SEPARATION AXIOMS ON BI-GENERALIZED TOPOLOGICAL SPACES

A. Deb Ray* and Rakesh Bhowmick**

Abstract

In this paper, introducing various separation axioms on a bi-GTS, it has been observed that such separation axioms actually unify the well-known separation axioms on topological spaces. Several characterizations of such separation properties of a bi-GTS are established in terms of $\gamma_{\mu_{i}, \mu_{j}}$-closure operator, generalized cluster sets of functions and graph of functions.

1. Introduction and preliminaries

The concept of bi-Generalized topology (in short, bi-GTS) was introduced by Á. Császár and and E.Makai Jr. in [5]. We study certain separation axioms on bi-GTS and find their characterizations in terms of $\gamma_{\mu_{i}, \mu_{j}}$-closure operator [5], graph of a function and generalized cluster sets [2] of a function. It is worth noting that the well-known separation axioms of bi-topological and hence topological spaces, follow as special cases for suitable choices of the bi-GTs.
In the next section, we investigate the behaviour of a bi-GTS obeying separation properties, in terms of a generalized closure operator called $\gamma_{\mu_{i}, \mu_{j}}$-closure operator [5]; while in the last section, a bi-GTS under separation properties are discussed in the light of graph of a function and generalized cluster sets [2] of a function.
We now state certain useful definitions and quote several existing results that we require in the next two sections.

Definition 1.1. ([4]) Let X be a nonempty set and μ be a collection of subsets of X (i.e. $\mu \subseteq \mathcal{P}(X)$). μ is called a generalized topology

[^0](briefly GT) on X iff $\emptyset \in \mu$ and $G_{\lambda} \in \mu$ for $\lambda \in \Lambda(\neq \emptyset)$ implies $\cup_{\lambda \in \Lambda} G_{\lambda} \in$ μ. The pair (X, μ) is called a generalized topological space (briefly GTS). The elements of μ are called μ-open sets and their complements are called μ-closed sets. The generalized closure of a subset S of X, denoted by $c_{\mu}(S)$, is the intersection of all μ-closed sets containing S. The set of all μ-open sets containing an element $x \in X$ is denoted by $\mu(x)$.

For a topological space (X, τ), set of all open, δ-open [18], semi open [10] and pre open [11] subsets of X are denoted respectively by $\tau(X), \Delta(X), S O(X)$ and $P O(X)$.
Let μ_{1}, μ_{2} be two GTs on a non-empty set X. Then $\left(X, \mu_{1}, \mu_{2}\right)$ is called bi-Generalized topological space (briefly bi-GTS).

Definition 1.2. ([5]) On a bi-GTS $\left(X, \mu_{1}, \mu_{2}\right), \gamma_{\mu_{i}, \mu_{j}}: P(X) \rightarrow$ $P(X)$ is defined by

$$
\gamma_{\mu_{i}, \mu_{j}}(A)=\left\{x \in X: c_{\mu_{j}} M \cap A \neq \phi \text { for all } M \in \mu_{i}(x)\right\},
$$

for each $A \subseteq X, i, j=1,2(i \neq j) . \theta\left(\mu_{i}, \mu_{j}\right), \delta\left(\mu_{i}, \mu_{j}\right) \subseteq P(X)$, defined respectively by
$\theta\left(\mu_{i}, \mu_{j}\right)=\left\{A \subset X:\right.$ for each $x \in A$ there exists $M \in \mu_{i}(x)$ such that

$$
\left.c_{\mu_{j}} M \subset A\right\}, i, j=1,2(i \neq j),
$$

and
$\delta\left(\mu_{i}, \mu_{j}\right)=\left\{A \subseteq X:\right.$ for each $x \in A \exists \mu_{j}$ - closed set Q with $\left.x \in i_{\mu_{i}} Q \subseteq A\right\}, i, j=1,2(i \neq j)$,
also form GTs on X. The elements of $\theta\left(\mu_{i}, \mu_{j}\right)\left(\right.$ resp. $\left.\delta\left(\mu_{i}, \mu_{j}\right)\right)$ are called $\theta\left(\mu_{i}, \mu_{j}\right)\left(\right.$ resp. $\left.\delta\left(\mu_{i}, \mu_{j}\right)\right)$-open and the complements are called $\theta\left(\mu_{i}, \mu_{j}\right)$ (resp. $\delta\left(\mu_{i}, \mu_{j}\right)$)-closed.

Theorem 1.3. ([5]) Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a bi-GTS and $A \subseteq X$. Then the following hold:
(1) $\theta\left(\mu_{i}, \mu_{j}\right) \subseteq \delta\left(\mu_{i}, \mu_{j}\right) \subseteq \mu_{i}$.
(2) $A \subseteq \gamma_{\mu_{i}, \mu_{j}}(A) \subseteq c_{\theta\left(\mu_{i}, \mu_{j}\right)}(A)$.
(3) A is $\theta\left(\mu_{i}, \mu_{j}\right)$-closed iff $A=\gamma_{\mu_{i}, \mu_{j}}(A)$.

Theorem 1.4. ([14]) Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a bi-GTS. Then for any $\mu_{j}-$ open set A we have $\gamma_{\mu_{i}, \mu_{j}}(A)=c_{\mu_{i}}(A)$.

Theorem 1.5. For any subset A in a bi-GTS $\left(X, \mu_{1}, \mu_{2}\right), \gamma_{\mu_{i}, \mu_{j}}(A)=$ $\cap\left\{c_{\mu_{i}} V: A \subseteq V \in \mu_{j}\right\}$.

Let μ_{1}, μ_{2} be two GTs on a non-empty set X and $A \subseteq X . A$ is said to be $r\left(\mu_{i}, \mu_{j}\right)$-open (resp. $r\left(\mu_{i}, \mu_{j}\right)$-closed) [5] if $A=i_{\mu_{i}}\left(c_{\mu_{j}}(A)\right)$ (resp. $\left.A=c_{\mu_{i}}\left(i_{\mu_{j}}(A)\right)\right)$.

Theorem 1.6. ([5]) $x \in c_{\delta\left(\mu_{i}, \mu_{j}\right)} A$ iff $A \cap R \neq \phi$ for every $r\left(\mu_{i}, \mu_{j}\right)$ open set R containing x.

Let $\left(X, \mu_{1}, \mu_{2}\right)$ and $\left(Y, \eta_{1}, \eta_{2}\right)$ be two bi-GTS. The GT $\nu_{i}(i=1,2)$ on the cartesian product $X \times Y$ is defined by $\nu_{i}=\mu_{i} \times \eta_{j}$ for $i, j=$ $1,2(i \neq j)$; Then $\left(X \times Y, \nu_{1}, \nu_{2}\right)$ is again a bi-GTS. Also, for the bi$\operatorname{GTS}\left(X, \mu_{1}, \mu_{2}\right),\left(X \times X, \nu_{1}, \nu_{2}\right)$ is a bi-GTS where $\nu_{i}=\mu_{i} \times \mu_{j}$ for $i, j=1,2(i \neq j)$.

2. Separation axioms in terms of $\gamma_{\mu_{i}, \mu_{j}}$-closure operator

In this section, we introduce different separation axioms on a biGTS and establish their interrelationships. Also, such separation axioms are characterized here using generalized closure operator, called $\gamma_{\mu_{i}, \mu_{j}}{ }^{-}$ closure operator.

Definition 2.1. Let μ be a $G T$ on a non-empty set X. Then for any $A \subseteq X, k_{\mu} A=\cap\{U \in \mu: A \subseteq U\}$.

Definition 2.2. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a bi-GTS. Then for any point $x \in X$ we define $i j-c k(A)=\left(c_{\mu_{i}} A\right) \cap\left(k_{\mu_{j}} A\right)$; for $i, j=1,2(i \neq j)$.

If $A=\{x\}$, we will write $i j-c k\{x\}$ for $i j-c k(\{x\})$.
LEmMA 2.3. Let x be an arbitrary point in a bi-GTS $\left(X, \mu_{1}, \mu_{2}\right)$. Then
(1) $y \in j i-c k\{x\}$ iff $i j-c k\{x\} \subseteq i j-c k\{y\}$.
(2) $c_{\mu_{i}}(i j-c k\{x\})=c_{\mu_{i}}\{x\}$.
(3) $k_{\mu_{j}}(i j-c k\{x\})=k_{\mu_{j}}\{x\}$.
(4) $\gamma_{\mu_{i}, \mu_{j}}(i j-c k\{x\})=\gamma_{\mu_{i}, \mu_{j}}\{x\}$.
(5) for any μ_{j}-open set U containing $x, k_{\mu_{j}}\{x\} \subseteq U$.
(6) for any μ_{i}-closed set F containing $x, c_{\mu_{i}}(i j-c k\{x\}) \subseteq F$.
(7) $k_{\mu_{i}}\left(k_{\mu_{i}} A\right)=k_{\mu_{i}} A$ for $A \subseteq X$.
(8) $\gamma_{\mu_{i}, \mu_{j}}\left(k_{\mu_{j}} A\right)=\gamma_{\mu_{i}, \mu_{j}} A$ for $A \subseteq X ; i, j=1,2(i \neq j)$.

