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SEPARATION AXIOMS ON BI-GENERALIZED
TOPOLOGICAL SPACES

A. DEB RAY* AND RAKESH BHOWMICK**

ABSTRACT. In this paper, introducing various separation axioms on
a bi-GTS, it has been observed that such separation axioms actually
unify the well-known separation axioms on topological spaces. Sev-
eral characterizations of such separation properties of a bi-GTS are
established in terms of 7y, ,;-closure operator, generalized cluster
sets of functions and graph of functions.

1. Introduction and preliminaries

The concept of bi-Generalized topology (in short, bi-GTS) was in-
troduced by A. Csdszar and and E.Makai Jr. in [5]. We study certain
separation axioms on bi-GTS and find their characterizations in terms
of 7, i;-closure operator [5], graph of a function and generalized cluster
sets [2] of a function. It is worth noting that the well-known separation
axioms of bi-topological and hence topological spaces, follow as special
cases for suitable choices of the bi-GTs.

In the next section, we investigate the behaviour of a bi-GTS obeying
separation properties, in terms of a generalized closure operator called
Vi u;-closure operator [5]; while in the last section, a bi-GTS under sep-
aration properties are discussed in the light of graph of a function and
generalized cluster sets [2] of a function.

We now state certain useful definitions and quote several existing results
that we require in the next two sections.

DEFINITION 1.1. ([4]) Let X be a nonempty set and p be a collection
of subsets of X (i.e. pu C P(X)). p is called a generalized topology
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(briefly GT) on X iff § € pand G € pfor A € A(# 0) implies Uyer G €
w. The pair (X, p) is called a generalized topological space (briefly GTS).
The elements of i are called pu-open sets and their complements are called
pu-closed sets. The generalized closure of a subset S of X, denoted by
c,(5), is the intersection of all p-closed sets containing S. The set of all
p-open sets containing an element x € X is denoted by pu(z).

For a topological space (X,7), set of all open, d-open [18], semi
open [10] and pre open [11] subsets of X are denoted respectively by
7(X), A(X), SO(X) and PO(X).

Let 1, p2 be two GTs on a non-empty set X. Then (X, py, po) is called
bi-Generalized topological space ( briefly bi-GTS).

DEFINITION 1.2. ([5]) On a bi-GTS (X, 1, p2), Vs gy = P(X) —
P(X) is defined by

YVui; (A) ={r € X iy, MNAF# ¢ forall M € p;(x)},
for each A C X,4,5 = 1,2(¢ # j). 0(s, 1t5), 6(pes, j) € P(X), defined
respectively by
O(pi, ) = {A C X : for each x € A there exists M € p;(z) such that
c/J,jM - A}>Z7] = 112(Z 7&]))
and
O(pis i) = {A C X ¢ for each x € A 3 p; — closed set Q with
z €1,,Q C A} 4,5 =1,2(i # J),
also form GTs on X. The elements of (s, f1;)( resp. 0(pi, pj)) are
called O(u;, pu5)( resp. (pus, p15))-open and the complements are called
0(pi, pt5) (vesp. 6(pi, pj))-closed.
THEOREM 1.3. ([5]) Let (X, u1,u2) be a bi-GTS and A C X. Then
the following hold:
(1) O(pi, 1) S 0(pir prj) S pi-
(2) A g ﬁyﬂivﬂj (A) g CQ(N’H“J)(A)
(3) A is 0, juj)-closed iff A =, ., (A).
THEOREM 1.4. ([14]) Let (X, p1, u2) be a bi-GTS. Then for any p;-
open set A we have 7, ,,,(A) = ¢, (A).
THEOREM 1.5. For any subset A in a bi-GTS (X, p1, p2), Vu;u; (A) =
ﬂ{CuiV tACV e ,uj}.

Let p1, po be two GTs on a non-empty set X and A C X. A is said
to be (s, ptj)-open (resp. 7(pu;, ptj)-closed) [5] if A =i, (c,;(A))(resp.
A= ey (i, (A))).
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THEOREM 1.6. ([5]) = € cg
open set R containing x.

piy) A AN R # ¢ for every r(pi, pj)-

Let (X, p1,p2) and (Y,n1,1m2) be two bi-GTS. The GT v;(i = 1,2)
on the cartesian product X x Y is defined by v; = p; x n; for 4,5 =
1,2(i # j); Then (X x Y,v1,19) is again a bi-GTS. Also, for the bi-
GTS (X, p1,p2), (X x X,v1,10) is a bi-GTS where v; = p; x p; for
i,j=1,2(i # §).

2. Separation axioms in terms of v, ,,-closure operator

In this section, we introduce different separation axioms on a bi-
GTS and establish their interrelationships. Also, such separation axioms
are characterized here using generalized closure operator, called 7, ,.;-
closure operator.

DEFINITION 2.1. Let u be a GT on a non-empty set X. Then for any
ACX, kyA=n{Uep: ACU}.

DEFINITION 2.2. Let (X, p1,p2) be a bi-GTS. Then for any point
r € X we define ij-ck(A) = (cy, A) N (ky; A); for i, 5 = 1,2 (i # j).

