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SEPARATION AXIOMS ON BI-GENERALIZED
TOPOLOGICAL SPACES

A. Deb Ray* and Rakesh Bhowmick**

Abstract. In this paper, introducing various separation axioms on
a bi-GTS, it has been observed that such separation axioms actually
unify the well-known separation axioms on topological spaces. Sev-
eral characterizations of such separation properties of a bi-GTS are
established in terms of γµi,µj -closure operator, generalized cluster
sets of functions and graph of functions.

1. Introduction and preliminaries

The concept of bi-Generalized topology (in short, bi-GTS) was in-
troduced by Á. Császár and and E.Makai Jr. in [5]. We study certain
separation axioms on bi-GTS and find their characterizations in terms
of γµi,µj -closure operator [5], graph of a function and generalized cluster
sets [2] of a function. It is worth noting that the well-known separation
axioms of bi-topological and hence topological spaces, follow as special
cases for suitable choices of the bi-GTs.
In the next section, we investigate the behaviour of a bi-GTS obeying
separation properties, in terms of a generalized closure operator called
γµi,µj -closure operator [5]; while in the last section, a bi-GTS under sep-
aration properties are discussed in the light of graph of a function and
generalized cluster sets [2] of a function.
We now state certain useful definitions and quote several existing results
that we require in the next two sections.

Definition 1.1. ([4]) Let X be a nonempty set and µ be a collection
of subsets of X (i.e. µ ⊆ P(X)). µ is called a generalized topology
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(briefly GT) on X iff ∅ ∈ µ and Gλ ∈ µ for λ ∈ Λ(6= ∅) implies ∪λ∈ΛGλ ∈
µ. The pair (X, µ) is called a generalized topological space (briefly GTS).
The elements of µ are called µ-open sets and their complements are called
µ-closed sets. The generalized closure of a subset S of X, denoted by
cµ(S), is the intersection of all µ-closed sets containing S. The set of all
µ-open sets containing an element x ∈ X is denoted by µ(x).

For a topological space (X, τ), set of all open, δ-open [18], semi
open [10] and pre open [11] subsets of X are denoted respectively by
τ(X), ∆(X), SO(X) and PO(X).
Let µ1, µ2 be two GTs on a non-empty set X. Then (X, µ1, µ2) is called
bi-Generalized topological space ( briefly bi-GTS).

Definition 1.2. ([5]) On a bi-GTS (X, µ1, µ2), γµi,µj : P (X) →
P (X) is defined by

γµi,µj (A) = {x ∈ X : cµjM ∩A 6= φ for all M ∈ µi(x)},
for each A ⊆ X, i, j = 1, 2(i 6= j). θ(µi, µj), δ(µi, µj) ⊆ P (X), defined
respectively by
θ(µi, µj) = {A ⊂ X : for each x ∈ A there exists M ∈ µi(x) such that

cµjM ⊂ A}, i, j = 1, 2(i 6= j),

and
δ(µi, µj) = {A ⊆ X : for each x ∈ A ∃ µj − closed set Q with
x ∈ iµiQ ⊆ A}, i, j = 1, 2(i 6= j),
also form GTs on X. The elements of θ(µi, µj)( resp. δ(µi, µj)) are
called θ(µi, µj)( resp. δ(µi, µj))-open and the complements are called
θ(µi, µj)(resp. δ(µi, µj))-closed.

Theorem 1.3. ([5]) Let (X,µ1, µ2) be a bi-GTS and A ⊆ X. Then
the following hold:

(1) θ(µi, µj) ⊆ δ(µi, µj) ⊆ µi.
(2) A ⊆ γµi,µj (A) ⊆ cθ(µi,µj)(A).
(3) A is θ(µi, µj)-closed iff A = γµi,µj (A).

Theorem 1.4. ([14]) Let (X, µ1, µ2) be a bi-GTS. Then for any µj-
open set A we have γµi,µj (A) = cµi(A).

Theorem 1.5. For any subset A in a bi-GTS (X,µ1, µ2), γµi,µj (A) =
∩{cµiV : A ⊆ V ∈ µj}.

Let µ1, µ2 be two GTs on a non-empty set X and A ⊆ X. A is said
to be r(µi, µj)-open (resp. r(µi, µj)-closed) [5] if A = iµi(cµj (A))(resp.
A = cµi(iµj (A))).
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Theorem 1.6. ([5]) x ∈ cδ(µi,µj)A iff A ∩ R 6= φ for every r(µi, µj)-
open set R containing x.

Let (X,µ1, µ2) and (Y, η1, η2) be two bi-GTS. The GT νi(i = 1, 2)
on the cartesian product X × Y is defined by νi = µi × ηj for i, j =
1, 2(i 6= j); Then (X × Y, ν1, ν2) is again a bi-GTS. Also, for the bi-
GTS (X,µ1, µ2), (X × X, ν1, ν2) is a bi-GTS where νi = µi × µj for
i, j = 1, 2(i 6= j).

2. Separation axioms in terms of γµi,µj -closure operator

In this section, we introduce different separation axioms on a bi-
GTS and establish their interrelationships. Also, such separation axioms
are characterized here using generalized closure operator, called γµi,µj -
closure operator.

Definition 2.1. Let µ be a GT on a non-empty set X. Then for any
A ⊆ X, kµA = ∩{U ∈ µ : A ⊆ U}.

Definition 2.2. Let (X,µ1, µ2) be a bi-GTS. Then for any point
x ∈ X we define ij-ck(A) = (cµiA) ∩ (kµjA); for i, j = 1, 2 (i 6= j).

If A = {x}, we will write ij-ck{x} for ij-ck({x}).
Lemma 2.3. Let x be an arbitrary point in a bi-GTS (X,µ1, µ2).

Then

(1) y ∈ ji-ck{x} iff ij-ck{x} ⊆ ij-ck{y}.
(2) cµi(ij-ck{x}) = cµi{x}.
(3) kµj (ij-ck{x}) = kµj{x}.
(4) γµi,µj (ij-ck{x}) = γµi,µj{x}.
(5) for any µj-open set U containing x, kµj{x} ⊆ U .
(6) for any µi-closed set F containing x, cµi(ij-ck{x}) ⊆ F .
(7) kµi(kµiA) = kµiA for A ⊆ X.
(8) γµi,µj (kµjA) = γµi,µjA for A ⊆ X; i, j = 1, 2 (i 6= j).

