}U)$. Similarly we can find $W \in \mu_2(x)$ such that $y \notin \gamma_{\mu_1,\mu_2}(\gamma_{\mu_1,\mu_2}W)$. Hence we get (2).

 $(2) \Rightarrow (3)$: We have,

$$\begin{aligned} (x,y) \notin \Delta & \Leftrightarrow \quad y \notin P(\{x\}) \\ & \Leftrightarrow \quad y \notin p_2[(\{x\} \times X) \cap \gamma_{\nu_1,\nu_2}\Delta] \cup p_2[(\{x\} \times X) \cap \gamma_{\nu_2,\nu_1}\Delta] \\ & \Leftrightarrow \quad (x,y) \notin \gamma_{\nu_1,\nu_2}\Delta \ and \ (x,y) \notin \gamma_{\nu_2,\nu_1}\Delta \end{aligned}$$

Thus (3) follows.

(3) \Rightarrow (1): Let $x, y \in X$ such that $x \neq y$. Since $(x, y) \notin \Delta, (x, y) \notin \gamma_{\nu_1,\nu_2}\Delta$ so that $c_{\nu_2}(U_1 \times V_2) \cap \Delta = \phi$ for some $U_1 \in \mu_1(x)$ and $V_2 \in \mu_2(y)$. Then $(c_{\mu_2}U_1 \times c_{\mu_1}V_2) \cap \Delta = \phi$ i.e. $c_{\mu_2}U_1 \cap c_{\mu_1}V_2 = \phi$, proving that X is pairwise Urysohn.

COROLLARY 2.24. A bi-GTS (X, μ_1, μ_2) is pairwise Urysohn iff any one of the following conditions holds:

- (1) For each $x \in X, \{x\} = \cap \{\gamma_{\mu_1,\mu_2}(\gamma_{\mu_1,\mu_2}U) : U \in \mu_2(x)\}.$
- (2) For each $x \in X, \{x\} = \cap \{\gamma_{\mu_2,\mu_1}(\gamma_{\mu_2,\mu_1}U) : U \in \mu_1(x)\}.$
- (3) $\Delta = \gamma_{\mu_1,\mu_2} \Delta$.
- (4) $\Delta = \gamma_{\mu_2,\mu_1} \Delta.$

DEFINITION 2.25. ([14]) Let (X, μ_1, μ_2) be a bi-GTS. Then X is said to be (μ_i, μ_j) -regular if for any $x \in X$ and any μ_i -closed set F not containing x, there exist $U \in \mu_i$ and $V \in \mu_j$ with $x \in U, F \subseteq V$ such that $U \cap V = \emptyset$; i, j = 1, 2 $(i \neq j)$.

If X is (μ_1, μ_2) and (μ_2, μ_1) regular then X is called pairwise regular.

μ_1	μ_2	(μ_1, μ_2) -regular
τ	au	regular
Δ	au	almost regular [17]
SO(X)	SO(X)	semi regular [6]
PO(X)	PO(X)	strong regular [13]

THEOREM 2.26. [14] A bi-GTS (X, μ_1, μ_2) is (μ_i, μ_j) -regular iff for each point $x \in X$ and each μ_i -open set G containing x, there is a μ_i -open set H containing x such that $c_{\mu_i}H \subseteq G$; i, j = 1, 2 $(i \neq j)$.

THEOREM 2.27. A bi-GTS (X, μ_1, μ_2) is (μ_i, μ_j) -regular iff for any set A in X, $c_{\mu_i}A = \gamma_{\mu_i,\mu_j}A$; i, j = 1, 2 $(i \neq j)$.