Proof.
(1) Let, $y \in j i-c k\{x\}$. Suppose $z \in i j-c k\{x\}$. Now $y \in j i-c k\{x\}$ implies $y \in c_{\mu_{j}}\{x\}, y \in k_{\mu_{i}}\{x\}$ and $z \in i j-c k\{x\}$ implies $z \in c_{\mu_{i}}\{x\}, z \in k_{\mu_{j}}\{x\}$. Again $z \in c_{\mu_{i}}\{x\}$ and $y \in k_{\mu_{i}}\{x\}$ together imply $z \in c_{\mu_{i}}\{y\}$. Also $y \in c_{\mu_{j}}\{x\}$ and $z \in k_{\mu_{j}}\{x\}$ together imply $z \in k_{\mu_{j}}\{y\}$. So, $z \in c_{\mu_{i}}\{y\} \cap$ $k_{\mu_{j}}\{y\}=i j-c k\{y\}$. Hence $i j-c k\{x\} \subseteq i j-c k\{y\}$.
Conversely, let $i j-c k\{x\} \subseteq i j-c k\{y\}$. Since, $x \in i j-c k\{x\} \subseteq i j-c k\{y\}$, So
$x \in c_{\mu_{i}}\{y\}$ and $x \in k_{\mu_{j}}\{y\}$. Now $x \in c_{\mu_{i}}\{y\}$ implies $y \in k_{\mu_{i}}\{x\}$. Also $x \in k_{\mu_{j}}\{y\}$ implies $y \in c_{\mu_{j}}\{x\}$. So, $y \in c_{\mu_{j}}\{x\} \cap k_{\mu_{i}}\{x\}=j i$-ck $\{x\}$.
(2) Let $z \in c_{\mu_{i}}(i j-c k\{x\})$. Therefore for all $U \in \mu_{i}(z), U \cap(i j-c k\{x\}) \neq \phi$ and so $U \cap\left(c_{\mu_{i}}\{x\}\right) \neq \phi$ i.e. $z \in c_{\mu_{i}}\left(c_{\mu_{i}}\{x\}\right)=c_{\mu_{i}}\{x\}$. Hence $c_{\mu_{i}}(i j-$ $c k\{x\}) \subseteq c_{\mu_{i}}\{x\}$.
Conversely, $\{x\} \subseteq i j-c k\{x\}$ implies $c_{\mu_{i}}\{x\} \subseteq c_{\mu_{i}}(i j-c k\{x\})$. Thus $c_{\mu_{i}}(i j-$ $c k\{x\})=c_{\mu_{i}}\{x\}$.
(3) Let $y \in k_{\mu_{j}}(i j-c k\{x\})$ but $y \notin k_{\mu_{j}}\{x\}$. Then there exists $U \in \mu_{j}(x)$ such that $y \notin U$. Also, $y \in k_{\mu_{j}}(i j-c k\{x\}) \Rightarrow i j-c k\{x\} \cap c_{\mu_{j}}\{y\} \neq \phi \Rightarrow$ $c_{\mu_{j}}\{y\} \cap k_{\mu_{j}}\{x\} \neq \phi$. Hence there exists $z \in c_{\mu_{j}}\{y\} \cap k_{\mu_{j}}\{x\}$. Then every μ_{j}-open neighbourhood of x contains y, a contradiction.
(4) Let, $y \in \gamma_{\mu_{i}, \mu_{j}}(i j-c k\{x\})$ and if possible let $y \notin \gamma_{\mu_{i}, \mu_{j}}\{x\}$. Then there exists $U \in \mu_{i}(y)$ such that $x \notin c_{\mu_{j}} U$. Again $y \in \gamma_{\mu_{i}, \mu_{j}}(i j-c k\{x\})$ implies $c_{\mu_{j}} U \cap i j-c k\{x\} \neq \phi$ i.e. $c_{\mu_{j}} U \cap k_{\mu_{j}}\{x\} \neq \phi$ and so there exists $z \in c_{\mu_{j}} U \cap k_{\mu_{j}}\{x\}$. Again since, $x \in X \backslash c_{\mu_{j}} U \in \mu_{j}$ and $z \in k_{\mu_{j}}\{x\}$, so , $z \in X \backslash c_{\mu_{j}} U$, which is not possible. Hence, $\gamma_{\mu_{i}, \mu_{j}}(i j-c k\{x\}) \subseteq \gamma_{\mu_{i}, \mu_{j}}\{x\}$. Conversely, $x \in i j$-ck $\{x\}$ implies $\gamma_{\mu_{i}, \mu_{j}}\{x\} \subseteq \gamma_{\mu_{i}, \mu_{j}}(i j-c k\{x\})$.
(5) Let, $z \in k_{\mu_{j}}\{x\}$ and $U \in \mu_{j}(x)$. Clearly $z \in U$. Thus $k_{\mu_{j}}\{x\} \subseteq U$.
(6) $\mathrm{By}(2) c_{\mu_{i}}(i j-c k\{x\})=c_{\mu_{i}}\{x\}$ and cosequently $c_{\mu_{i}}(i j-c k\{x\}) \subseteq F$.
(7) R.H.S \subseteq L.H.S. We now show that L.H.S \subseteq R.H.S. Let $y \notin R . H . S$.

Then there exists a μ_{i} open set containing A s.t $y \notin U$. Again $A \subseteq U$ and $U \in \mu_{i}$ implies that $k_{\mu_{i}}\{A\} \subseteq U$ and consequently $y \notin$ R.H.S.
(8) R.H.S \subseteq L.H.S. We now show that L.H.S \subseteq R.H.S. Let $y \notin$ R.H.S.

Then there exists a μ_{i} open set U containing y s.t. $c_{\mu_{j}} U \cap A=\phi$, Consequently $c_{\mu_{j}} U \cap k_{\mu_{j}}\{A\}=\phi$ (Since, $k_{\mu_{j}}\{A\}$ is the intesection of all μ_{j} open set containing A). Hence $y \notin$ L.H.S.

Corollary 2.4. For any point x in a bi-GTS $\left(X, \mu_{1}, \mu_{2}\right)$ the following hold :
(1) For any μ_{j}-open set U containing $x, i j$-ck $\{x\} \subseteq U$.
(2) For any μ_{i}-closed set F containing $x, i j-c k\{x\} \subseteq F$.
(3) For any point $x, i j-c k(\{i j-c k\{x\})=i j-c k\{x\}$.

Proof.
(1) Follows from (5) of Lemma 2.3 and definition of $i j-c k\{x\}$.
(2) Follows from (6) of Lemma 2.3 and definition of $c_{\mu_{i}}\{x\}$.
(3) Follows from (2) and (3) of Lemma 2.3.

Definition 2.5. A bi-GTS (X, μ_{1}, μ_{2}) is said to be pairwise R_{0}-space if for each μ_{i}-open set G and for each $x \in G, c_{\mu_{j}}\{x\} \subseteq G$; for $i, j=1,2$ $(i \neq j)$.

μ_{1}	μ_{2}	pairwise R_{0}
τ	τ	$R_{0}[8]$
$S O(X)$	$S O(X)$	semi $R_{0}[7]$
$P O(X)$	$P O(X)$	pre $R_{0}[3]$

Theorem 2.6. If $\left(X, \mu_{1}, \mu_{2}\right)$ is pairwise R_{0}, then for each $x \in X$, $\gamma_{\mu_{j}, \mu_{i}}\{x\} \backslash c_{\mu_{i}}\{x\}$ is a union of μ_{j}-closed sets; for $i, j=1,2(i \neq j)$.

Proof. Let, $y \in \gamma_{\mu_{j}, \mu_{i}}\{x\} \backslash c_{\mu_{i}}\{x\}$. Then $y \in X \backslash c_{\mu_{i}}\{x\}$. Since X is pairwise $R_{0}, c_{\mu_{i}}\{x\} \cap c_{\mu_{j}}\{y\}=\phi$. Now $y \in \gamma_{\mu_{j}, \mu_{i}}\{x\}$ implies $c_{\mu_{j}}\{y\} \subseteq$ $\gamma_{\mu_{j}, \mu_{i}}\{x\}$. Thus $c_{\mu_{j}}\{y\} \subseteq \gamma_{\mu_{j}, \mu_{i}}\{x\} \backslash c_{\mu_{i}}\{x\}$. Consequently $\gamma_{\mu_{j}, \mu_{i}}\{x\} \backslash$ $c_{\mu_{i}}\{x\}$ is a union of $c_{\mu_{j}}$-closed sets.

THEOREM 2.7. If for every pair of distinct point x, y in a bi-GTS $\left(X, \mu_{1}, \mu_{2}\right)$, either $c_{\mu_{i}}\{x\}=c_{\mu_{j}}\{y\}$ or $c_{\mu_{i}}\{x\} \cap c_{\mu_{j}}\{y\}=\phi$, for $i, j=1,2$ ($i \neq j$), then $\left(X, \mu_{1}, \mu_{2}\right)$ is pairwise R_{0}.

Proof. Let G be a μ_{i}-open set containing $y \in X$. For any $x \in X \backslash G$ as $y \notin c_{\mu_{i}}\{x\}, c_{\mu_{i}}\{x\} \neq c_{\mu_{j}}\{y\}$. By the hypothesis, $c_{\mu_{i}}\{x\} \cap c_{\mu_{j}}\{y\}=\phi$ which gives $x \notin c_{\mu_{j}}\{y\}$; i.e. there exists $V_{x} \in \mu_{j}(x)$ such that $y \notin V_{x}$. Let $A=\cup\left\{V_{x}: x \in X \backslash G\right\}$. Then $y \notin A$ and $A \in \mu_{j}$. So $X \backslash A$ is a μ_{j}-closed set containing y. Also $X \backslash G \subseteq A$ i.e. $X \backslash A \subseteq G$. Therefore $c_{\mu_{j}}\{y\} \subseteq G$ and hence $\left(X, \mu_{1}, \mu_{2}\right)$ is pairwise R_{0}.

Definition 2.8. A bi-GTS $\left(X, \mu_{1}, \mu_{2}\right)$ is said to be pairwise R_{1} if for any two points $x, y \in X$ such that $x \notin c_{\mu_{i}}\{y\}$, there are μ_{i}-open set U containing x and μ_{j}-open set V containing y such that $U \cap V=\phi$; where $i, j=1,2(i \neq j)$.

μ_{1}	μ_{2}	pairwise R_{1}
τ	τ	$R_{1}[8]$
$S O(X)$	$S O(X)$	semi $R_{1}[7]$
$P O(X)$	$P O(X)$	pre $R_{1}[3]$

REmARK 2.9. Every pairwise R_{1} space is pairwise R_{0}.
Proof. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be pairwise R_{1}. Let G be a μ_{i} open set and $x \in G$. If $X \backslash G=\phi$ then the proof is obvious. So let us consider the case $X \backslash G \neq \phi$ and $y \notin G$. Consequently $x \notin c_{\mu_{i}}\{y\}$. Since X is pairwise R_{1} there exist $U_{y} \in \mu_{i}(x)$ and $V_{y} \in \mu_{j}(y)$ s.t. $U_{y} \cap V_{y}=\phi$. Let $V=\cup_{y \notin G} V_{y}$ and $F=X \backslash V$. Then F is a μ_{j} closed set containing x s.t. $F \subseteq G$ i.e. $c_{\mu_{j}}\{x\} \subseteq G$. Hence X is pairwise R_{0}.