Proof.
(1) Let, y ∈ ji-ck{x}. Suppose z ∈ ij-ck{x}. Now y ∈ ji-ck{x} implies
y ∈ cµj{x}, y ∈ kµi{x} and z ∈ ij-ck{x} implies z ∈ cµi{x}, z ∈ kµj{x}.
Again z ∈ cµi{x} and y ∈ kµi{x} together imply z ∈ cµi{y}. Also
y ∈ cµj{x} and z ∈ kµj{x} together imply z ∈ kµj{y}. So, z ∈ cµi{y} ∩
kµj{y} = ij-ck{y}. Hence ij-ck{x} ⊆ ij-ck{y}.
Conversely, let ij-ck{x} ⊆ ij-ck{y}. Since, x ∈ ij-ck{x} ⊆ ij-ck{y}, So
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x ∈ cµi{y} and x ∈ kµj{y}. Now x ∈ cµi{y} implies y ∈ kµi{x}. Also
x ∈ kµj{y} implies y ∈ cµj{x}. So, y ∈ cµj{x} ∩ kµi{x} = ji-ck{x}.

(2) Let z ∈ cµi(ij-ck{x}). Therefore for all U ∈ µi(z), U∩(ij-ck{x}) 6= φ
and so U ∩ (cµi{x}) 6= φ i.e. z ∈ cµi(cµi{x}) = cµi{x}. Hence cµi(ij-
ck{x}) ⊆ cµi{x}.
Conversely, {x} ⊆ ij-ck{x} implies cµi{x} ⊆ cµi(ij-ck{x}). Thus cµi(ij-
ck{x}) = cµi{x}.

(3) Let y ∈ kµj (ij-ck{x}) but y /∈ kµj{x}. Then there exists U ∈ µj(x)
such that y /∈ U . Also, y ∈ kµj (ij-ck{x}) ⇒ ij-ck{x} ∩ cµj{y} 6= φ ⇒
cµj{y} ∩ kµj{x} 6= φ. Hence there exists z ∈ cµj{y} ∩ kµj{x}. Then
every µj-open neighbourhood of x contains y, a contradiction.

(4) Let, y ∈ γµi,µj (ij-ck{x}) and if possible let y /∈ γµi,µj{x}. Then
there exists U ∈ µi(y) such that x /∈ cµjU . Again y ∈ γµi,µj (ij-ck{x})
implies cµjU ∩ ij-ck{x} 6= φ i.e. cµjU ∩ kµj{x} 6= φ and so there exists
z ∈ cµjU ∩ kµj{x}. Again since, x ∈ X\cµjU ∈ µj and z ∈ kµj{x}, so ,
z ∈ X\cµjU , which is not possible. Hence, γµi,µj (ij-ck{x}) ⊆ γµi,µj{x}.
Conversely, x ∈ ij-ck{x} implies γµi,µj{x} ⊆ γµi,µj (ij-ck{x}).

(5) Let, z ∈ kµj{x} and U ∈ µj(x). Clearly z ∈ U . Thus kµj{x} ⊆ U .
(6) By (2) cµi(ij-ck{x}) = cµi{x} and cosequently cµi(ij-ck{x}) ⊆ F .
(7) R.H.S ⊆ L.H.S. We now show that L.H.S ⊆ R.H.S. Let y /∈ R.H.S.
Then there exists a µi open set containing A s.t y /∈ U . Again A ⊆ U
and U ∈ µi implies that kµi{A} ⊆ U and consequently y /∈ R.H.S.

(8) R.H.S ⊆ L.H.S. We now show that L.H.S ⊆ R.H.S. Let y /∈ R.H.S.
Then there exists a µi open set U containing y s.t. cµjU ∩ A = φ,
Consequently cµjU ∩ kµj{A} = φ (Since, kµj{A} is the intesection of all
µj open set containing A). Hence y /∈ L.H.S.

Corollary 2.4. For any point x in a bi-GTS (X,µ1, µ2) the follow-
ing hold :

(1) For any µj-open set U containing x, ij-ck{x} ⊆ U .
(2) For any µi-closed set F containing x, ij−ck{x} ⊆ F .
(3) For any point x, ij-ck({ij-ck{x}) = ij-ck{x}.
Proof.

(1) Follows from (5) of Lemma 2.3 and definition of ij-ck{x}.
(2) Follows from (6) of Lemma 2.3 and definition of cµi{x}.
(3) Follows from (2) and (3) of Lemma 2.3.

Definition 2.5. A bi-GTS (X, µ1, µ2) is said to be pairwise R0-space
if for each µi-open set G and for each x ∈ G, cµj{x} ⊆ G; for i, j = 1, 2
(i 6= j).
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µ1 µ2 pairwise R0

τ τ R0 [8]
SO(X) SO(X) semi R0 [7]
PO(X) PO(X) pre R0 [3]

Theorem 2.6. If (X, µ1, µ2) is pairwise R0, then for each x ∈ X,
γµj ,µi{x}\cµi{x} is a union of µj-closed sets; for i, j = 1, 2 (i 6= j).

Proof. Let, y ∈ γµj ,µi{x}\cµi{x}. Then y ∈ X\cµi{x}. Since X is
pairwise R0, cµi{x} ∩ cµj{y} = φ. Now y ∈ γµj ,µi{x} implies cµj{y} ⊆
γµj ,µi{x}. Thus cµj{y} ⊆ γµj ,µi{x}\cµi{x}. Consequently γµj ,µi{x}\
cµi{x} is a union of cµj -closed sets.

Theorem 2.7. If for every pair of distinct point x, y in a bi-GTS
(X,µ1, µ2), either cµi{x} = cµj{y} or cµi{x}∩ cµj{y} = φ, for i, j = 1, 2
(i 6= j), then (X, µ1, µ2) is pairwise R0.