If A= {x}, we will write ij-ck{x} for ij-ck({z}).

LEMMA 2.3. Let x be an arbitrary point in a bi-GTS (X, p1, p2).
Then

)
) Cui(ij’Ck{x}) = C,Ui{x}‘

) ki, (ij-ck{z}) = ky;{z}.

) 'Yui,uj(ij‘(?k{x}) = Vwiopj {r}.

) for any pj-open set U containing x, k, {x} C U.

) for any p;-closed set F' containing x, ¢, (ij-ck{z}) C F.
) Ky, (kuA) =k, A for AC X,

) Vui s By A) = Yy, A for A C X5 4,5 =1,2 (i # j).

Proof.

(1) Let, y € ji-ck{z}. Suppose z € ij-ck{x}. Now y € ji-ck{z} implies
y €y}, y € ky{r} and 2 € ij-ck{z} implies z € ¢, {r}, z € k, {z}.
Again z € ¢y, {z} and y € k,,{z} together imply z € ¢, {y}. Also
y € ¢y {r} and 2z € ky, {z} together imply 2 € k, . {y}. So, z € ¢, {y} N
k. {y} = ij-ck{y}. Hence ij-ck{z} C ij-ck{y}.

Conversely, let ij-ck{z} C ij-ck{y}. Since, z € ij-ck{z} C ij-ck{y}, So
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v € ¢y {y} and x € k, {y}. Now x € ¢, {y} implies y € k, {z}. Also
v € ky,{y} implies y € ¢, {x}. So, y € ¢y, {x} Nky {z} = ji-ck{z}.

(2) Let z € ¢y, (ij-ck{x}). Therefore for all U € p;(2), UN(ij-ck{z}) # ¢
and so U N (cy,{x}) # ¢ ie. z € cy(cu{x}) = cu{x}. Hence ¢y, (ij-
ckfe}) C e ).

Conversely, {x} C ij-ck{x} implies ¢, {z} C ¢, (ij-ck{z}). Thus ¢, (ij-
ck{e}) = e, ().

(3) Let y € ky, (ij-ck{z}) but y ¢ k, {x}. Then there exists U € p;(w)
such that y ¢ U. Also, y € ky, (ij-ck{z}) = ij-ck{z} Nc, {y} # ¢ =
cu iy} Nky{x} # ¢. Hence there exists z € ¢, {y} N ky{z}. Then
every pij-open neighbourhood of x contains y, a contradiction.

(4) Let, y € ~yu,p,; (ij-ck{r}) and if possible let y ¢ v, ,,{x}. Then
there exists U € p;(y) such that x ¢ ¢, ,U. Again y € v, ,; (ij-ck{z})
implies ¢,,U Nij-ck{z} # ¢ i.e. ¢, ;U Nky {r} # ¢ and so there exists
z € ¢,;UNk, {z}. Again since, z € X\c,,U € p; and z € k, ;{x}, so ,
z € X\c,,;U, which is not possible. Hence, v, ,, (ij-ck{z}) C v ;{7 }-
Conversely, x € ij-ck{x} implies v, ,, {7} C v, ., (i5-ck{z}).

(5) Let, z € ky,{z} and U € pj(x). Clearly z € U. Thus k, {z} C U.

(6) By (2) ¢y, (ij-ck{z}) = ¢y, {z} and cosequently c,, (ij-ck{z}) C F.

(7) R.H.S € L.H.S. We now show that L.H.S C R.H.S. Let y ¢ R.H.S.
Then there exists a p; open set containing A s.t y ¢ U. Again A C U
and U € p; implies that k,,{A} C U and consequently y ¢ R.H.S.

(8) R.H.S C L.H.S. We now show that L.H.S C R.H.S. Let y ¢ R.H.S.
Then there exists a y; open set U containing y s.t. ¢,,UNA = ¢,
Consequently c,,U Nk, {A} = ¢ (Since, k,,{A} is the intesection of all
ftj open set containing A). Hence y ¢ L.H.S. O

COROLLARY 2.4. For any point z in a bi-GTS (X, u1, p2) the follow-
ing hold :
(1) For any pj-open set U containing x, ij-ck{x} C U.
(2) For any pu;-closed set F' containing x, ij—ck{z} C F.
(3) For any point x, ij-ck({ij-ck{z}) = ij-ck{x}.

Proof.
(1) Follows from (5) of Lemma 2.3 and definition of ij-ck{x}.
(2) Follows from (6) of Lemma 2.3 and definition of ¢, {x}.
(3) Follows from (2) and (3) of Lemma 2.3. O

DEFINITION 2.5. A bi-GTS (X, u1, p2) is said to be pairwise Ry-space
if for each p;-open set G and for each » € G, ¢, {x} C G; for 4,5 = 1,2

(@ # 3)-
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1 14 pairwise Ry
T T Ry [8]

SO(X) | SO(X) | semi Ry [7]
PO(X) | PO(X) | pre Ry [3]

THEOREM 2.6. If (X, u1,pe) is pairwise Ry, then for each x € X,
Vg il Y\ 1w} is a union of pj-closed sets; fori,j = 1,2 (i # j).