But the converse is not true. This follows from the following example.

Example 2.10. Let us consider the set $X=\{a, b, c\}$. Let $\mu_{1}=\mu_{2}=$ $\mu=\{\phi,\{a, b\},\{b, c\},\{c, a\}, X\}$. Then $a \notin c_{\mu_{i}}\{b\}=\{b\}$ but every μ open set containig them intersect each other. i.e. X is not pairwise R_{1}. Again for every μ_{i}-open set G and for each $x \in G, c_{\mu_{j}}\{x\} \subseteq G$, for $i, j=1,2$. i.e X is pairwise R_{0}.

Theorem 2.11. Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a bi-GTS. Then the following are equivalent:
(a) X is pairwise R_{1}.
(b) $i j$-ck $\{x\}=\gamma_{\mu_{i}, \mu_{j}}\{x\}$, for each $x \in X$.
(c) $i j$-ck $\{x\}$ is $\theta\left(\mu_{i}, \mu_{j}\right)$-closed set, for each $x \in X$.
(d) $\gamma_{\mu_{i}, \mu_{j}}\{x\}=c_{\mu_{i}}\{x\}$, for each $x \in X$.
(e) $\gamma_{\mu_{i}, \mu_{j}}\{x\}=k_{\mu_{j}}\{x\}$, for each $x \in X$.
(f) $c_{\mu_{i}}\{x\}$ is $\theta\left(\mu_{i}, \mu_{j}\right)$-closed, for each $x \in X$.
(g) $k_{\mu_{j}}\{x\}$ is $\theta\left(\mu_{i}, \mu_{j}\right)$-closed, for each $x \in X$.
(h) If F is μ_{i}-closed set containing x, then $\gamma_{\mu_{i}, \mu_{j}}\{x\} \subseteq F$, for each $x \in X$.
(i) If U is a μ_{j}-open set containing x, then for each $x \in X, \gamma_{\mu_{i}, \mu_{j}}\{x\} \subseteq$ $U ; i, j=1,2(i \neq j)$.

Proof.
$(a) \Rightarrow(b):$ Let $x \in X$. Also let $y \in X$ be such that $y \notin i j$-ck $\{x\}$, then $y \notin c_{\mu_{i}}\{x\} \cap k_{\mu_{j}}\{x\}$. Now if $y \notin k_{\mu_{j}}\{x\}$ then $x \notin c_{\mu_{j}}\{y\}$. since X is pairwise R_{1}, there exist $U \in \mu_{j}(x)$ and $V \in \mu_{i}(y)$ such that $U \cap V=\phi$. Then $y \notin c_{\mu_{i}}\{x\}$. Thus $y \notin k_{\mu_{j}}\{x\}$ implies $y \notin c_{\mu_{i}}\{x\}$. If possible let $y \in \gamma_{\mu_{i}, \mu_{j}}\{x\}$, then for all μ_{i}-open set W containing $y, x \in c_{\mu_{j}} W$. Since $y \notin c_{\mu_{i}}\{x\}$ and X is pairwise R_{1} there exist $W_{1} \in \mu_{i}(y)$ and $W_{2} \in \mu_{j}(x)$ such that $W_{1} \cap W_{2}=\phi$ i.e. $x \notin c_{\mu_{j}} W_{1}$, a contradiction. So $y \notin \gamma_{\mu_{i}, \mu_{j}}\{x\}$ and hence $\gamma_{\mu_{i}, \mu_{j}}\{x\} \subseteq i j-c k\{x\}$.
On the other hand if $y \in i j$-ck $\{x\}$, then $y \in c_{\mu_{i}}\{x\} \subseteq \gamma_{\mu_{i}, \mu_{j}}\{x\}$ so that $i j-c k\{x\} \subseteq \gamma_{\mu_{i}, \mu_{j}}\{x\}$.
(b) $\Leftrightarrow(c)$: follows from lemma 2.3.
$(b) \Rightarrow(d)$: This is evident from the fact that $i j-c k\{x\} \subseteq c_{\mu_{i}}\{x\} \subseteq \gamma_{\mu_{i}, \mu_{j}}\{x\}$, for each $x \in X$.
$(d) \Rightarrow(a)$: Let $x, y \in X$ with $y \notin c_{\mu_{i}}\{x\}=\gamma_{\mu_{i}, \mu_{j}}\{x\}$. Then there exists $U \in \mu_{i}(y)$ such that $x \notin c_{\mu_{j}} U$. Hence $X \backslash c_{\mu_{j}} U$ is a μ_{j}-open set containing x such that $\left(X \backslash c_{\mu_{j}} U\right) \cap U=\phi$, proving that $\left(X, \mu_{1}, \mu_{2}\right)$ is pairwise R_{1}. $(d) \Rightarrow(e)$: Let $y \in \gamma_{\mu_{i}, \mu_{j}}\{x\}=c_{\mu_{i}}\{x\}$. If possible let $y \notin k_{\mu_{j}}\{x\}$. Then $x \notin c_{\mu_{j}}\{y\}=\gamma_{\mu_{j}, \mu_{i}}\{x\}$, a contradiction. Thus $\gamma_{\mu_{i}, \mu_{j}}\{x\} \subseteq k_{\mu_{j}}\{x\}$.
Conversely, if $y \notin \gamma_{\mu_{i}, \mu_{j}}\{x\}$, then there exists $W \in \mu_{i}(y)$ such that
$x \notin c_{\mu_{j}} W \supseteq c_{\mu_{j}}\{y\}$ and so $y \notin k_{\mu_{j}}\{x\}$. Thus $k_{\mu_{j}}\{x\} \subseteq \gamma_{\mu_{i}, \mu_{j}}\{x\}$ and hence $\gamma_{\mu_{i}, \mu_{j}}\{x\}=k_{\mu_{j}}\{x\}$.
$(e) \Rightarrow(d)$: Let, $y \in \gamma_{\mu_{i}, \mu_{j}}\{x\}=k_{\mu_{j}}\{x\}$, then $x \in c_{\mu_{j}}\{y\}$. Now $y \notin c_{\mu_{i}}\{x\}$ implies $x \notin k_{\mu_{i}}\{y\}=\gamma_{\mu_{j}, \mu_{i}}\{y\} \supseteq c_{\mu_{j}}\{y\}$ which is a contradiction. Consequently, $\gamma_{\mu_{i}, \mu_{j}}\{x\} \subseteq c_{\mu_{i}}\{x\}$. The other part, i.e. $c_{\mu_{i}}\{x\} \subseteq \gamma_{\mu_{i}, \mu_{j}}\{x\}$ is obvious.
$(a) \Rightarrow(f)$: Follows from $(b),(c)$ and (d).
$(f) \Rightarrow(d):\{x\} \subseteq c_{\mu_{i}}\{x\}$ gives $\gamma_{\mu_{i}, \mu_{j}}\{x\} \subseteq \gamma_{\mu_{i}, \mu_{j}}\left(c_{\mu_{i}}\{x\}\right)=c_{\mu_{i}}\{x\}$ and $c_{\mu_{i}}\{x\} \subseteq \gamma_{\mu_{i}, \mu_{j}}\{x\}$ is obvious. Hence $\gamma_{\mu_{i}, \mu_{j}}\{x\}=c_{\mu_{i}}\{x\}$ for each $x \in X$.
$(a) \Rightarrow(g)$: It follows from $(b),(c)$ and (e).
$(g) \Rightarrow(e)$: Since $k_{\mu_{j}}\{x\}$ is $\theta\left(\mu_{i}, \mu_{j}\right)$-closed for each $x \in X, \gamma_{\mu_{i}, \mu_{j}}\left(k_{\mu_{j}}\{x\}\right)$ $=k_{\mu_{j}}\{x\}$ and so (e) follows from Corollary 2.4.
$(h) \Rightarrow(d)$: For each $x \in X, c_{\mu_{i}}\{x\}$ is a μ_{i}-closed set containing x and hence by $(h), \gamma_{\mu_{i}, \mu_{j}}\{x\} \subseteq c_{\mu_{i}}\{x\}$. Again since $c_{\mu_{i}}\{x\} \subseteq \gamma_{\mu_{i}, \mu_{j}}\{x\}$ is obvious, we have $c_{\mu_{i}}\{x\}=\gamma_{\mu_{i}, \mu_{j}}\{x\}$. The implications " $(b) \Rightarrow(h) ", "(b) \Rightarrow$ (i)" and " $(i) \Rightarrow(e)$ " follow respectively from (4.), (3.) and (2.) of corollary 2.4.

Corollary 2.12. If $\left(X, \mu_{1}, \mu_{2}\right)$ is pairwise R_{1}-space, then $\gamma_{\mu_{i}, \mu_{j}}\{x\}$ is $\theta\left(\mu_{i}, \mu_{j}\right)$-closed for each $x \in X$.

Definition 2.13. For any subset A of a bi-GTS $\left(X, \mu_{1}, \mu_{2}\right)$ we define $\gamma_{\mu_{i}, \mu_{j}}^{\prime}(A)=\left\{x \in X: \gamma_{\mu_{i}, \mu_{j}}\{x\} \cap A \neq \phi\right\} ; i, j=1,2(i \neq j)$.

It is easy to observe from the above definition that for $A, B \subseteq X$, (i) $A \subseteq k_{\mu_{i}} A \subseteq \gamma_{\mu_{i}, \mu_{j}}^{\prime} A,(i i) A \subseteq B \Rightarrow \gamma_{\mu_{i}, \mu_{j}}^{\prime} A \subseteq \gamma_{\mu_{i}, \mu_{j}}^{\prime} B$ and (iii) $\gamma_{\mu_{i}, \mu_{j}}^{\prime}(A \cup B)=\gamma_{\mu_{i}, \mu_{j}}^{\prime} A \cup \gamma_{\mu_{i}, \mu_{j}}^{\prime} B$.