Proof. Let G be a µi-open set containing y ∈ X. For any x ∈ X\G
as y /∈ cµi{x}, cµi{x} 6= cµj{y}. By the hypothesis, cµi{x} ∩ cµj{y} = φ
which gives x /∈ cµj{y}; i.e. there exists Vx ∈ µj(x) such that y /∈ Vx.
Let A = ∪{Vx : x ∈ X\G}. Then y /∈ A and A ∈ µj . So X\A is a
µj-closed set containing y. Also X\G ⊆ A i.e. X\A ⊆ G. Therefore
cµj{y} ⊆ G and hence (X,µ1, µ2) is pairwise R0.

Definition 2.8. A bi-GTS (X, µ1, µ2) is said to be pairwise R1 if
for any two points x, y ∈ X such that x /∈ cµi{y}, there are µi-open set
U containing x and µj-open set V containing y such that U ∩ V = φ;
where i, j = 1, 2 (i 6= j).

µ1 µ2 pairwise R1

τ τ R1 [8]
SO(X) SO(X) semi R1 [7]
PO(X) PO(X) pre R1 [3]

Remark 2.9. Every pairwise R1 space is pairwise R0.

Proof. Let (X,µ1, µ2) be pairwise R1. Let G be a µi open set and
x ∈ G. If X\G = φ then the proof is obvious. So let us consider the case
X\G 6= φ and y /∈ G. Consequently x /∈ cµi{y}. Since X is pairwise R1

there exist Uy ∈ µi(x) and Vy ∈ µj(y) s.t. Uy ∩Vy = φ. Let V = ∪y/∈GVy

and F = X\V . Then F is a µj closed set containing x s.t. F ⊆ G i.e.
cµj{x} ⊆ G. Hence X is pairwise R0.

But the converse is not true. This follows from the following example.
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Example 2.10. Let us consider the set X = {a, b, c}. Let µ1 = µ2 =
µ = {φ, {a, b}, {b, c}, {c, a}, X}. Then a /∈ cµi{b} = {b} but every µ-
open set containig them intersect each other. i.e. X is not pairwise R1.
Again for every µi-open set G and for each x ∈ G, cµj{x} ⊆ G, for
i, j = 1, 2. i.e X is pairwise R0.

Theorem 2.11. Let (X, µ1, µ2) be a bi-GTS. Then the following are
equivalent:

(a) X is pairwise R1.
(b) ij-ck{x} = γµi,µj{x}, for each x ∈ X.
(c) ij-ck{x} is θ(µi, µj)-closed set, for each x ∈ X.
(d) γµi,µj{x} = cµi{x}, for each x ∈ X.
(e) γµi,µj{x} = kµj{x}, for each x ∈ X.
(f) cµi{x} is θ(µi, µj)-closed, for each x ∈ X.
(g) kµj{x} is θ(µi, µj)-closed, for each x ∈ X.
(h) If F is µi-closed set containing x, then γµi,µj{x} ⊆ F , for each

x ∈ X.
(i) If U is a µj-open set containing x, then for each x ∈ X, γµi,µj{x} ⊆

U ; i, j = 1, 2 (i 6= j).

Proof.
(a) ⇒ (b): Let x ∈ X. Also let y ∈ X be such that y /∈ ij-ck{x}, then
y /∈ cµi{x} ∩ kµj{x}. Now if y /∈ kµj{x} then x /∈ cµj{y}. since X is
pairwise R1, there exist U ∈ µj(x) and V ∈ µi(y) such that U ∩ V = φ.
Then y /∈ cµi{x}. Thus y /∈ kµj{x} implies y /∈ cµi{x}. If possible let
y ∈ γµi,µj{x}, then for all µi-open set W containing y, x ∈ cµjW . Since
y /∈ cµi{x} and X is pairwise R1 there exist W1 ∈ µi(y) and W2 ∈ µj(x)
such that W1∩W2 = φ i.e. x /∈ cµjW1, a contradiction. So y /∈ γµi,µj{x}
and hence γµi,µj{x} ⊆ ij-ck{x}.
On the other hand if y ∈ ij-ck{x}, then y ∈ cµi{x} ⊆ γµi,µj{x} so that
ij-ck{x} ⊆ γµi,µj{x}.

(b) ⇔ (c): follows from lemma 2.3.
(b) ⇒ (d): This is evident from the fact that ij-ck{x} ⊆ cµi{x} ⊆ γµi,µj{x},
for each x ∈ X.

(d) ⇒ (a): Let x, y ∈ X with y /∈ cµi{x} = γµi,µj{x}. Then there exists
U ∈ µi(y) such that x /∈ cµjU . Hence X\cµjU is a µj-open set containing
x such that (X\cµjU) ∩ U = φ, proving that (X, µ1, µ2) is pairwise R1.

(d) ⇒ (e): Let y ∈ γµi,µj{x} = cµi{x}. If possible let y /∈ kµj{x}. Then
x /∈ cµj{y} = γµj ,µi{x}, a contradiction. Thus γµi,µj{x} ⊆ kµj{x}.
Conversely, if y /∈ γµi,µj{x}, then there exists W ∈ µi(y) such that
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x /∈ cµjW ⊇ cµj{y} and so y /∈ kµj{x}. Thus kµj{x} ⊆ γµi,µj{x} and
hence γµi,µj{x} = kµj{x}.

(e) ⇒ (d): Let, y ∈ γµi,µj{x} = kµj{x}, then x ∈ cµj{y}. Now y /∈ cµi{x}
implies x /∈ kµi{y} = γµj ,µi{y} ⊇ cµj{y} which is a contradiction. Con-
sequently, γµi,µj{x} ⊆ cµi{x}. The other part, i.e. cµi{x} ⊆ γµi,µj{x} is
obvious.

(a) ⇒ (f): Follows from (b), (c) and (d).
(f) ⇒ (d): {x} ⊆ cµi{x} gives γµi,µj{x} ⊆ γµi,µj (cµi{x}) = cµi{x} and
cµi{x} ⊆ γµi,µj{x} is obvious. Hence γµi,µj{x} = cµi{x} for each x ∈ X.