Proof. First suppose that X is (μ_i, μ_j) -regular. Obviously $c_{\mu_i}A \subseteq \gamma_{\mu_i,\mu_j}A$ for $A \subseteq X$. Now let $x \in \gamma_{\mu_i,\mu_j}A$ and U be any μ_i -open set containing x, then by Theorem 2.23 there exists a μ_i -open set V containing x such that $c_{\mu_j}V \subseteq U$. Now since $x \in \gamma_{\mu_i,\mu_j}A$, we get $c_{\mu_j}V \cap A \neq \phi$ and hence $U \cap A \neq \phi$. Thus $x \in c_{\mu_i}A$ and consequently, $\gamma_{\mu_i,\mu_j}A = c_{\mu_i}A$. Conversly, let $x \in X$ and U be a μ_i -open set containing x. Then $x \notin X \setminus U = c_{\mu_i}(X \setminus U) = \gamma_{\mu_i,\mu_j}(X \setminus U)$. Thus there exists a μ_i -open set V containing x such that $c_{\mu_j}V \subseteq U$.

set V containing x such that $c_{\mu_j}V \cap (X \setminus U) = \phi$ i.e. $c_{\mu_j}V \subseteq U$ and hence X is (μ_i, μ_j) -regular.

COROLLARY 2.28. A Bi-BTS (X, μ_i, μ_j) is pairwise regular iff every μ_i -closed set is $\theta(\mu_i, \mu_j)$ -closed; i, j = 1, 2 $(i \neq j)$.

DEFINITION 2.29. ([15]) A bi-GTS (X, μ_1, μ_2) is said to be (μ_i, μ_j) almost regular if for each $x \in X$ and $r(\mu_i, \mu_j)$ -closed set F with $x \notin F$, there exist $U \in \mu_i$ and $V \in \mu_j$ such that $x \in U, F \subseteq V$ and $U \cap V = \phi$; i, j = 1, 2 $(i \neq j)$.

X is called pairwise almost regular if it is both (μ_1, μ_2) -almost regular and (μ_2, μ_1) -almost regular.

It is easy to check that every pairwise regular space is also a pairwise almost regular space. But the converse is not so. This follows from the following example.

EXAMPLE 2.30. Let us consider the set $X = \{a, b, c, d\}$. Let $\mu_1 = \mu_2 = \mu = \{\phi, \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Then for the point a and the μ -closed set $F = \{b, c\}$ there exist no pair of μ -open sets U and V s.t. $a \in U, F \subseteq V$ and $U \cap V = \phi$. i.e. X is not pairwise regular. But the $r(\mu_i, \mu_j)$ -closed set in X are $\phi, \{a, b\}, \{c, d\}, \{b, d\}, \{a, c\}$. So for each $x \in X$ and $r(\mu_i, \mu_j)$ -closed set F with $x \notin F$, there exist $U \in \mu_i$ and $V \in \mu_j$ such that $x \in U, F \subseteq V$ and $U \cap V = \phi$. and $U \cap V = \phi$. Hence X is pairwise almost regular.

THEOREM 2.31. ([15]) A bi-GTS (X, μ_1, μ_2) is (μ_i, μ_j) -almost regular iff for $x \in X$ and $r(\mu_i, \mu_j)$ -open set U containing x, there exists μ_i -open set V containing x such that $c_{\mu_i}V \subseteq U$; i, j = 1, 2 $(i \neq j)$.

THEOREM 2.32. For a bi-GTS (X, μ_1, μ_2) the following are equivalent:

- (a) X is (μ_i, μ_j) -almost regular.
- (b) For any set $A \subseteq X$, $\gamma_{\mu_i,\mu_j}A = c_{\delta(\mu_i,\mu_j)}A$.
- (c) For any set $A \subseteq X$, $\gamma_{\mu_i,\mu_j}(\gamma_{\mu_i,\mu_j}A) = \gamma_{\mu_i,\mu_j}A$.
- (d) For any μ_j -open set A, $\gamma_{\mu_i,\mu_j}(\gamma_{\mu_i,\mu_j}A) = \gamma_{\mu_i,\mu_j}A$; $i, j = 1, 2 \ (i \neq j)$.

Proof.