Definition 2.14. ([2]) Let $\left(X, \mu_{1}, \mu_{2}\right)$ be two bi-GTS. Then X is said to be pairwise-Hausdorff if for $x \neq y$ in X, there exist $U \in \mu_{i}(x)$, $V \in \mu_{j}(y)$ such that $U \cap V=\emptyset . i, j=1,2(i \neq j)$.

μ_{1}	μ_{2}	pairwise-Hausdorff
τ	τ	T_{2}
$S O(X)$	$S O(X)$	semi $T_{2}[12]$
$P O(X)$	$P O(X)$	pre $T_{2}[9]$

Every pairwise Hausdorff space is also a pairwise R_{1} space. The example below shows that the converse is not neccessarily true.

Example 2.15. Let us consider the set $X=\{a, b, c\}$. Let $\mu_{1}=\mu_{2}=$ $\mu=\{\phi,\{a\},\{b, c\}, X\}$. Then for the point b and c there exist no pair of disjoint μ-open containing them. i.e. X is not pairwise Hausdorff. But
for any two points $x, y \in X$ s.t. $x \in c_{\mu_{1}}\{y\}$, there are μ_{1}-open set U containing x and μ_{2}-open set V containinig y s.t. $U \cap V=\phi$. i.e. X is pairwise R_{1}.

Theorem 2.16. For any bi-GTS $\left(X, \mu_{1}, \mu_{2}\right)$ the following are equivalent :
(a) X is pairwise Hausdorff.
(b) For each $x \in X,\{x\}=\gamma_{\mu_{i}, \mu_{j}}\{x\} \cup \gamma_{\mu_{j}, \mu_{i}}\{x\}$.
(c) For any two distinct points x, y of $X, \gamma_{\mu_{i}, \mu_{j}}\{x\} \cap \gamma_{\mu_{j}, \mu_{i}}\{y\}=\phi$.
(d) For any subset A of $X, A=\gamma_{\mu_{i}, \mu_{j}}^{\prime}(A) ; i, j=1,2(i \neq j)$.

Proof.
$(a) \Rightarrow(b)$: Let $y \in X$ such that $y \neq x$. Then there exist $U \in \mu_{i}(x)$ and $V \in \mu_{j}(y)$ such that $U \cap V=\phi$. Thus $x \notin c_{\mu_{i}} V$ and hence $y \notin \gamma_{\mu_{j}, \mu_{i}}\{x\}$. Similarly $y \notin \gamma_{\mu_{i}, \mu_{j}}\{x\}$. Consequently, $\{x\}=\gamma_{\mu_{i}, \mu_{j}}\{x\} \cup \gamma_{\mu_{j}, \mu_{i}}\{x\}$.
$(b) \Rightarrow(c)$: straightforward.
$(c) \Rightarrow(d): A \subseteq \gamma_{\mu_{i}, \mu_{j}}^{\prime}(A)$ is evident. Now let $x \in \gamma_{\mu_{i}, \mu_{j}}^{\prime}(A)$ so that $\gamma_{\mu_{i}, \mu_{j}}\{x\} \cap A \neq \phi$. let $y \in X$ such that $y \neq x$. Then $\gamma_{\mu_{i}, \mu_{j}}\{y\} \cap$ $\gamma_{\mu_{i}, \mu_{j}}\{x\}=\phi$ and consequently, $y \notin \gamma_{\mu_{i}, \mu_{j}}\{x\}$. Thus $x \in A$ and hence $\gamma_{\mu_{i}, \mu_{j}}^{\prime}(A) \subseteq A$.
$(d) \Rightarrow(a)$: Let x and y be any two distinct points of X. Now, $\{x\}=$ $\gamma_{\mu_{i}, \mu_{j}}^{\prime}\{x\}$ implies $y \notin \gamma_{\mu_{i}, \mu_{j}}^{\prime}\{x\}$ and hence $x \notin \gamma_{\mu_{i}, \mu_{j}}\{y\}$. So there exists a $U \in \mu_{i}(x)$ such that $y \notin c_{\mu_{j}} U$, i.e. $y \in\left(X \backslash c_{\mu_{j}} U\right)(=V$, say $) \in \mu_{j}$ and $U \cap V=\phi$. Hence the bi-GTS is pairwise Hausdorff.

Corollary 2.17. The following statements are equivalent for a bi$G T S\left(X, \mu_{1}, \mu_{2}\right)$:
(a) X is pairwise Hausdorff.
(b) For each $x \in X,\{x\}=\gamma_{\mu_{1}, \mu_{2}}\{x\}$, i.e. every singleton of X is $\theta\left(\mu_{1}, \mu_{2}\right)$-closed.
(c) For each $x \in X,\{x\}=\gamma_{\mu_{2}, \mu_{1}}\{x\}$, i.e. every singleton of X is $\theta\left(\mu_{2}, \mu_{1}\right)$-closed.

Definition 2.18. A bi-GTS $\left(X, \mu_{1}, \mu_{2}\right)$ is said to be pairwise Urysohn if for any two distinct point x, y of X, there exist $U \in \mu_{1}(x)$ and $V \in \mu_{2}(x)$ such that $c_{\mu_{2}} U \cap c_{\mu_{1}} V=\phi$.

μ_{1}	μ_{2}	Pairwise Urysohn
τ	τ	Urysohn [19]
$S O(X)$	$S O(X)$	semi-Urysohn [1]
$P O(X)$	$P O(X)$	pre-Urysohn [16]

Every pairwise Urysohn space is also a pairwise Hausdorff space. The converse does not always hold. This follows from the following example.

Example 2.19. Let $X=\{a, b, c, d, e\}$. Let us consider $\mu=\mu_{1}=\mu_{2}=$ $\{\phi,\{a, b\},\{c, d\},\{a, c\},\{b, d\},\{a, b, c\},\{a, b, d\},\{a, c, d\},\{b, c, d\},\{a, c, e\}$, $\{b, d, e\},\{b, c, d, e\},\{a, c, d, e\},\{a, b, d, e\},\{a, b, c, e\},\{a, b, c, d\}, X\}$. Then for every pair of distinct x, y there exist disjoint μ-open set U, V containing x, y respectively. i.e. X is pairwise Hausdorff. But if we take a and c then there exist no pair of μ-open set U, V containing x, y respectively s.t. $c_{\mu_{2}} U \cap c_{\mu_{1}} V=\phi$. i.e. X is not pairwise Urysohn.

Definition 2.20. Let (X, μ_{1}, μ_{2}) be a bi-GTS. Then for any subset A of X we define,
$P(A)=\left(\cap\left\{\gamma_{\mu_{1}, \mu_{2}}\left(\gamma_{\mu_{1}, \mu_{2}} U\right): A \subseteq U \in \mu_{2}\right\}\right) \cup\left(\cap\left\{\gamma_{\mu_{2}, \mu_{1}}\left(\gamma_{\mu_{2}, \mu_{1}} U\right): A \subseteq\right.\right.$ $\left.\left.U \in \mu_{1}\right\}\right)$.

Lemma 2.21. For any point x in a bi-GTS $\left(X, \mu_{1}, \mu_{2}\right), p_{1}[(X \times\{x\}) \cap$ $\left.\gamma_{\nu_{i}, \nu_{j}} \Delta\right]=p_{2}\left[(\{x\} \times X) \cap \gamma_{\nu_{j}, \nu_{i}} \Delta\right] ; i, j=1,2(i \neq j)$.

Proof. Let $y \notin$ L.H.S. This implies that $(y, x) \notin \gamma_{\nu_{i}, \nu_{j}} \Delta$. So there exists $V \in \mu_{i}(y)$ and $U \in \mu_{j}(x)$ such that $c_{\nu_{j}}(V \times U) \cap \Delta=\phi$ i.e. $\left(c_{\mu_{j}} V \times c_{\mu_{i}} U\right) \cap \Delta=\phi$ which gives $c_{\mu_{j}} V \cap c_{\mu_{i}} U=\phi$. Thus we have $\left(c_{\mu_{i}} U \times c_{\mu_{j}} V\right) \cap \Delta=\phi$ i.e $c_{\nu_{i}}(U \times V) \cap \Delta=\phi$ which gives $(x, y) \notin \gamma_{\mu_{j}, \mu_{i}} \Delta$ i.e $y \notin$ R.H.S.

By reversing the above arguments we can similarly show that $y \notin$ R.H.S. implies $y \notin$ L.H.S.

Lemma 2.22. If $\left(X, \mu_{1}, \mu_{2}\right)$ is a bi-GTS and $x \in X$, then

$$
\begin{aligned}
P(\{x\}) & =p_{1}\left[(X \times\{x\}) \cap \gamma_{\nu_{i}, \nu_{j}} \Delta\right] \cup p_{2}\left[(\{x\} \times X) \cap \gamma_{\nu_{i}, \nu_{j}} \Delta\right] \\
& =p_{1}\left[(X \times\{x\}) \cap \gamma_{\nu_{1}, \nu_{2}} \Delta\right] \cup p_{1}\left[(X \times\{x\}) \cap \gamma_{\nu_{2}, \nu_{1}} \Delta\right] \\
& =p_{2}\left[(\{x\} \times X) \cap \gamma_{\nu_{1}, \nu_{2}} \Delta\right] \cup p_{2}\left[(\{x\} \times X) \cap \gamma_{\nu_{2}, \nu_{1}} \Delta\right]
\end{aligned}
$$