(a) ⇒ (g): It follows from (b), (c) and (e).
(g) ⇒ (e): Since kµj{x} is θ(µi, µj)-closed for each x ∈ X, γµi,µj (kµj{x})
= kµj{x} and so (e) follows from Corollary 2.4.

(h) ⇒ (d): For each x ∈ X, cµi{x} is a µi-closed set containing x and
hence by (h), γµi,µj{x} ⊆ cµi{x}. Again since cµi{x} ⊆ γµi,µj{x} is ob-
vious, we have cµi{x} = γµi,µj{x}. The implications “(b) ⇒ (h)”, “(b) ⇒
(i)” and “(i) ⇒ (e)” follow respectively from (4.), (3.) and (2.) of corol-
lary 2.4.

Corollary 2.12. If (X,µ1, µ2) is pairwise R1-space, then γµi,µj{x}
is θ(µi, µj)-closed for each x ∈ X.

Definition 2.13. For any subset A of a bi-GTS (X, µ1, µ2) we define
γ
′
µi,µj

(A) = {x ∈ X : γµi,µj{x} ∩A 6= φ}; i, j = 1, 2 (i 6= j).

It is easy to observe from the above definition that for A,B ⊆ X,
(i) A ⊆ kµiA ⊆ γ

′
µi,µj

A, (ii) A ⊆ B ⇒ γ
′
µi,µj

A ⊆ γ
′
µi,µj

B and
(iii) γ

′
µi,µj

(A ∪B) = γ
′
µi,µj

A ∪ γ
′
µi,µj

B.

Definition 2.14. ([2]) Let (X, µ1, µ2) be two bi-GTS. Then X is
said to be pairwise-Hausdorff if for x 6= y in X, there exist U ∈ µi(x),
V ∈ µj(y) such that U ∩ V = ∅. i, j = 1, 2 (i 6= j).

µ1 µ2 pairwise-Hausdorff
τ τ T2

SO(X) SO(X) semi T2 [12]
PO(X) PO(X) pre T2 [9]

Every pairwise Hausdorff space is also a pairwise R1 space. The
example below shows that the converse is not neccessarily true.

Example 2.15. Let us consider the set X = {a, b, c}. Let µ1 = µ2 =
µ = {φ, {a}, {b, c}, X}. Then for the point b and c there exist no pair of
disjoint µ-open containing them. i.e. X is not pairwise Hausdorff. But
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for any two points x, y ∈ X s.t. x ∈ cµ1{y}, there are µ1-open set U
containing x and µ2-open set V containinig y s.t. U ∩ V = φ. i.e. X is
pairwise R1.

Theorem 2.16. For any bi-GTS (X, µ1, µ2) the following are equiv-
alent :

(a) X is pairwise Hausdorff.
(b) For each x ∈ X, {x} = γµi,µj{x} ∪ γµj ,µi{x}.
(c) For any two distinct points x, y of X, γµi,µj{x} ∩ γµj ,µi{y} = φ.

(d) For any subset A of X, A = γ
′
µi,µj

(A); i, j = 1, 2 (i 6= j).

Proof.
(a) ⇒ (b): Let y ∈ X such that y 6= x. Then there exist U ∈ µi(x) and
V ∈ µj(y) such that U ∩V = φ. Thus x /∈ cµiV and hence y /∈ γµj ,µi{x}.
Similarly y /∈ γµi,µj{x}. Consequently, {x} = γµi,µj{x} ∪ γµj ,µi{x}.

(b) ⇒ (c): straightforward.
(c) ⇒ (d): A ⊆ γ

′
µi,µj

(A) is evident. Now let x ∈ γ
′
µi,µj

(A) so that
γµi,µj{x} ∩ A 6= φ. let y ∈ X such that y 6= x. Then γµi,µj{y} ∩
γµi,µj{x} = φ and consequently, y /∈ γµi,µj{x}. Thus x ∈ A and hence
γ
′
µi,µj

(A) ⊆ A.
(d) ⇒ (a): Let x and y be any two distinct points of X. Now, {x} =
γ
′
µi,µj

{x} implies y /∈ γ
′
µi,µj

{x} and hence x /∈ γµi,µj{y}. So there exists
a U ∈ µi(x) such that y /∈ cµjU , i.e. y ∈ (X\cµjU)(= V , say ) ∈ µj and
U ∩ V = φ. Hence the bi-GTS is pairwise Hausdorff.

Corollary 2.17. The following statements are equivalent for a bi-
GTS (X,µ1, µ2):

(a) X is pairwise Hausdorff.
(b) For each x ∈ X, {x} = γµ1,µ2{x}, i.e. every singleton of X is

θ(µ1, µ2)-closed.
(c) For each x ∈ X, {x} = γµ2,µ1{x}, i.e. every singleton of X is

θ(µ2, µ1)-closed.

Definition 2.18. A bi-GTS (X, µ1, µ2) is said to be pairwise Urysohn
if for any two distinct point x, y of X, there exist U ∈ µ1(x) and
V ∈ µ2(x) such that cµ2U ∩ cµ1V = φ.

µ1 µ2 Pairwise Urysohn
τ τ Urysohn [19]
SO(X) SO(X) semi-Urysohn [1]
PO(X) PO(X) pre-Urysohn [16]
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Every pairwise Urysohn space is also a pairwise Hausdorff space. The
converse does not always hold. This follows from the following example.

Example 2.19. Let X = {a, b, c, d, e}. Let us consider µ = µ1 = µ2 =
{φ, {a, b}, {c, d}, {a, c}, {b, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, c, e},
{b, d, e}, {b, c, d, e}, {a, c, d, e}, {a, b, d, e}, {a, b, c, e}, {a, b, c, d}, X}. Then
for every pair of distinct x, y there exist disjoint µ-open set U, V contain-
ing x, y respectively. i.e. X is pairwise Hausdorff. But if we take a and
c then there exist no pair of µ-open set U, V containing x, y respectively
s.t. cµ2U ∩ cµ1V = φ. i.e. X is not pairwise Urysohn.