 $(a) \Rightarrow (b)$: It is always true that $c_{\delta(\mu_i,\mu_j)}A \subseteq \gamma_{\mu_i,\mu_j}A$. Let, $x \in \gamma_{\mu_i,\mu_j}A$ and $U \in \mu_i(x)$. Then by (a), there exists $V \in \mu_i(x)$ such that $c_{\mu_j}V \subseteq i_{\mu_i}c_{\mu_j}U$. Since $c_{\mu_j}V \cap A \neq \phi$, we have $(i_{\mu_i}c_{\mu_j}U) \cap A \neq \phi$ and thus $x \in c_{\delta(\mu_i,\mu_j)}A$.

$$(b) \Rightarrow (c)$$
: We have

$$\gamma_{\mu_{i},\mu_{j}}(\gamma_{\mu_{i},\mu_{j}}A) = \gamma_{\mu_{i},\mu_{j}}(c_{\delta(\mu_{i},\mu_{j})}A) = c_{\delta(\mu_{i},\mu_{j})}(c_{\delta(\mu_{i},\mu_{j})}A) = c_{\delta(\mu_{i},\mu_{j})}A = \gamma_{\mu_{i},\mu_{j}}A.$$

 $(c) \Rightarrow (d)$: Straightforward.

 $\begin{array}{ll} (d) \Rightarrow (a): \text{ Let } F \text{ be any } r(\mu_i, \mu_j) \text{-open set in } X \text{ and } p \in F. \text{ Now } A = \\ X \setminus F \text{ is an } r(\mu_i, \mu_j) \text{-closed set and then } A = c_{\mu_i}(i_{\mu_j}A). \text{ Put } B = i_{\mu_j}A. \\ \text{Then } \gamma_{\mu_i,\mu_j}A = \gamma_{\mu_i,\mu_j}(c_{\mu_i}B) = \gamma_{\mu_i,\mu_j}(\gamma_{\mu_i,\mu_j}B) = \gamma_{\mu_i,\mu_j}B = c_{\mu_i}B = A. \\ \text{Then } p \notin \gamma_{\mu_i,\mu_j}A \text{ and hence there exist } G \in \mu_i(p) \text{ such that } c_{\mu_j}G \cap A = \phi \\ \text{i.e. } c_{\mu_j}G \subseteq X \setminus A = F. \text{ Hence } X \text{ is } (\mu_i,\mu_j) \text{-almost regular.} \end{array}$

3. Separation axioms via generalized cluster sets and graph of a function

This section is devoted to establish necessary and sufficient conditions for separation properties of a bi-GTS via generalized cluster sets and graph of a function. We begin with a few useful lemmas and already known definitions.

LEMMA 3.1. Let f be a function from a set X to a set Y. Then for any $A \subseteq X$ and any $B \subseteq Y$, $f(A) \cap B = \{y \in Y : (x,y) \in ((A \times B) \cap G(f)), \text{ for some } x \in X\}.$

LEMMA 3.2. Let (X, μ_1, μ_2) and (Y, η_1, η_2) be bi-GTS. Then $\gamma_{\nu_i,\nu_j}\{(x,y)\} = \gamma_{\mu_i,\mu_j}\{x\} \times \gamma_{\eta_j,\eta_i}\{y\}$, for any $(x,y) \in X \times Y$.

Proof. Let $(a, b) \in \gamma_{\nu_i,\nu_j}\{(x, y)\}$ and $U \in \mu_i(a), V \in \eta_j(b)$. Then $(x, y) \in c_{\nu_j}(U \times V) \Rightarrow (x, y) \in c_{\mu_j}U \times c_{\eta_i}V \Rightarrow x \in c_{\mu_j}U$ and $y \in c_{\eta_i}V$. Hence $a \in \gamma_{\mu_i,\mu_j}\{x\}$ and $b \in \gamma_{\eta_j,\eta_i}\{y\}$. This shows that $(a, b) \in \gamma_{\mu_i,\mu_j}\{x\} \times \gamma_{\eta_j,\eta_i}\{y\}$. Then $\gamma_{\nu_i,\nu_j}\{(x, y)\} \subseteq \gamma_{\mu_i,\mu_j}\{x\} \times \gamma_{\eta_j,\eta_i}\{y\}$. Reversing the argument we get the reverse inclusion. Hence $\gamma_{\nu_i,\nu_j}\{(x, y)\} = \gamma_{\mu_i,\mu_j}\{x\} \times \gamma_{\eta_j,\eta_i}\{y\}$ for any $(x, y) \in X \times Y$. \Box

DEFINITION 3.3. ([2]) Let $f: (X, \mu_1, \mu_2) \to (Y, \eta_1, \eta_2)$ be a function. Then for any $x \in X$, then the generalized cluster set of f at any point x is given by $\mathcal{G}_{ij}^{kl}(f, x) = \bigcap \{ \gamma_{\eta_k, \eta_l} f(c_{\mu_j} U) : U \in \mu_i(x) \} i, j, k, l = 1, 2 \ (i \neq j)$ and $k \neq l$).