Proof. In view of Lemma 2.21 it is sufficies to show that $P(\{x\})=$ $p_{1}\left[(X \times\{x\}) \cap \gamma_{\nu_{1}, \nu_{2}} \Delta\right] \cup p_{1}\left[(X \times\{x\}) \cap \gamma_{\nu_{2}, \nu_{1}} \Delta\right]$. Now, if $y \notin P(\{x\})$ then there exist $U_{2} \in \mu_{2}(x)$ and $U_{1} \in \mu_{1}(x)$ such that $y \notin \gamma_{\mu_{1}, \mu_{2}}\left(\gamma_{\mu_{1}, \mu_{2}} U_{2}\right)$ and $y \notin \gamma_{\mu_{2}, \mu_{1}}\left(\gamma_{\mu_{2}, \mu_{1}} U_{1}\right)$. Consequently we have $V_{1} \in \mu_{1}(y)$ and $V_{2} \in \mu_{2}(y)$ such that $c_{\mu_{2}} V_{1} \cap \gamma_{\mu_{1}, \mu_{2}} U_{2}=\phi=c_{\mu_{1}} V_{2} \cap \gamma_{\mu_{2}, \mu_{1}} U_{1}$ i.e. $c_{\mu_{2}} V_{1} \cap c_{\mu_{1}} U_{2}=$ $\phi=c_{\mu_{1}} V_{2} \cap c_{\mu_{2}} U_{1}$ (by Theorem 1.4). Then $\left(c_{\mu_{2}} V_{1} \times c_{\mu_{1}} U_{2}\right) \cap \Delta=\phi=$ $\left(c_{\mu_{1}} V_{2} \times c_{\mu_{2}} U_{1}\right) \cap \Delta$ i.e. $c_{\nu_{2}}\left(V_{1} \times U_{2}\right) \cap \Delta=\phi=c_{\nu_{1}}\left(V_{2} \times U_{1}\right) \cap \Delta$ which gives $(y, x) \notin \gamma_{\nu_{1}, \nu_{2}} \Delta$ and $(y, x) \notin \gamma_{\nu_{2}, \nu_{1}} \Delta$. Hence $y \notin p_{1}\left[(X \times\{x\}) \cap \gamma_{\nu_{1}, \nu_{2}} \Delta\right]$ and $y \notin p_{1}\left[(X \times\{x\}) \cap \gamma_{\nu_{2}, \nu_{1}} \Delta\right]$ so that $y \notin$ R.H.S. By reversing the above argument we can similarly show that $y \notin$ R.H.S. implies $y \notin$ L.H.S.

Theorem 2.23. For a bi-GTS (X, μ_{1}, μ_{2}) the following are equivalent:
(1) X is pairwise Urysohn.
(2) For each $x \in X,\{x\}=P(\{x\})$.
(3) $\Delta=\left(\gamma_{\nu_{1}, \nu_{2}} \Delta\right) \cup\left(\gamma_{\nu_{2}, \nu_{1}} \Delta\right)$.

Proof.
$(1) \Rightarrow(2):$ Let $x \in X$ and y be any point of X with $y \neq x$. Then there exist $U \in \mu_{1}(x)$ and $V \in \mu_{2}(y)$ such that $c_{\mu_{2}} U \cap c_{\mu_{1}} V=\phi$ and so we have $\gamma_{\mu_{2}, \mu_{1}} U \cap c_{\mu_{1}} V=\phi$ (by Theorem 1.4) so that $y \notin \gamma_{\mu_{2}, \mu_{1}}\left(\gamma_{\mu_{2}, \mu_{1}} U\right.$). Similarly we can find $W \in \mu_{2}(x)$ such that $y \notin \gamma_{\mu_{1}, \mu_{2}}\left(\gamma_{\mu_{1}, \mu_{2}} W\right)$. Hence we get (2).
(2) \Rightarrow (3): We have,

$$
\begin{aligned}
(x, y) \notin \Delta & \Leftrightarrow y \notin P(\{x\}) \\
& \Leftrightarrow y \notin p_{2}\left[(\{x\} \times X) \cap \gamma_{\nu_{1}, \nu_{2}} \Delta\right] \cup p_{2}\left[(\{x\} \times X) \cap \gamma_{\nu_{2}, \nu_{1}} \Delta\right] \\
& \Leftrightarrow(x, y) \notin \gamma_{\nu_{1}, \nu_{2}} \Delta \text { and }(x, y) \notin \gamma_{\nu_{2}, \nu_{1}} \Delta
\end{aligned}
$$

Thus (3) follows.
$(3) \Rightarrow(1)$: Let $x, y \in X$ such that $x \neq y$. Since $(x, y) \notin \Delta,(x, y) \notin$ $\gamma_{\nu_{1}, \nu_{2}} \Delta$ so that $c_{\nu_{2}}\left(U_{1} \times V_{2}\right) \cap \Delta=\phi$ for some $U_{1} \in \mu_{1}(x)$ and $V_{2} \in \mu_{2}(y)$. Then $\left(c_{\mu_{2}} U_{1} \times c_{\mu_{1}} V_{2}\right) \cap \Delta=\phi$ i.e. $c_{\mu_{2}} U_{1} \cap c_{\mu_{1}} V_{2}=\phi$, proving that X is pairwise Urysohn.

Corollary 2.24. A bi-GTS $\left(X, \mu_{1}, \mu_{2}\right)$ is pairwise Urysohn iff any one of the following conditions holds:
(1) For each $x \in X,\{x\}=\cap\left\{\gamma_{\mu_{1}, \mu_{2}}\left(\gamma_{\mu_{1}, \mu_{2}} U\right): U \in \mu_{2}(x)\right\}$.
(2) For each $x \in X,\{x\}=\cap\left\{\gamma_{\mu_{2}, \mu_{1}}\left(\gamma_{\mu_{2}, \mu_{1}} U\right): U \in \mu_{1}(x)\right\}$.
(3) $\Delta=\gamma_{\mu_{1}, \mu_{2}} \Delta$.
(4) $\Delta=\gamma_{\mu_{2}, \mu_{1}} \Delta$.

Definition 2.25. ([14]) Let $\left(X, \mu_{1}, \mu_{2}\right)$ be a bi-GTS. Then X is said to be (μ_{i}, μ_{j})-regular if for any $x \in X$ and any μ_{i}-closed set F not containing x, there exist $U \in \mu_{i}$ and $V \in \mu_{j}$ with $x \in U, F \subseteq V$ such that $U \cap V=\emptyset ; i, j=1,2(i \neq j)$.

If X is $\left(\mu_{1}, \mu_{2}\right)$ and $\left(\mu_{2}, \mu_{1}\right)$ regular then X is called pairwise regular.

μ_{1}	μ_{2}	$\left(\mu_{1}, \mu_{2}\right)$-regular
τ	τ	regular
Δ	τ	almost regular $[17]$
$S O(X)$	$S O(X)$	semi regular $[6]$
$P O(X)$	$P O(X)$	strong regular $[13]$

Theorem 2.26. [14] A bi-GTS $\left(X, \mu_{1}, \mu_{2}\right)$ is $\left(\mu_{i}, \mu_{j}\right)$-regular iff for each point $x \in X$ and each μ_{i}-open set G containing x, there is a μ_{i}-open set H containing x such that $c_{\mu_{j}} H \subseteq G ; i, j=1,2(i \neq j)$.

Theorem 2.27. A bi-GTS $\left(X, \mu_{1}, \mu_{2}\right)$ is $\left(\mu_{i}, \mu_{j}\right)$-regular iff for any set A in $X, c_{\mu_{i}} A=\gamma_{\mu_{i}, \mu_{j}} A ; i, j=1,2(i \neq j)$.

Proof. First suppose that X is $\left(\mu_{i}, \mu_{j}\right)$-regular. Obviously $c_{\mu_{i}} A \subseteq$ $\gamma_{\mu_{i}, \mu_{j}} A$ for $A \subseteq X$. Now let $x \in \gamma_{\mu_{i}, \mu_{j}} A$ and U be any μ_{i}-open set containing x, then by Theorem 2.23 there exists a μ_{i}-open set V containing x such that $c_{\mu_{j}} V \subseteq U$. Now since $x \in \gamma_{\mu_{i}, \mu_{j}} A$, we get $c_{\mu_{j}} V \cap A \neq \phi$ and hence $U \cap A \neq \phi$. Thus $x \in c_{\mu_{i}} A$ and consequently, $\gamma_{\mu_{i}, \mu_{j}} A=c_{\mu_{i}} A$. Conversly, let $x \in X$ and U be a μ_{i}-open set containing x. Then $x \notin X \backslash U=c_{\mu_{i}}(X \backslash U)=\gamma_{\mu_{i}, \mu_{j}}(X \backslash U)$. Thus there exists a μ_{i}-open set V containing x such that $c_{\mu_{j}} V \cap(X \backslash U)=\phi$ i.e. $c_{\mu_{j}} V \subseteq U$ and hence X is $\left(\mu_{i}, \mu_{j}\right)$-regular.

Corollary 2.28. A Bi-BTS $\left(X, \mu_{i}, \mu_{j}\right)$ is pairwise regular iff every μ_{i}-closed set is $\theta\left(\mu_{i}, \mu_{j}\right)$-closed; $i, j=1,2(i \neq j)$.

Definition 2.29. ([15]) A bi-GTS $\left(X, \mu_{1}, \mu_{2}\right)$ is said to be $\left(\mu_{i}, \mu_{j}\right)$ almost regular if for each $x \in X$ and $r\left(\mu_{i}, \mu_{j}\right)$-closed set F with $x \notin F$, there exist $U \in \mu_{i}$ and $V \in \mu_{j}$ such that $x \in U, F \subseteq V$ and $U \cap V=\phi$; $i, j=1,2(i \neq j)$.
X is called pairwise almost regular if it is both $\left(\mu_{1}, \mu_{2}\right)$-almost regular and (μ_{2}, μ_{1})-almost regular.

It is easy to check that every pairwise regular space is also a pairwise almost regular space. But the converse is not so. This follows from the following example.

Example 2.30. Let us consider the set $X=\{a, b, c, d\}$. Let $\mu_{1}=$ $\mu_{2}=\mu=\{\phi,\{a, b\},\{a, c\},\{a, d\},\{b, d\},\{c, d\},\{a, b, c\},\{a, b, d\},\{a, c, d\}$, $\{b, c, d\}, X\}$. Then for the point a and the μ-closed set $F=\{b, c\}$ there exist no pair of μ-open sets U and V s.t. $a \in U, F \subseteq V$ and $U \cap V=\phi$. i.e. X is not pairwise regular. But the $r\left(\mu_{i}, \mu_{j}\right)$-closed set in X are $\phi,\{a, b\},\{c, d\},\{b, d\},\{a, c\}$. So for each $x \in X$ and $r\left(\mu_{i}, \mu_{j}\right)$-closed set F with $x \notin F$, there exist $U \in \mu_{i}$ and $V \in \mu_{j}$ such that $x \in U, F \subseteq V$ and $U \cap V=\phi$. Hence X is pairwise almost regular.