Definition 2.20. Let (X, µ1, µ2) be a bi-GTS. Then for any subset
A of X we define,
P (A) = (∩{γµ1,µ2(γµ1,µ2U) : A ⊆ U ∈ µ2}) ∪ (∩{γµ2,µ1(γµ2,µ1U) : A ⊆
U ∈ µ1}).

Lemma 2.21. For any point x in a bi-GTS (X, µ1, µ2), p1[(X×{x})∩
γνi,νj∆] = p2[({x} ×X) ∩ γνj ,νi∆]; i, j = 1, 2 (i 6= j).

Proof. Let y /∈ L.H.S. This implies that (y, x) /∈ γνi,νj∆. So there
exists V ∈ µi(y) and U ∈ µj(x) such that cνj (V × U) ∩ ∆ = φ i.e.
(cµjV × cµiU) ∩ ∆ = φ which gives cµjV ∩ cµiU = φ. Thus we have
(cµiU×cµjV )∩∆ = φ i.e cνi(U×V )∩∆ = φ which gives (x, y) /∈ γµj ,µi∆
i.e y /∈ R.H.S.
By reversing the above arguments we can similarly show that y /∈ R.H.S.
implies y /∈ L.H.S.

Lemma 2.22. If (X, µ1, µ2) is a bi-GTS and x ∈ X, then

P ({x}) = p1[(X × {x}) ∩ γνi,νj∆] ∪ p2[({x} ×X) ∩ γνi,νj∆]
= p1[(X × {x}) ∩ γν1,ν2∆] ∪ p1[(X × {x}) ∩ γν2,ν1∆]
= p2[({x} ×X) ∩ γν1,ν2∆] ∪ p2[({x} ×X) ∩ γν2,ν1∆]

Proof. In view of Lemma 2.21 it is sufficies to show that P ({x}) =
p1[(X×{x})∩γν1,ν2∆]∪p1[(X×{x})∩γν2,ν1∆]. Now, if y /∈ P ({x}) then
there exist U2 ∈ µ2(x) and U1 ∈ µ1(x) such that y /∈ γµ1,µ2(γµ1,µ2U2) and
y /∈ γµ2,µ1(γµ2,µ1U1). Consequently we have V1 ∈ µ1(y) and V2 ∈ µ2(y)
such that cµ2V1 ∩ γµ1,µ2U2 = φ = cµ1V2 ∩ γµ2,µ1U1 i.e. cµ2V1 ∩ cµ1U2 =
φ = cµ1V2 ∩ cµ2U1 ( by Theorem 1.4 ). Then (cµ2V1× cµ1U2)∩∆ = φ =
(cµ1V2×cµ2U1)∩∆ i.e. cν2(V1×U2)∩∆ = φ = cν1(V2×U1)∩∆ which gives
(y, x) /∈ γν1,ν2∆ and (y, x) /∈ γν2,ν1∆. Hence y /∈ p1[(X × {x}) ∩ γν1,ν2∆]
and y /∈ p1[(X×{x})∩γν2,ν1∆] so that y /∈ R.H.S. By reversing the above
argument we can similarly show that y /∈ R.H.S. implies y /∈ L.H.S.
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Theorem 2.23. For a bi-GTS (X, µ1, µ2) the following are equivalent:

(1) X is pairwise Urysohn.
(2) For each x ∈ X, {x} = P ({x}).
(3) ∆ = (γν1,ν2∆) ∪ (γν2,ν1∆).

Proof.
(1) ⇒ (2): Let x ∈ X and y be any point of X with y 6= x. Then there
exist U ∈ µ1(x) and V ∈ µ2(y) such that cµ2U ∩ cµ1V = φ and so we
have γµ2,µ1U ∩ cµ1V = φ (by Theorem 1.4) so that y /∈ γµ2,µ1(γµ2,µ1U).
Similarly we can find W ∈ µ2(x) such that y /∈ γµ1,µ2(γµ1,µ2W ). Hence
we get (2).

(2) ⇒ (3) : We have,

(x, y) /∈ ∆ ⇔ y /∈ P ({x})
⇔ y /∈ p2[({x} ×X) ∩ γν1,ν2∆] ∪ p2[({x} ×X) ∩ γν2,ν1∆]
⇔ (x, y) /∈ γν1,ν2∆ and (x, y) /∈ γν2,ν1∆

Thus (3) follows.
(3) ⇒ (1): Let x, y ∈ X such that x 6= y. Since (x, y) /∈ ∆, (x, y) /∈
γν1,ν2∆ so that cν2(U1×V2)∩∆ = φ for some U1 ∈ µ1(x) and V2 ∈ µ2(y).
Then (cµ2U1 × cµ1V2)∩∆ = φ i.e. cµ2U1 ∩ cµ1V2 = φ, proving that X is
pairwise Urysohn.

Corollary 2.24. A bi-GTS (X,µ1, µ2) is pairwise Urysohn iff any
one of the following conditions holds:

(1) For each x ∈ X, {x} = ∩{γµ1,µ2(γµ1,µ2U) : U ∈ µ2(x)}.
(2) For each x ∈ X, {x} = ∩{γµ2,µ1(γµ2,µ1U) : U ∈ µ1(x)}.
(3) ∆ = γµ1,µ2∆.
(4) ∆ = γµ2,µ1∆.

Definition 2.25. ( [14]) Let (X,µ1, µ2) be a bi-GTS. Then X is
said to be (µi, µj)-regular if for any x ∈ X and any µi-closed set F not
containing x, there exist U ∈ µi and V ∈ µj with x ∈ U,F ⊆ V such
that U ∩ V = ∅; i, j = 1, 2 (i 6= j).

If X is (µ1, µ2) and (µ2, µ1) regular then X is called pairwise regular.
µ1 µ2 (µ1, µ2)-regular
τ τ regular
∆ τ almost regular [17]
SO(X) SO(X) semi regular [6]
PO(X) PO(X) strong regular [13]
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Theorem 2.26. [14] A bi-GTS (X, µ1, µ2) is (µi, µj)-regular iff for
each point x ∈ X and each µi-open set G containing x, there is a µi-open
set H containing x such that cµjH ⊆ G; i, j = 1, 2 (i 6= j).