LEMMA 3.4. Let $f: (X, \mu_1, \mu_2) \to (Y, \eta_1, \eta_2)$ be a function and $x \in X$. Then

(1) $p_2((\{x\} \times Y) \cap \gamma_{\nu_i,\nu_j}G(f)) = \mathcal{G}_{ij}^{ji}(f,x).$ (2) $p_2((\{x\} \times Y) \cap k_{\nu_i}G(f)) = k_{\eta_j}(f(c_{\mu_i}\{x\})).$ (3) $p_2((\{x\} \times Y) \cap \gamma'_{\nu_i,\nu_j}G(f)) = \gamma'_{\eta_j,\eta_i}(f(\gamma_{\mu_i,\mu_j}\{x\})).$

Proof.

(1) Let $y \in \mathcal{G}_{ij}^{ji}(f,x)$ and $U \in \mu_i(x), V \in \eta_j(y)$. Then $y \in \gamma_{\eta_j,\eta_i}f(c_{\mu_j}U)$ and so $c_{\eta_i}V \cap f(c_{\mu_j}U) \neq \phi$ i.e. $(c_{\mu_j}U \times c_{\eta_i}V) \cap G(f) \neq \phi$ i.e. $c_{\nu_j}(U \times V) \cap$ $G(f) \neq \phi$. This shows that $(x,y) \in \gamma_{\nu_i,\nu_j}G(f)$; so that $y \in p_2((\{x\} \times Y) \cap \gamma_{\nu_i,\nu_j}G(f))$. Reversing the step we get the reverse inclusion. Hence $p_2((\{x\} \times Y) \cap \gamma_{\nu_i,\nu_j}G(f)) = \mathcal{G}_{ij}^{ji}(f,x).$

(2) Let $y \in L.H.S$. Then $(x,y) \in k_{\nu_i}G(f)$ i.e. $c_{\nu_i}\{(x,y)\} \cap G(f) \neq \phi$, which gives $(c_{\mu_i}\{x\} \times c_{\eta_j}\{y\}) \cap G(f) \neq \phi$ so $f(c_{\mu_i}\{x\}) \cap c_{\eta_j}\{y\} \neq \phi$ and hence $y \in k_{\eta_j}(f(c_{\mu_i}\{x\}))$. i.e. $y \in R.H.S$. Then $L.H.S \subseteq R.H.S$.

(3) Let $y \in p_2((\{x\} \times Y) \cap \gamma'_{\nu_i,\nu_j}G(f))$. Then $(x,y) \in \gamma'_{\nu_i,\nu_j}G(f)$ i.e. $\gamma_{\nu_i,\nu_j}\{(x,y)\} \cap G(f) \neq \phi$. So by lemma 3.2 $(\gamma_{\mu_i,\mu_j}\{x\} \times \gamma_{\eta_j,\eta_i}\{y\}) \cap G(f) \neq \phi$. Then by lemma 3.1 $f(\gamma_{\mu_i,\mu_j}\{x\}) \cap \gamma_{\eta_j,\eta_i}\{y\} \neq \phi$, which gives $y \in \gamma'_{\eta_j,\eta_i}(f(\gamma_{\mu_i,\mu_j}\{x\}))$. Hence $p_2((\{x\} \times Y) \cap \gamma'_{\nu_i,\nu_j}G(f)) \subseteq \gamma'_{\eta_j,\eta_i}(f(\gamma_{\mu_i,\mu_j}\{x\}))$. Reversal of above aruments yields the inclusion the other way round. \Box