Theorem 2.31. ([15]) A bi-GTS $\left(X, \mu_{1}, \mu_{2}\right)$ is $\left(\mu_{i}, \mu_{j}\right)$-almost regular iff for $x \in X$ and $r\left(\mu_{i}, \mu_{j}\right)$-open set U containing x, there exists μ_{i}-open set V containing x such that $c_{\mu_{j}} V \subseteq U ; i, j=1,2(i \neq j)$.

Theorem 2.32. For a bi-GTS $\left(X, \mu_{1}, \mu_{2}\right)$ the following are equivalent:
(a) X is $\left(\mu_{i}, \mu_{j}\right)$-almost regular.
(b) For any set $A \subseteq X, \gamma_{\mu_{i}, \mu_{j}} A=c_{\delta\left(\mu_{i}, \mu_{j}\right)} A$.
(c) For any set $A \subseteq X, \gamma_{\mu_{i}, \mu_{j}}\left(\gamma_{\mu_{i}, \mu_{j}} A\right)=\gamma_{\mu_{i}, \mu_{j}} A$.
(d) For any μ_{j}-open set $A, \gamma_{\mu_{i}, \mu_{j}}\left(\gamma_{\mu_{i}, \mu_{j}} A\right)=\gamma_{\mu_{i}, \mu_{j}} A ; i, j=1,2(i \neq j)$.

Proof.
$(a) \Rightarrow(b)$: It is always true that $c_{\delta\left(\mu_{i}, \mu_{j}\right)} A \subseteq \gamma_{\mu_{i}, \mu_{j}} A$. Let, $x \in \gamma_{\mu_{i}, \mu_{j}} A$ and $U \in \mu_{i}(x)$. Then by (a), there exists $V \in \mu_{i}(x)$ such that $c_{\mu_{j}} V \subseteq$ $i_{\mu_{i}} c_{\mu_{j}} U$. Since $c_{\mu_{j}} V \cap A \neq \phi$, we have $\left(i_{\mu_{i}} c_{\mu_{j}} U\right) \cap A \neq \phi$ and thus $x \in c_{\delta\left(\mu_{i}, \mu_{j}\right)} A$.
$(b) \Rightarrow(c)$: We have,

$$
\begin{aligned}
\gamma_{\mu_{i}, \mu_{j}}\left(\gamma_{\mu_{i}, \mu_{j}} A\right) & =\gamma_{\mu_{i}, \mu_{j}}\left(c_{\delta\left(\mu_{i}, \mu_{j}\right)} A\right)=c_{\delta\left(\mu_{i}, \mu_{j}\right)}\left(c_{\delta\left(\mu_{i}, \mu_{j}\right)} A\right) \\
& =c_{\delta\left(\mu_{i}, \mu_{j}\right)} A=\gamma_{\mu_{i}, \mu_{j}} A .
\end{aligned}
$$

$(c) \Rightarrow(d)$: Straightforward.
$(d) \Rightarrow(a)$: Let F be any $r\left(\mu_{i}, \mu_{j}\right)$-open set in X and $p \in F$. Now $A=$ $X \backslash F$ is an $r\left(\mu_{i}, \mu_{j}\right)$-closed set and then $A=c_{\mu_{i}}\left(i_{\mu_{j}} A\right)$. Put $B=i_{\mu_{j}} A$. Then $\gamma_{\mu_{i}, \mu_{j}} A=\gamma_{\mu_{i}, \mu_{j}}\left(c_{\mu_{i}} B\right)=\gamma_{\mu_{i}, \mu_{j}}\left(\gamma_{\mu_{i}, \mu_{j}} B\right)=\gamma_{\mu_{i}, \mu_{j}} B=c_{\mu_{i}} B=A$. Then $p \notin \gamma_{\mu_{i}, \mu_{j}} A$ and hence there exist $G \in \mu_{i}(p)$ such that $c_{\mu_{j}} G \cap A=\phi$ i.e. $c_{\mu_{j}} G \subseteq X \backslash A=F$. Hence X is (μ_{i}, μ_{j})-almost regular.

3. Separation axioms via generalized cluster sets and graph of a function

This section is devoted to establish necessary and sufficient conditions for separation properties of a bi-GTS via generalized cluster sets and graph of a function. We begin with a few useful lemmas and already known definitions.

Lemma 3.1. Let f be a function from a set X to a set Y. Then for any $A \subseteq X$ and any $B \subseteq Y, f(A) \cap B=\{y \in Y:(x, y) \in((A \times B) \cap$ $G(f))$, for some $x \in X\}$.

Lemma 3.2. Let $\left(X, \mu_{1}, \mu_{2}\right)$ and $\left(Y, \eta_{1}, \eta_{2}\right)$ be bi-GTS. Then $\gamma_{\nu_{i}, \nu_{j}}\{(x, y)\}=\gamma_{\mu_{i}, \mu_{j}}\{x\} \times \gamma_{\eta_{j}, \eta_{i}}\{y\}$, for any $(x, y) \in X \times Y$.

Proof. Let $(a, b) \in \gamma_{\nu_{i}, \nu_{j}}\{(x, y)\}$ and $U \in \mu_{i}(a), V \in \eta_{j}(b)$. Then $(x, y) \in c_{\nu_{j}}(U \times V) \Rightarrow(x, y) \in c_{\mu_{j}} U \times c_{\eta_{i}} V \Rightarrow x \in c_{\mu_{j}} U$ and $y \in$ $c_{\eta_{i}} V$. Hence $a \in \gamma_{\mu_{i}, \mu_{j}}\{x\}$ and $b \in \gamma_{\eta_{j}, \eta_{i}}\{y\}$. This shows that $(a, b) \in$ $\gamma_{\mu_{i}, \mu_{j}}\{x\} \times \gamma_{\eta_{j}, \eta_{i}}\{y\}$. Then $\gamma_{\nu_{i}, \nu_{j}}\{(x, y)\} \subseteq \gamma_{\mu_{i}, \mu_{j}}\{x\} \times \gamma_{\eta_{j}, \eta_{i}}\{y\}$. Reversing the argument we get the reverse inclusion. Hence $\gamma_{\nu_{i}, \nu_{j}}\{(x, y)\}=$ $\gamma_{\mu_{i}, \mu_{j}}\{x\} \times \gamma_{\eta_{j}, \eta_{i}}\{y\}$ for any $(x, y) \in X \times Y$.

Definition 3.3. ([2]) Let $f:\left(X, \mu_{1}, \mu_{2}\right) \rightarrow\left(Y, \eta_{1}, \eta_{2}\right)$ be a function. Then for any $x \in X$, then the generalized cluster set of f at any point x is given by $\mathcal{G}_{i j}^{k l}(f, x)=\cap\left\{\gamma_{\eta_{k}, \eta_{l}} f\left(c_{\mu_{j}} U\right): U \in \mu_{i}(x)\right\} i, j, k, l=1,2(i \neq j$ and $k \neq l$).

Lemma 3.4. Let $f:\left(X, \mu_{1}, \mu_{2}\right) \rightarrow\left(Y, \eta_{1}, \eta_{2}\right)$ be a function and $x \in X$. Then
(1) $p_{2}\left((\{x\} \times Y) \cap \gamma_{\nu_{i}, \nu_{j}} G(f)\right)=\mathcal{G}_{i j}^{j i}(f, x)$.
(2) $p_{2}\left((\{x\} \times Y) \cap k_{\nu_{i}} G(f)\right)=k_{\eta_{j}}\left(f\left(c_{\mu_{i}}\{x\}\right)\right)$.
(3) $p_{2}\left((\{x\} \times Y) \cap \gamma_{\nu_{i}, \nu_{j}}^{\prime} G(f)\right)=\gamma_{\eta_{j}, \eta_{i}}^{\prime}\left(f\left(\gamma_{\mu_{i}, \mu_{j}}\{x\}\right)\right)$.

Proof.

(1) Let $y \in \mathcal{G}_{i j}^{j i}(f, x)$ and $U \in \mu_{i}(x), V \in \eta_{j}(y)$. Then $y \in \gamma_{\eta_{j}, \eta_{i}} f\left(c_{\mu_{j}} U\right)$ and so $c_{\eta_{i}} V \cap f\left(c_{\mu_{j}} U\right) \neq \phi$ i.e. $\left(c_{\mu_{j}} U \times c_{\eta_{i}} V\right) \cap G(f) \neq \phi$ i.e. $c_{\nu_{j}}(U \times V) \cap$ $G(f) \neq \phi$. This shows that $(x, y) \in \gamma_{\nu_{i}, \nu_{j}} G(f)$; so that $y \in p_{2}((\{x\} \times$ $\left.Y) \cap \gamma_{\nu_{i}, \nu_{j}} G(f)\right)$. Reversing the step we get the reverse inclusion. Hence $p_{2}\left((\{x\} \times Y) \cap \gamma_{\nu_{i}, \nu_{j}} G(f)\right)=\mathcal{G}_{i j}^{j i}(f, x)$.
(2) Let $y \in L . H . S$. Then $(x, y) \in k_{\nu_{i}} G(f)$ i.e. $c_{\nu_{i}}\{(x, y)\} \cap G(f) \neq \phi$, which gives $\left(c_{\mu_{i}}\{x\} \times c_{\eta_{j}}\{y\}\right) \cap G(f) \neq \phi$ so $f\left(c_{\mu_{i}}\{x\}\right) \cap c_{\eta_{j}}\{y\} \neq \phi$ and hence $y \in k_{\eta_{j}}\left(f\left(c_{\mu_{i}}\{x\}\right)\right)$. i.e. $y \in$ R.H.S. Then L.H.S. \subseteq R.H.S.
(3) Let $y \in p_{2}\left((\{x\} \times Y) \cap \gamma_{\nu_{i}, \nu_{j}}^{\prime} G(f)\right)$. Then $(x, y) \in \gamma_{\nu_{i}, \nu_{j}}^{\prime} G(f)$ i.e. $\gamma_{\nu_{i}, \nu_{j}}\{(x, y)\} \cap G(f) \neq \phi$. So by lemma $3.2\left(\gamma_{\mu_{i}, \mu_{j}}\{x\} \times \gamma_{\eta_{j}, \eta_{i}}\{y\}\right) \cap$ $G(f) \neq \phi$. Then by lemma $3.1 f\left(\gamma_{\mu_{i}, \mu_{j}}\{x\}\right) \cap \gamma_{\eta_{j}, \eta_{i}}\{y\} \neq \phi$, which gives $y \in \gamma_{\eta_{j}, \eta_{i}}^{\prime}\left(f\left(\gamma_{\mu_{i}, \mu_{j}}\{x\}\right)\right)$. Hence $p_{2}\left((\{x\} \times Y) \cap \gamma_{\nu_{i}, \nu_{j}}^{\prime} G(f)\right) \subseteq$ $\gamma_{\eta_{j}, \eta_{i}}^{\prime}\left(f\left(\gamma_{\mu_{i}, \mu_{j}}\{x\}\right)\right)$. Reversal of above aruments yields the inclusion the other way round.