Theorem 2.27. A bi-GTS (X, µ1, µ2) is (µi, µj)-regular iff for any
set A in X, cµiA = γµi,µjA; i, j = 1, 2 (i 6= j).

Proof. First suppose that X is (µi, µj)-regular. Obviously cµiA ⊆
γµi,µjA for A ⊆ X. Now let x ∈ γµi,µjA and U be any µi-open set con-
taining x, then by Theorem 2.23 there exists a µi-open set V containing
x such that cµjV ⊆ U . Now since x ∈ γµi,µjA, we get cµjV ∩A 6= φ and
hence U ∩A 6= φ. Thus x ∈ cµiA and consequently, γµi,µjA = cµiA.
Conversly, let x ∈ X and U be a µi-open set containing x. Then
x /∈ X\U = cµi(X\U) = γµi,µj (X\U). Thus there exists a µi-open
set V containing x such that cµjV ∩ (X\U) = φ i.e. cµjV ⊆ U and
hence X is (µi, µj)-regular.

Corollary 2.28. A Bi-BTS (X,µi, µj) is pairwise regular iff every
µi-closed set is θ(µi, µj)-closed; i, j = 1, 2 (i 6= j).

Definition 2.29. ( [15]) A bi-GTS (X, µ1, µ2) is said to be (µi, µj)-
almost regular if for each x ∈ X and r(µi, µj)-closed set F with x /∈ F ,
there exist U ∈ µi and V ∈ µj such that x ∈ U,F ⊆ V and U ∩ V = φ;
i, j = 1, 2 (i 6= j).
X is called pairwise almost regular if it is both (µ1, µ2)-almost regular
and (µ2, µ1)-almost regular.

It is easy to check that every pairwise regular space is also a pairwise
almost regular space. But the converse is not so. This follows from the
following example.

Example 2.30. Let us consider the set X = {a, b, c, d}. Let µ1 =
µ2 = µ = {φ, {a, b}, {a, c}, {a, d}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d},
{b, c, d}, X}. Then for the point a and the µ-closed set F = {b, c} there
exist no pair of µ-open sets U and V s.t. a ∈ U , F ⊆ V and U ∩ V = φ.
i.e. X is not pairwise regular. But the r(µi, µj)-closed set in X are
φ, {a, b}, {c, d}, {b, d}, {a, c}. So for each x ∈ X and r(µi, µj)-closed set
F with x /∈ F , there exist U ∈ µi and V ∈ µj such that x ∈ U,F ⊆ V
and U ∩ V = φ. Hence X is pairwise almost regular.

Theorem 2.31. ( [15]) A bi-GTS (X,µ1, µ2) is (µi, µj)-almost regular
iff for x ∈ X and r(µi, µj)-open set U containing x, there exists µi-open
set V containing x such that cµjV ⊆ U ; i, j = 1, 2 (i 6= j).

Theorem 2.32. For a bi-GTS (X, µ1, µ2) the following are equivalent:
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(a) X is (µi, µj)-almost regular.
(b) For any set A ⊆ X, γµi,µjA = cδ(µi,µj)A.

(c) For any set A ⊆ X, γµi,µj (γµi,µjA) = γµi,µjA.
(d) For any µj-open set A, γµi,µj (γµi,µjA) = γµi,µjA; i, j = 1, 2 (i 6= j).

Proof.
(a) ⇒ (b): It is always true that cδ(µi,µj)A ⊆ γµi,µjA. Let, x ∈ γµi,µjA

and U ∈ µi(x). Then by (a), there exists V ∈ µi(x) such that cµjV ⊆
iµicµjU . Since cµjV ∩ A 6= φ, we have (iµicµjU) ∩ A 6= φ and thus
x ∈ cδ(µi,µj)A.

(b) ⇒ (c): We have,
γµi,µj (γµi,µjA) = γµi,µj (cδ(µi,µj)A) = cδ(µi,µj)(cδ(µi,µj)A)

= cδ(µi,µj)A = γµi,µjA.

(c) ⇒ (d): Straightforward.
(d) ⇒ (a): Let F be any r(µi, µj)-open set in X and p ∈ F . Now A =
X\F is an r(µi, µj)-closed set and then A = cµi(iµjA). Put B = iµjA.
Then γµi,µjA = γµi,µj (cµiB) = γµi,µj (γµi,µjB) = γµi,µjB = cµiB = A.
Then p /∈ γµi,µjA and hence there exist G ∈ µi(p) such that cµjG∩A = φ
i.e. cµjG ⊆ X\A = F . Hence X is (µi, µj)-almost regular.

3. Separation axioms via generalized cluster sets and graph
of a function

This section is devoted to establish necessary and sufficient conditions
for separation properties of a bi-GTS via generalized cluster sets and
graph of a function. We begin with a few useful lemmas and already
known definitions.

Lemma 3.1. Let f be a function from a set X to a set Y . Then for
any A ⊆ X and any B ⊆ Y , f(A) ∩ B = {y ∈ Y : (x, y) ∈ ((A × B) ∩
G(f)), for some x ∈ X}.

Lemma 3.2. Let (X, µ1, µ2) and (Y, η1, η2) be bi-GTS. Then
γνi,νj{(x, y)} = γµi,µj{x} × γηj ,ηi{y}, for any (x, y) ∈ X × Y .

Proof. Let (a, b) ∈ γνi,νj{(x, y)} and U ∈ µi(a), V ∈ ηj(b). Then
(x, y) ∈ cνj (U × V ) ⇒ (x, y) ∈ cµjU × cηiV ⇒ x ∈ cµjU and y ∈
cηiV . Hence a ∈ γµi,µj{x} and b ∈ γηj ,ηi{y}. This shows that (a, b) ∈
γµi,µj{x}×γηj ,ηi{y}. Then γνi,νj{(x, y)} ⊆ γµi,µj{x}×γηj ,ηi{y}. Revers-
ing the argument we get the reverse inclusion. Hence γνi,νj{(x, y)} =
γµi,µj{x} × γηj ,ηi{y} for any (x, y) ∈ X × Y .
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Definition 3.3. ( [2]) Let f : (X, µ1, µ2) → (Y, η1, η2) be a function.
Then for any x ∈ X, then the generalized cluster set of f at any point x
is given by Gkl

ij (f, x) = ∩{γηk,ηl
f(cµjU) : U ∈ µi(x)} i, j, k, l = 1, 2 (i 6= j

and k 6= l).