COROLLARY 3.5. If $f : (X, \mu_1, \mu_2) \to (Y, \eta_1, \eta_2)$ is a function then the following are equivalent:

- (1) f has a $\theta(\nu_i, \nu_j)$ -closed graph.
- (2) $\{f(x)\} = p_2((\{x\} \times Y) \cap \gamma_{\nu_i,\nu_j}G(f)), \text{ for each } x \in X.$
- (3) $\mathcal{G}_{ii}^{ji}(f,x) = \{f(x)\}, \text{ for each } x \in X.$

DEFINITION 3.6. ([2]) Let (X, μ_1, μ_2) and (Y, η_1, η) be two bi-GTS. Then $f : (X, \mu_1, \mu_2) \to (Y, \eta_1, \eta_2)$ is said to be $(\mu_i \mu_j, \eta_k)$ -continuous at $x \in X$ if for each $V \in \eta_k(f(x))$, there exists $U \in \mu_i(x)$ such that $f(c_{\mu_i}U) \subseteq V$. i, j, k = 1, 2 $(i \neq j)$.

If f is $(\mu_i \mu_j, \eta_k)$ -continuous at each $x \in X$ then f is called $(\mu_i \mu_j, \eta_k)$ -continuous on X.

If f is both $(\mu_i \mu_j, \eta_1)$ nd $(\mu_i \mu_j, \eta_2)$ -continuous then f is called pairwise $(\mu_i \mu_j, \eta_k)$ -continuous.

A. Deb Ray and Rakesh Bhowmick

LEMMA 3.7. If $f: (X, \mu_1, \mu_2) \to (Y, \eta_1, \eta_2)$ is a function such that f is $(\mu_i \mu_j, \eta_i)$ continuous then, $\mathcal{G}_{ij}^{ji}(f, x) = \gamma_{\eta_j, \eta_i} \{f(x)\}$, for each $x \in X$.

Proof. Let $V \in \eta_i$ such that $f(x) \in V$. Since f is $(\mu_i \mu_j, \eta_i)$ continuous, there exists $U \in \mu_i(x)$ such that $f(c_{\mu_j}U) \subseteq V$. Then $\mathcal{G}_{ij}^{ji}(f,x) \subseteq \gamma_{\eta_j,\eta_i}f(c_{\mu_j}U) \subseteq \gamma_{\eta_j,\eta_i}V = c_{\eta_j}V$ (by Theorem 1.4). Thus $\mathcal{G}_{ij}^{ji}(f,x) \subseteq c_{\eta_j}V$ for all $V \in \eta_i$ with $f(x) \in V$. By Theorem 1.5 $\mathcal{G}_{ij}^{ji}(f,x) \subseteq \gamma_{\eta_j,\eta_i}\{f(x)\}$. On the other hand, $\gamma_{\eta_j,\eta_i}\{f(x)\} \subseteq \mathcal{G}_{ij}^{ji}(f,x)$ is obvious. Hence the lemma.

COROLLARY 3.8. A function $f : (X, \mu_1, \mu_2) \to (Y, \eta_1, \eta_2)$ has the property that f is $(\mu_i \mu_j, \eta_i)$ continuous, has a $\theta(\nu_i, \nu_j)$ -closed graph iff it has $\theta(\eta_j, \eta_i)$ -closed point images.

LEMMA 3.9. A function $f : (X, \mu_1, \mu_2) \rightarrow (Y, \eta_1, \eta_2)$ is $(\mu_i \mu_j, \eta_k)$ continuous iff $f(\gamma_{\mu_i,\mu_j}A) \subseteq c_{\eta_k}f(A); i, j, k = 1, 2 \ (i \neq j).$

Proof. Let f be a $(\mu_i\mu_j,\eta_k)$ continuous and $y \in f(\gamma_{\mu_i,\mu_j}A)$. There exists $x \in X$ such that $x \in \gamma_{\mu_i,\mu_j}A$ and f(x) = y. Let $V \in \eta_k(f(x))$. Then there exists $U \in \mu_i(x)$ such that $f(c_{\mu_j}U) \subseteq V$. Again since $x \in \gamma_{\mu_i,\mu_j}A$ we have $c_{\mu_j}U \cap A \neq \phi$ and so $f(c_{\mu_j}U) \cap f(A) \neq \phi$ i.e $V \cap f(A) \neq \phi$ i.e $f(x) \in c_{\eta_k}f(A)$ and hence $y \in c_{\eta_k}f(A)$.