Corollary 3.5. If $f:\left(X, \mu_{1}, \mu_{2}\right) \rightarrow\left(Y, \eta_{1}, \eta_{2}\right)$ is a function then the following are equivalent:
(1) f has a $\theta\left(\nu_{i}, \nu_{j}\right)$-closed graph.
(2) $\{f(x)\}=p_{2}\left((\{x\} \times Y) \cap \gamma_{\nu_{i}, \nu_{j}} G(f)\right)$, for each $x \in X$.
(3) $\mathcal{G}_{i j}^{j i}(f, x)=\{f(x)\}$, for each $x \in X$.

Definition 3.6. ([2]) Let $\left(X, \mu_{1}, \mu_{2}\right)$ and $\left(Y, \eta_{1}, \eta\right)$ be two bi-GTS. Then $f:\left(X, \mu_{1}, \mu_{2}\right) \rightarrow\left(Y, \eta_{1}, \eta_{2}\right)$ is said to be $\left(\mu_{i} \mu_{j}, \eta_{k}\right)$-continuous at $x \in X$ if for each $V \in \eta_{k}(f(x))$, there exists $U \in \mu_{i}(x)$ such that $f\left(c_{\mu_{j}} U\right) \subseteq V . i, j, k=1,2(i \neq j)$.
If f is $\left(\mu_{i} \mu_{j}, \eta_{k}\right)$-continuous at each $x \in X$ then f is called $\left(\mu_{i} \mu_{j}, \eta_{k}\right)$ continuous on X.
If f is both $\left(\mu_{i} \mu_{j}, \eta_{1}\right)$ nd $\left(\mu_{i} \mu_{j}, \eta_{2}\right)$-continuous then f is called pairwise $\left(\mu_{i} \mu_{j}, \eta_{k}\right)$-continuous.

Lemma 3.7. If $f:\left(X, \mu_{1}, \mu_{2}\right) \rightarrow\left(Y, \eta_{1}, \eta_{2}\right)$ is a function such that f is $\left(\mu_{i} \mu_{j}, \eta_{i}\right)$ continuous then, $\mathcal{G}_{i j}^{j i}(f, x)=\gamma_{\eta_{j}, \eta_{i}}\{f(x)\}$, for each $x \in X$.

Proof. Let $V \in \eta_{i}$ such that $f(x) \in V$. Since f is $\left(\mu_{i} \mu_{j}, \eta_{i}\right)$ continuous, there exists $U \in \mu_{i}(x)$ such that $f\left(c_{\mu_{j}} U\right) \subseteq V$. Then $\mathcal{G}_{i j}^{j i}(f, x) \subseteq$ $\gamma_{\eta_{j}, \eta_{i}} f\left(c_{\mu_{j}} U\right) \subseteq \gamma_{\eta_{j}, \eta_{i}} V=c_{\eta_{j}} V$ (by Theorem 1.4). Thus $\mathcal{G}_{i j}^{j i}(f, x) \subseteq$ $c_{\eta_{j}} V$ for all $V \in \eta_{i}$ with $f(x) \in V$. By Theorem $1.5 \mathcal{G}_{i j}^{j i}(f, x) \subseteq$ $\gamma_{\eta_{j}, \eta_{i}}\{f(x)\}$. On the other hand, $\gamma_{\eta_{j}, \eta_{i}}\{f(x)\} \subseteq \mathcal{G}_{i j}^{j i}(f, x)$ is obvious. Hence the lemma.

Corollary 3.8. A function $f:\left(X, \mu_{1}, \mu_{2}\right) \rightarrow\left(Y, \eta_{1}, \eta_{2}\right)$ has the property that f is $\left(\mu_{i} \mu_{j}, \eta_{i}\right)$ continuous, has a $\theta\left(\nu_{i}, \nu_{j}\right)$-closed graph iff it has $\theta\left(\eta_{j}, \eta_{i}\right)$-closed point images.

Lemma 3.9. A function $f:\left(X, \mu_{1}, \mu_{2}\right) \rightarrow\left(Y, \eta_{1}, \eta_{2}\right)$ is $\left(\mu_{i} \mu_{j}, \eta_{k}\right)$ continuous iff $f\left(\gamma_{\mu_{i}, \mu_{j}} A\right) \subseteq c_{\eta_{k}} f(A) ; i, j, k=1,2(i \neq j)$.

Proof. Let f be a $\left(\mu_{i} \mu_{j}, \eta_{k}\right)$ continuous and $y \in f\left(\gamma_{\mu_{i}, \mu_{j}} A\right)$. There exists $x \in X$ such that $x \in \gamma_{\mu_{i}, \mu_{j}} A$ and $f(x)=y$. Let $V \in \eta_{k}(f(x))$. Then there exists $U \in \mu_{i}(x)$ such that $f\left(c_{\mu_{j}} U\right) \subseteq V$. Again since $x \in$ $\gamma_{\mu_{i}, \mu_{j}} A$ we have $c_{\mu_{j}} U \cap A \neq \phi$ and so $f\left(c_{\mu_{j}} U\right) \cap f(A) \neq \phi$ i.e $V \cap f(A) \neq \phi$ i.e $f(x) \in c_{\eta_{k}} f(A)$ and hence $y \in c_{\eta_{k}} f(A)$.

Conversely, let $x \in X$ be arbitrary and $V \in \eta_{k}(f(x))$. Then $f(x) \notin$ $c_{\eta_{k}}(Y \backslash V)$ and so $f(x) \notin c_{\eta_{k}}\left(f f^{-1}(Y \backslash V)\right)$. By the hypothesis $f(x) \notin$ $f\left(\gamma_{\mu_{i}, \mu_{j}}\left(f^{-1}(Y \backslash V)\right)\right)$, so that $x \notin \gamma_{\mu_{i}, \mu_{j}}\left(X \backslash\left(f^{-1} V\right)\right)$. Thus there exists $U \in \mu_{i}(x)$ such that $c_{\mu_{j}} U \subseteq f^{-1} V$ i.e. $f\left(c_{\mu_{j}} U\right) \subseteq V$. Hence f is $\left(\mu_{i} \mu_{j}, \eta_{k}\right)$ continuous.

Theorem 3.10. If $f:\left(X, \mu_{1}, \mu_{2}\right) \rightarrow\left(Y, \eta_{1}, \eta_{2}\right)$ is pairwise $\left(\mu_{i} \mu_{j}, \eta_{k}\right)$ continuous and $\left(Y, \eta_{1}, \eta_{2}\right)$ is pairwise R_{1}, then $\gamma_{\nu_{i}, \nu_{j}} G(f)=k_{\nu_{j}} G(f)$.

Proof. Since f is pairwise $\left(\mu_{i} \mu_{j}, \eta_{k}\right)$ continuous and $\left(Y, \eta_{1}, \eta_{2}\right)$ is pairwise R_{1}, by Lemma 3.7, Theorem 2.11 and Lemma 3.9 we have, $\mathcal{G}_{i j}^{j i}(f, x)$ $=\gamma_{\eta_{j}, \eta_{i}}\{f(x)\}=k_{\eta_{i}}\{f(x)\}$ and $f\left(\gamma_{\mu_{i}, \mu_{j}}\{x\}\right) \subseteq c_{\eta_{j}}\{f(x)\}$. So $k_{\eta_{i}}\{f(x)\}$ $\subseteq k_{\eta_{i}} f\left(c_{\mu_{j}}\{x\}\right) \subseteq k_{\eta_{i}} f\left(\gamma_{\mu_{j}, \mu_{i}}\{x\}\right) \subseteq k_{\eta_{i}}\left(c_{\eta_{j}}\{f(x)\}\right)$. Again by theorem $2.11 j i$-ck $\{f(x)\}=\gamma_{\eta_{j}, \eta_{i}}\{f(x)\}=c_{\eta_{j}}\{f(x)\}$. So by Lemma 2.3 $k_{\eta_{i}}\{f(x)\}=k_{\eta_{i}}(j i-c k\{f(x)\})=k_{\eta_{i}}\left(c_{\eta_{j}}\{f(x)\}\right)$. Hence $k_{\eta_{i}}\{f(x)\}=$ $k_{\eta_{i}} f\left(c_{\mu_{j}}\{x\}\right)$. i.e. $\mathcal{G}_{i j}^{j i}(f, x)=k_{\eta_{i}} f\left(c_{\mu_{j}}\{x\}\right)$. It follows from lemma $3.4 \gamma_{\nu_{i}, \nu_{j}} G(f)=k_{\nu_{j}} G(f)$.

THEOREM 3.11. If $f:\left(X, \mu_{1}, \mu_{2}\right) \rightarrow\left(Y, \eta_{1}, \eta_{2}\right)$ is $\left(\mu_{i} \mu_{j}, \eta_{i}\right)$ continuous and $\left(Y, \eta_{1}, \eta_{2}\right)$ is pairwise Hausdorff, then $\gamma_{\nu_{i}, \nu_{j}} G(f)=\gamma_{\nu_{i}, \nu_{j}}^{\prime} G(f)$.