Lemma 3.4. Let f : (X,µ1, µ2) → (Y, η1, η2) be a function and x ∈ X.
Then

(1) p2(({x} × Y ) ∩ γνi,νjG(f)) = Gji
ij (f, x).

(2) p2(({x} × Y ) ∩ kνiG(f)) = kηj (f(cµi{x})).
(3) p2(({x} × Y ) ∩ γ

′
νi,νj

G(f)) = γ,
ηj ,ηi(f(γµi,µj{x})).

Proof.
(1) Let y ∈ Gji

ij (f, x) and U ∈ µi(x), V ∈ ηj(y). Then y ∈ γηj ,ηif(cµjU)
and so cηiV ∩f(cµjU) 6= φ i.e. (cµjU×cηiV )∩G(f) 6= φ i.e. cνj (U×V )∩
G(f) 6= φ. This shows that (x, y) ∈ γνi,νjG(f); so that y ∈ p2(({x} ×
Y )∩γνi,νjG(f)). Reversing the step we get the reverse inclusion. Hence
p2(({x} × Y ) ∩ γνi,νjG(f)) = Gji

ij (f, x).
(2) Let y ∈ L.H.S. Then (x, y) ∈ kνiG(f) i.e. cνi{(x, y)} ∩ G(f) 6= φ,
which gives (cµi{x}× cηj{y})∩G(f) 6= φ so f(cµi{x})∩ cηj{y} 6= φ and
hence y ∈ kηj (f(cµi{x})). i.e. y ∈ R.H.S. Then L.H.S. ⊆ R.H.S.

(3) Let y ∈ p2(({x} × Y ) ∩ γ
′
νi,νj

G(f)). Then (x, y) ∈ γ
′
νi,νj

G(f) i.e.
γνi,νj{(x, y)} ∩ G(f) 6= φ. So by lemma 3.2 (γµi,µj{x} × γηj ,ηi{y}) ∩
G(f) 6= φ. Then by lemma 3.1 f(γµi,µj{x}) ∩ γηj ,ηi{y} 6= φ, which
gives y ∈ γ

′
ηj ,ηi

(f(γµi,µj{x})). Hence p2(({x} × Y ) ∩ γ
′
νi,νj

G(f)) ⊆
γ
′
ηj ,ηi

(f(γµi,µj{x})). Reversal of above aruments yields the inclusion
the other way round.

Corollary 3.5. If f : (X, µ1, µ2) → (Y, η1, η2) is a function then the
following are equivalent:

(1) f has a θ(νi, νj)-closed graph.
(2) {f(x)} = p2(({x} × Y ) ∩ γνi,νjG(f)), for each x ∈ X.

(3) Gji
ij (f, x) = {f(x)}, for each x ∈ X.

Definition 3.6. ([2]) Let (X, µ1, µ2) and (Y, η1, η) be two bi-GTS.
Then f : (X, µ1, µ2) → (Y, η1, η2) is said to be (µiµj , ηk)-continuous
at x ∈ X if for each V ∈ ηk(f(x)), there exists U ∈ µi(x) such that
f(cµjU) ⊆ V . i, j, k = 1, 2 (i 6= j).
If f is (µiµj , ηk)-continuous at each x ∈ X then f is called (µiµj , ηk)-
continuous on X.
If f is both (µiµj , η1)nd (µiµj , η2)-continuous then f is called pairwise
(µiµj , ηk)-continuous.
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Lemma 3.7. If f : (X, µ1, µ2) → (Y, η1, η2) is a function such that f

is (µiµj , ηi) continuous then, Gji
ij (f, x) = γηj ,ηi{f(x)}, for each x ∈ X.

Proof. Let V ∈ ηi such that f(x) ∈ V . Since f is (µiµj , ηi) contin-
uous, there exists U ∈ µi(x) such that f(cµjU) ⊆ V . Then Gji

ij (f, x) ⊆
γηj ,ηif(cµjU) ⊆ γηj ,ηiV = cηjV ( by Theorem 1.4). Thus Gji

ij (f, x) ⊆
cηjV for all V ∈ ηi with f(x) ∈ V . By Theorem 1.5 Gji

ij (f, x) ⊆
γηj ,ηi{f(x)}. On the other hand, γηj ,ηi{f(x)} ⊆ Gji

ij (f, x) is obvious.
Hence the lemma.

Corollary 3.8. A function f : (X, µ1, µ2) → (Y, η1, η2) has the
property that f is (µiµj , ηi) continuous , has a θ(νi, νj)-closed graph iff
it has θ(ηj , ηi)-closed point images.

Lemma 3.9. A function f : (X,µ1, µ2) → (Y, η1, η2) is (µiµj , ηk)
continuous iff f(γµi,µjA) ⊆ cηk

f(A); i, j, k = 1, 2 (i 6= j).

Proof. Let f be a (µiµj , ηk) continuous and y ∈ f(γµi,µjA). There
exists x ∈ X such that x ∈ γµi,µjA and f(x) = y. Let V ∈ ηk(f(x)).
Then there exists U ∈ µi(x) such that f(cµjU) ⊆ V . Again since x ∈
γµi,µjA we have cµjU∩A 6= φ and so f(cµjU)∩f(A) 6= φ i.e V ∩f(A) 6= φ
i.e f(x) ∈ cηk

f(A) and hence y ∈ cηk
f(A).

Conversely, let x ∈ X be arbitrary and V ∈ ηk(f(x)). Then f(x) /∈
cηk

(Y \V ) and so f(x) /∈ cηk
(ff−1(Y \V )). By the hypothesis f(x) /∈

f(γµi,µj (f
−1(Y \V ))), so that x /∈ γµi,µj (X\(f−1V )). Thus there exists

U ∈ µi(x) such that cµjU ⊆ f−1V i.e. f(cµjU) ⊆ V . Hence f is
(µiµj , ηk) continuous.