Conversely, let $x \in X$ be arbitrary and $V \in \eta_k(f(x))$. Then $f(x) \notin c_{\eta_k}(Y \setminus V)$ and so $f(x) \notin c_{\eta_k}(ff^{-1}(Y \setminus V))$. By the hypothesis $f(x) \notin f(\gamma_{\mu_i,\mu_j}(f^{-1}(Y \setminus V)))$, so that $x \notin \gamma_{\mu_i,\mu_j}(X \setminus (f^{-1}V))$. Thus there exists $U \in \mu_i(x)$ such that $c_{\mu_j}U \subseteq f^{-1}V$ i.e. $f(c_{\mu_j}U) \subseteq V$. Hence f is $(\mu_i\mu_j,\eta_k)$ continuous.

THEOREM 3.10. If $f: (X, \mu_1, \mu_2) \to (Y, \eta_1, \eta_2)$ is pairwise $(\mu_i \mu_j, \eta_k)$ continuous and (Y, η_1, η_2) is pairwise R_1 , then $\gamma_{\nu_i,\nu_j}G(f) = k_{\nu_j}G(f)$.

Proof. Since f is pairwise $(\mu_i\mu_j,\eta_k)$ continuous and (Y,η_1,η_2) is pairwise R_1 , by Lemma 3.7, Theorem 2.11 and Lemma 3.9 we have, $\mathcal{G}_{ij}^{ji}(f,x) = \gamma_{\eta_j,\eta_i}\{f(x)\} = k_{\eta_i}\{f(x)\}$ and $f(\gamma_{\mu_i,\mu_j}\{x\}) \subseteq c_{\eta_j}\{f(x)\}$. So $k_{\eta_i}\{f(x)\} \subseteq k_{\eta_i}f(c_{\mu_j}\{x\}) \subseteq k_{\eta_i}f(\gamma_{\mu_j,\mu_i}\{x\}) \subseteq k_{\eta_i}(c_{\eta_j}\{f(x)\})$. Again by theorem 2.11 ji- $ck\{f(x)\} = \gamma_{\eta_j,\eta_i}\{f(x)\} = c_{\eta_j}\{f(x)\}$. So by Lemma 2.3 $k_{\eta_i}\{f(x)\} = k_{\eta_i}(ji$ - $ck\{f(x)\}) = k_{\eta_i}(c_{\eta_j}\{f(x)\})$. Hence $k_{\eta_i}\{f(x)\} = k_{\eta_i}f(c_{\mu_j}\{x\})$. i.e. $\mathcal{G}_{ij}^{ji}(f,x) = k_{\eta_i}f(c_{\mu_j}\{x\})$. It follows from lemma 3.4 $\gamma_{\nu_i,\nu_j}G(f) = k_{\nu_j}G(f)$.

THEOREM 3.11. If $f: (X, \mu_1, \mu_2) \to (Y, \eta_1, \eta_2)$ is $(\mu_i \mu_j, \eta_i)$ continuous and (Y, η_1, η_2) is pairwise Hausdorff, then $\gamma_{\nu_i,\nu_j} G(f) = \gamma'_{\nu_i,\nu_j} G(f)$.

Proof. Since f is $(\mu_i \mu_j, \eta_i)$ continuous and (Y, η_1, η_2) is pairwise Hausdorff, by Lemma 3.7, Corollary 2.17 and Lemma 3.9 we have, $\mathcal{G}_{ij}^{ji}(f, x) = \gamma_{\eta_j,\eta_i}\{f(x)\} = \{f(x)\}$ and $f(\gamma_{\mu_i,\mu_j}\{x\}) \subseteq c_{\eta_i}\{f(x)\}$. Again using Theorem 2.16, Lemma 3.9 and Corollary 2.17 we have

$$\{f(x)\} \subseteq \gamma'_{\eta_j,\eta_i}(f(\gamma_{\mu_i,\mu_j}\{x\})) = f(\gamma_{\mu_i,\mu_j}\{x\}) \subseteq c_{\eta_i}\{f(x)\} \subseteq \gamma_{\eta_i,\eta_j}\{f(x)\} = \{f(x)\}.$$