Proof. Since f is $\left(\mu_{i} \mu_{j}, \eta_{i}\right)$ continuous and $\left(Y, \eta_{1}, \eta_{2}\right)$ is pairwise Hausdorff, by Lemma 3.7, Corollary 2.17 and Lemma 3.9 we have, $\mathcal{G}_{i j}^{j i}(f, x)=$ $\gamma_{\eta_{j}, \eta_{i}}\{f(x)\}=\{f(x)\}$ and $f\left(\gamma_{\mu_{i}, \mu_{j}}\{x\}\right) \subseteq c_{\eta_{i}}\{f(x)\}$. Again using Theorem 2.16, Lemma 3.9 and Corollary 2.17 we have

$$
\begin{aligned}
\{f(x)\} & \subseteq \gamma_{\eta_{j}, \eta_{i}}^{\prime}\left(f\left(\gamma_{\mu_{i}, \mu_{j}}\{x\}\right)\right) \\
& =f\left(\gamma_{\mu_{i}, \mu_{j}}\{x\}\right) \subseteq c_{\eta_{i}}\{f(x)\} \subseteq \gamma_{\eta_{i}, \eta_{j}}\{f(x)\}=\{f(x)\}
\end{aligned}
$$

Then $\gamma_{\eta_{j}, \eta_{i}}^{\prime}\left(f\left(\gamma_{\mu_{i}, \mu_{j}}\{x\}\right)\right)=\{f(x)\}=\mathcal{G}_{i j}^{j i}(f, x)$. Hence by Lemma 3.4 $\gamma_{\nu_{i}, \nu_{j}} G(f)=\gamma_{\nu_{i}, \nu_{j}}^{\prime} G(f)$.

THEOREM 3.12. If a bi-GTS $\left(Y, \eta_{1}, \eta_{2}\right)$ is pairwise R_{1}, then for any bi$\operatorname{GTS}\left(X, \mu_{1}, \mu_{2}\right)$ and every $\left(\mu_{i} \mu_{j}, \eta_{i}\right)$ continuous function $f:\left(X, \mu_{1}, \mu_{2}\right) \rightarrow$ $\left(Y, \eta_{1}, \eta_{2}\right)$ with η_{j}-closed point image, f has a $\theta\left(\nu_{i}, \nu_{j}\right)$-closed graph.

Proof. Let f be a $\left(\mu_{i} \mu_{j}, \eta_{i}\right)$ continuous function from a bi-GTS $\left(X, \mu_{1}\right.$, $\left.\mu_{2}\right)$ to $\left(Y, \eta_{1}, \eta_{2}\right)$ with η_{i} closed point image and let Y be a pairwise R_{1}. Then for each $x \in X,\{f(x)\}=c_{\eta_{j}}\{f(x)\}=\gamma_{\eta_{j}, \eta_{i}}\{f(x)\}$ (by Theorem $2.11)=\mathcal{G}_{i j}^{j i}(f, x)($ by Lemma 3.7). Then by the Corollary $3.5 f$ has a $\theta\left(\nu_{i}, \nu_{j}\right)$ closed graph.

THEOREM 3.13. If a bi-GTS $\left(Y, \eta_{1}, \eta_{2}\right)$ is pairwise Hausdorff then every $\left(\mu_{i} \mu_{j}, \eta_{i}\right)$ continuous function f from any $\left(X, \mu_{1}, \mu_{2}\right)$ to $\left(Y, \eta_{1}, \eta_{2}\right)$ has an $\theta\left(\nu_{i}, \nu_{j}\right)$-closed graph.

Proof. It follows from Lemma 3.7, Corollary 2.17 and Corollary 3.5.

Definition 3.14. A multifunction $F:\left(X, \mu_{1}, \mu_{2}\right) \rightarrow\left(Y, \eta_{1}, \eta_{2}\right)$ is called $\left(\mu_{i} \mu_{j}, \eta_{k}\right)$ continuous at a point x of X if for each η_{k} open set W in Y such that $F(x) \subseteq W$, there is a $V \in \mu_{i}(x)$ satisfying $F\left(c_{\mu_{j}} V\right) \subseteq W$, where $F(V)=\cup\{F(y): y \in V\} ; F$ is $\left(\mu_{i} \mu_{j}, \eta_{k}\right)$ continuous if F is so at each $x \in X . i, j, k=1,2(i \neq j)$.

THEOREM 3.15. If a bi-GTS $\left(Y, \eta_{1}, \eta_{2}\right)$ is pairwise regular. Then for each $x \in X$ and each $\left(\mu_{i} \mu_{j}, \eta_{i}\right)$ continuous multifunction F from any bi$G T S\left(X, \mu_{1}, \mu_{2}\right)$ to $\left(Y, \eta_{1}, \eta_{2}\right), \mathcal{G}_{i j}^{j i}(F, x)=c_{\eta_{j}} F(x)$ for $i, j=1,2(i \neq j)$, where $\mathcal{G}_{i j}^{j i}(F, x)=\cap\left\{\gamma_{\eta_{j}, \eta_{i}} F\left(c_{\mu_{j}} U\right): U \in \mu_{i}(x)\right\}$.

Proof. Let $\left(Y, \eta_{1}, \eta_{2}\right)$ be pairwise regular. Now obviously $c_{\eta_{j}} F(x) \subseteq$ $\mathcal{G}_{i j}^{j i}(F, x)$. On the other hand, if $x \in X$ and $W \in \eta_{i}$ such that $F(x) \subseteq W$, then by $\left(\mu_{i} \mu_{j}, \eta_{i}\right)$ continuity of F there exists $V \in \mu_{i}(x)$ such that $F\left(c_{\mu_{j}} V\right) \subseteq W . \operatorname{So}, \mathcal{G}_{i j}^{j i}(F, x)=\cap\left\{\gamma_{\eta_{j}, \eta_{i}} F\left(c_{\mu_{j}} V\right): V \in \mu_{i}(x)\right\} \subseteq$
$\cap\left\{\gamma_{\eta_{j}, \eta_{i}} W: F(x) \subseteq W \in \eta_{i}\right\}=\cap\left\{c_{\eta_{j}} W: F(x) \subseteq W \in \eta_{i}\right\}$. It sufficies to show that $\cap\left\{c_{\eta_{j}} W: F(x) \subseteq W \in \eta_{i}\right\}=c_{\eta_{j}} F(x)$. In fact $c_{\eta_{j}} F(x) \subseteq \cap\left\{c_{\eta_{j}} W: F(x) \subseteq W \in \eta_{i}\right\}$ is obvious. Now let $y \in \cap\left\{c_{\eta_{j}} W\right.$: $\left.F(x) \subseteq W \in \eta_{i}\right\}$ and $y \notin c_{\eta_{j}} F(x)$. Since Y is pairwise regular, there exist $U^{\prime} \in \eta_{j}$ and $V^{\prime} \in \eta_{i}$ with $y \in U^{\prime}, c_{\eta_{j}} F(x) \subseteq V^{\prime}$ and $U^{\prime} \cap V^{\prime}=\phi$. But since $F(x) \subseteq V^{\prime} \in \eta_{i}$ we have $y \in c_{\eta_{j}} V^{\prime}$, which contradicts $U^{\prime} \cap V^{\prime}=\phi$. Hence $\mathcal{G}_{i j}^{j i}(F, x)=c_{\eta_{j}} F(x)$.

References

[1] M. P. Bhamini, The role of semi-open sets in topology. Ph. D. Thesis, University of Delhi, 1983.
[2] R. Bhowmick and A. Debray, On generalized sets of functions and multifunctions, Acta Math. Hungar. 140(1-2)(2013), 47-59.
[3] M. Caldas, S. Jafari and T. Noiri, Characterizations of pre R_{0} and pre R_{1} topological spaces, Topological Proceedings, 25(2000), 17-30.
[4] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002), no. 4, 351-357.
[5] Á. Császár and E. Makai Jr., Further remarks on δ - and θ-modifications, Acta Math. Hungar. 123 (2009), 223-228.
[6] C. Dorsett, Semi-regular space, Soochow Journal of Mathematics 8 (1982), 45-53.
[7] C. Dorsett, Semi T_{1} and Semi R_{0} Spaces, submitted.
[8] C. Dorsett, T_{0} Identification spaces and R_{1} spaces, Kyungpook Math. J., 18(1978), no. 2, 167-174.
[9] A. Kar and P. Bhattachariya, Some weak separation axioms, Bull. Calcutta Math. Soc. 82 (1990), 415-422.
[10] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
[11] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. El-Deeb, On pre-continuous and weak pre-continuous mappings, J. Math. Phys. Soc. Egypt 53 (1982), 4753.
[12] S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles. 89 (1975), 395-402.
[13] A. S.Mashhour, M. E.Abd EI-Monsef, and I. A.Hasanein, On pretopological spaces, Bull. Mathe. de la Soc. Math. de la R.S. de Roumanie, Tome 28(76)(1)(1984).
[14] W. K. Min, Mixed weak continuity on generalized topological spaces, Acta Math. Hungar. 132 (2011), no. 4, 339-347.
[15] W. K. Min, A note on δ - and θ-modifications, Acta Math. Hungar. DOI: 10.1007/s10474-010-0045-3(2010).
[16] M. Pal and P.Bhattcharyya, Feeble and strong forms of pre-irresolute function, Bull. Malaysian Math. Soc. (Second Series) 19 (1996), 63-75.
[17] M. K. Singal and S. P. Arya, On almost regular spaces, Glasnik. Mat. 4(24)(1969), 89-99.
[18] N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. 78 (1968), no. 2, 103-118.
[19] S. Willard, General Topology, Addison-Wesley, 1970.

Department of Mathematics West Bengal State University
Kolkata-700026, India
E-mail: atasi@hotmail.com
**
Department of Mathematics
West Bengal State University
Kolkata-700026, India
E-mail: r.bhowmick88@gmail.com

[^0]: Received December 06, 2013; Accepted July 10, 2014.
 2010 Mathematics Subject Classification: Primary 54A05, 54C50, 54D10, 54D15, 54E55.

 Key words and phrases: $k_{\mu}\{x\}, i j-c k\{x\}$, pairwise R_{0}, pairwise R_{1}, pairwise Hausdorff, pairwise Urysohn, generalized cluster sets of functions.

 Correspondence should be addressed to A. Deb Ray, atasi@hotmail.com.