Theorem 3.10. If f : (X, µ1, µ2) → (Y, η1, η2) is pairwise (µiµj , ηk)
continuous and (Y, η1, η2) is pairwise R1, then γνi,νjG(f) = kνjG(f).

Proof. Since f is pairwise (µiµj , ηk) continuous and (Y, η1, η2) is pair-
wise R1, by Lemma 3.7, Theorem 2.11 and Lemma 3.9 we have , Gji

ij (f, x)
= γηj ,ηi{f(x)} = kηi{f(x)} and f(γµi,µj{x}) ⊆ cηj{f(x)}. So kηi{f(x)}
⊆ kηif(cµj{x}) ⊆ kηif(γµj ,µi{x}) ⊆ kηi(cηj{f(x)}). Again by theo-
rem 2.11 ji-ck{f(x)} = γηj ,ηi{f(x)} = cηj{f(x)}. So by Lemma 2.3
kηi{f(x)} = kηi(ji-ck{f(x)}) = kηi(cηj{f(x)}). Hence kηi{f(x)} =
kηif(cµj{x}). i.e. Gji

ij (f, x) = kηif(cµj{x}). It follows from lemma
3.4 γνi,νjG(f) = kνjG(f).

Theorem 3.11. If f : (X, µ1, µ2) → (Y, η1, η2) is (µiµj , ηi) continuous

and (Y, η1, η2) is pairwise Hausdorff, then γνi,νjG(f) = γ
′
νi,νj

G(f).
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Proof. Since f is (µiµj , ηi) continuous and (Y, η1, η2) is pairwise Haus-
dorff, by Lemma 3.7, Corollary 2.17 and Lemma 3.9 we have , Gji

ij (f, x) =
γηj ,ηi{f(x)} = {f(x)} and f(γµi,µj{x}) ⊆ cηi{f(x)}. Again using Theo-
rem 2.16, Lemma 3.9 and Corollary 2.17 we have

{f(x)} ⊆ γ
′
ηj ,ηi

(f(γµi,µj{x}))
= f(γµi,µj{x}) ⊆ cηi{f(x)} ⊆ γηi,ηj{f(x)} = {f(x)}.

Then γ
′
ηj ,ηi

(f(γµi,µj{x})) = {f(x)} = Gji
ij (f, x). Hence by Lemma 3.4

γνi,νjG(f) = γ
′
νi,νj

G(f).

Theorem 3.12. If a bi-GTS (Y, η1, η2) is pairwise R1, then for any bi-
GTS (X, µ1, µ2) and every (µiµj , ηi) continuous function f : (X,µ1, µ2) →
(Y, η1, η2) with ηj-closed point image, f has a θ(νi, νj)-closed graph.

Proof. Let f be a (µiµj , ηi) continuous function from a bi-GTS (X,µ1,
µ2) to (Y, η1, η2) with ηi closed point image and let Y be a pairwise R1.
Then for each x ∈ X, {f(x)} = cηj{f(x)} = γηj ,ηi{f(x)}( by Theorem
2.11)= Gji

ij (f, x)( by Lemma 3.7). Then by the Corollary 3.5 f has a
θ(νi, νj) closed graph.

Theorem 3.13. If a bi-GTS (Y, η1, η2) is pairwise Hausdorff then
every (µiµj , ηi) continuous function f from any (X,µ1, µ2) to (Y, η1, η2)
has an θ(νi, νj)-closed graph.

Proof. It follows from Lemma 3.7, Corollary 2.17 and Corollary 3.5.

Definition 3.14. A multifunction F : (X, µ1, µ2) → (Y, η1, η2) is
called (µiµj , ηk) continuous at a point x of X if for each ηk open set W
in Y such that F (x) ⊆ W , there is a V ∈ µi(x) satisfying F (cµjV ) ⊆ W ,
where F (V ) = ∪{F (y) : y ∈ V }; F is (µiµj , ηk) continuous if F is so at
each x ∈ X. i, j, k = 1, 2 (i 6= j).

Theorem 3.15. If a bi-GTS (Y, η1, η2) is pairwise regular. Then for
each x ∈ X and each (µiµj , ηi) continuous multifunction F from any bi-

GTS (X, µ1, µ2) to (Y, η1, η2), Gji
ij (F, x) = cηjF (x) for i, j = 1, 2 (i 6= j),

where Gji
ij (F, x) = ∩{γηj ,ηiF (cµjU) : U ∈ µi(x)}.

Proof. Let (Y, η1, η2) be pairwise regular. Now obviously cηjF (x) ⊆
Gji

ij (F, x). On the other hand, if x ∈ X and W ∈ ηi such that F (x) ⊆ W ,
then by (µiµj , ηi) continuity of F there exists V ∈ µi(x) such that
F (cµjV ) ⊆ W . So, Gji

ij (F, x) = ∩{γηj ,ηiF (cµjV ) : V ∈ µi(x)} ⊆
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∩{γηj ,ηiW : F (x) ⊆ W ∈ ηi} = ∩{cηjW : F (x) ⊆ W ∈ ηi}. It suf-
ficies to show that ∩{cηjW : F (x) ⊆ W ∈ ηi} = cηjF (x). In fact
cηjF (x) ⊆ ∩{cηjW : F (x) ⊆ W ∈ ηi} is obvious. Now let y ∈ ∩{cηjW :
F (x) ⊆ W ∈ ηi} and y /∈ cηjF (x). Since Y is pairwise regular, there ex-
ist U

′ ∈ ηj and V
′ ∈ ηi with y ∈ U

′
, cηjF (x) ⊆ V

′
and U

′ ∩V
′
= φ. But

since F (x) ⊆ V
′ ∈ ηi we have y ∈ cηjV

′
, which contradicts U

′ ∩ V
′
= φ.

Hence Gji
ij (F, x) = cηjF (x).
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