Then $\gamma'_{\eta_j,\eta_i}(f(\gamma_{\mu_i,\mu_j}\{x\})) = \{f(x)\} = \mathcal{G}^{ji}_{ij}(f,x)$. Hence by Lemma 3.4 $\gamma_{\nu_i,\nu_j}G(f) = \gamma'_{\nu_i,\nu_j}G(f)$.

THEOREM 3.12. If a bi-GTS (Y, η_1, η_2) is pairwise R_1 , then for any bi-GTS (X, μ_1, μ_2) and every $(\mu_i \mu_j, \eta_i)$ continuous function $f : (X, \mu_1, \mu_2) \rightarrow (Y, \eta_1, \eta_2)$ with η_j -closed point image, f has a $\theta(\nu_i, \nu_j)$ -closed graph.

Proof. Let f be a $(\mu_i \mu_j, \eta_i)$ continuous function from a bi-GTS (X, μ_1, μ_2) to (Y, η_1, η_2) with η_i closed point image and let Y be a pairwise R_1 . Then for each $x \in X$, $\{f(x)\} = c_{\eta_j}\{f(x)\} = \gamma_{\eta_j,\eta_i}\{f(x)\}$ (by Theorem 2.11)= $\mathcal{G}_{ij}^{ji}(f, x)$ (by Lemma 3.7). Then by the Corollary 3.5 f has a $\theta(\nu_i, \nu_j)$ closed graph.

THEOREM 3.13. If a bi-GTS (Y, η_1, η_2) is pairwise Hausdorff then every $(\mu_i \mu_j, \eta_i)$ continuous function f from any (X, μ_1, μ_2) to (Y, η_1, η_2) has an $\theta(\nu_i, \nu_j)$ -closed graph.

Proof. It follows from Lemma 3.7, Corollary 2.17 and Corollary 3.5. \Box

DEFINITION 3.14. A multifunction $F : (X, \mu_1, \mu_2) \to (Y, \eta_1, \eta_2)$ is called $(\mu_i \mu_j, \eta_k)$ continuous at a point x of X if for each η_k open set W in Y such that $F(x) \subseteq W$, there is a $V \in \mu_i(x)$ satisfying $F(c_{\mu_j}V) \subseteq W$, where $F(V) = \bigcup \{F(y) : y \in V\}$; F is $(\mu_i \mu_j, \eta_k)$ continuous if F is so at each $x \in X$. i, j, k = 1, 2 $(i \neq j)$.

THEOREM 3.15. If a bi-GTS (Y, η_1, η_2) is pairwise regular. Then for each $x \in X$ and each $(\mu_i \mu_j, \eta_i)$ continuous multifunction F from any bi-GTS (X, μ_1, μ_2) to (Y, η_1, η_2) , $\mathcal{G}_{ij}^{ji}(F, x) = c_{\eta_j}F(x)$ for i, j = 1, 2 $(i \neq j)$, where $\mathcal{G}_{ij}^{ji}(F, x) = \cap \{\gamma_{\eta_j, \eta_i}F(c_{\mu_i}U) : U \in \mu_i(x)\}.$

Proof. Let (Y, η_1, η_2) be pairwise regular. Now obviously $c_{\eta_j}F(x) \subseteq \mathcal{G}_{ij}^{ji}(F, x)$. On the other hand, if $x \in X$ and $W \in \eta_i$ such that $F(x) \subseteq W$, then by $(\mu_i \mu_j, \eta_i)$ continuity of F there exists $V \in \mu_i(x)$ such that $F(c_{\mu_j}V) \subseteq W$. So, $\mathcal{G}_{ij}^{ji}(F, x) = \cap\{\gamma_{\eta_j,\eta_i}F(c_{\mu_j}V) : V \in \mu_i(x)\} \subseteq$

A. Deb Ray and Rakesh Bhowmick

 $\bigcap\{\gamma_{\eta_{j},\eta_{i}}W:F(x)\subseteq W\in\eta_{i}\}=\bigcap\{c_{\eta_{j}}W:F(x)\subseteq W\in\eta_{i}\}. \text{ It sufficies to show that } \bigcap\{c_{\eta_{j}}W:F(x)\subseteq W\in\eta_{i}\}=c_{\eta_{j}}F(x). \text{ In fact } c_{\eta_{j}}F(x)\subseteq\bigcap\{c_{\eta_{j}}W:F(x)\subseteq W\in\eta_{i}\}\text{ is obvious. Now let } y\in\bigcap\{c_{\eta_{j}}W:F(x)\subseteq W\in\eta_{i}\}\text{ and } y\notin c_{\eta_{j}}F(x). \text{ Since } Y \text{ is pairwise regular, there exist } U'\in\eta_{j} \text{ and } V'\in\eta_{i} \text{ with } y\in U', c_{\eta_{j}}F(x)\subseteq V' \text{ and } U'\cap V'=\phi. \text{ But since } F(x)\subseteq V'\in\eta_{i} \text{ we have } y\in c_{\eta_{j}}V', \text{ which contradicts } U'\cap V'=\phi. \text{ Hence } \mathcal{G}_{ij}^{ji}(F,x)=c_{\eta_{j}}F(x).$

References

- M. P. Bhamini, The role of semi-open sets in topology. Ph. D. Thesis, University of Delhi, 1983.
- [2] R. Bhowmick and A. Debray, On generalized sets of functions and multifunctions, Acta Math. Hungar. 140(1-2)(2013), 47-59.
- [3] M. Caldas, S. Jafari and T. Noiri, Characterizations of pre R₀ and pre R₁ topological spaces, Topological Proceedings, 25(2000), 17-30.
- [4] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002), no. 4, 351-357.
- [5] Á. Császár and E. Makai Jr., Further remarks on δ- and θ-modifications, Acta Math. Hungar. 123 (2009), 223-228.
- [6] C. Dorsett, Semi-regular space, Soochow Journal of Mathematics 8 (1982), 45-53.
- [7] C. Dorsett, Semi T_1 and Semi R_0 Spaces, submitted.
- [8] C. Dorsett, T_0 Identification spaces and R_1 spaces, Kyungpook Math. J., **18**(1978), no. 2, 167-174.
- [9] A. Kar and P. Bhattachariya, Some weak separation axioms, Bull. Calcutta Math. Soc. 82 (1990), 415-422.
- [10] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [11] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deeb, On pre-continuous and weak pre-continuous mappings, J. Math. Phys. Soc. Egypt 53 (1982), 47-53.
- [12] S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles. 89 (1975), 395-402.
- [13] A. S.Mashhour, M. E.Abd EI-Monsef, and I. A.Hasanein, On pretopological spaces, Bull. Mathe. de la Soc. Math. de la R.S. de Roumanie, Tome 28(76)(1)(1984).
- [14] W. K. Min, Mixed weak continuity on generalized topological spaces, Acta Math. Hungar. 132 (2011), no. 4, 339-347.
- [15] W. K. Min, A note on δ- and θ-modifications, Acta Math. Hungar. DOI: 10.1007/s10474-010-0045-3(2010).
- [16] M. Pal and P.Bhattcharyya, Feeble and strong forms of pre-irresolute function, Bull. Malaysian Math. Soc. (Second Series) 19 (1996), 63-75.
- [17] M. K. Singal and S. P. Arya, On almost regular spaces, Glasnik. Mat. 4(24)(1969), 89-99.

Separation axioms on bi-GTS

[18] N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. 78 (1968), no. 2, 103-118.

[19] S. Willard, General Topology, Addison-Wesley, 1970.

*

Department of Mathematics West Bengal State University Kolkata-700026, India *E-mail*: atasi@hotmail.com

**

Department of Mathematics West Bengal State University Kolkata-700026, India *E-mail*: r.bhowmick88@gmail.com