Proof. Let, y € vy, ydr}\cp{z}. Then y € X\cy,{z}. Since X is
pairwise Ro, ¢y {7} Ncy{y} = ¢. Now y € v, 4, {7} implies ¢, {y} C
Vit Thus ¢y} C vy, pdz\cp{z}. Consequently v, {7 }\
cu; {7} is a union of ¢, -closed sets. O

THEOREM 2.7. If for every pair of distinct point x,y in a bi-GTS
(X, p1, p2), either ¢y {x} = ¢, {y} or cp {x} Ney {y} = ¢, fori, j =1,2
(i # j), then (X, u1, p2) is pairwise Ry.

Proof. Let G be a p;-open set containing y € X. For any z € X\G
as y & cu{x}, cu{w} # ¢y, {y}. By the hypothesis, ¢, {z} Ney {y} = ¢
which gives = & ¢, {y}; i.e. there exists V, € p;(z) such that y ¢ V.
Let A=U{V, :2 € X\G}. Theny ¢ Aand A € p;. So X\A is a
pj-closed set containing y. Also X\G C A ie. X\A C G. Therefore
cu; 1y} € G and hence (X, p1, pi2) is pairwise Rp. O

DEFINITION 2.8. A bi-GTS (X, p1, p2) is said to be pairwise R; if
for any two points x,y € X such that x ¢ c,,{y}, there are p;-open set
U containing x and pj-open set V' containing y such that U NV = ¢;
where i,j = 1,2 (i # j).

1 1) pairwise R,
T T Ry [8]

SO(X) | SO(X) | semi R; [7]
PO(X) | PO(X) | pre Ry [3]

REMARK 2.9. Every pairwise R; space is pairwise Ry.

Proof. Let (X, p1, p2) be pairwise Ry. Let G be a p; open set and
x € G. If X\G = ¢ then the proof is obvious. So let us consider the case
X\G # ¢ and y ¢ G. Consequently x ¢ c,,{y}. Since X is pairwise Ry
there exist Uy € p;(x) and Vy, € pj(y) s.t. UyNV, = ¢. Let V = U,q5V,
and F' = X\V. Then F is a p; closed set containing z s.t. F' C G i.e.
cu;1z} € G. Hence X is pairwise Ry. O

But the converse is not true. This follows from the following example.
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EXAMPLE 2.10. Let us consider the set X = {a,b,c}. Let u; = pg =
p = {¢,{a,b},{b,c},{c,a},X}. Then a ¢ c,,{b} = {b} but every pu-
open set containig them intersect each other. i.e. X is not pairwise R;.
Again for every pi-open set G and for each v € G, ¢, {z} C G, for
1,7 =1,2. i.e X is pairwise Ry.

THEOREM 2.11. Let (X, 1, 12) be a bi-GTS. Then the following are
equivalent:

) X is pairwise R;.
ij-ck{x} = yu; u;{w}, for each xz € X.
ij-ck{x} is O(pi, pj)-closed set, for each x € X.
Vi 12} = cp{x}, for each x € X.

(b)
3
; Vi {2} = Ky {x}, for each z € X.
)
)

(a
b
(c
(d
(e

cu{x} is O, pj)-closed, for each x € X.

ku;{x} is 0(pq, pj)-closed, for each x € X.

If F is py-closed set containing x, then vy, ,.{r} C F, for each

z e X.

(i) IfU is a pj-open set containing x, then for each v € X, vy, {7} C
Usi,j=1,2 (i # ).

Proof.

(a) = (b): Let x € X. Also let y € X be such that y ¢ ij-ck{z}, then
y & cudx} Nky{x}. Now if y & ky {z} then = ¢ ¢, {y}. since X is
pairwise Ry, there exist U € pj(z) and V' € p;(y) such that UNV = ¢.
Then y ¢ cy,{x}. Thus y ¢ k,,{z} implies y ¢ ¢, {z}. If possible let
Y € Yy 12}, then for all p;-open set W containing y, x € ¢,;W. Since
y ¢ ¢y, {x} and X is pairwise Ry there exist Wi € p;(y) and Wy € pj(x)
such that WiNWs = ¢ ie. = ¢ c,; Wi, a contradiction. Soy ¢ v, ., {7}
and hence v, {7} C ij-ck{z}.

On the other hand if y € ij-ck{x}, then y € c,,{x} C vy, ,,;{x} so that
ij-ch{x} C Yy g {7}

(b) & (c): follows from lemma 2.3.

(b) = (d): This is evident from the fact that ij-ck{z} C c {z} S v 17},
for each z € X.

(d) = (a): Let x,y € X with y ¢ ¢, {x} = 7y, 4, {z}. Then there exists
U € pi(y) such that = ¢ c,,U. Hence X\c,,U is a pij-open set containing
x such that (X\c,,U) NU = ¢, proving that (X, u1, pu2) is pairwise R;.

(d) = (e): Let y € vy, u;17} = cy;{z}. If possible let y ¢ k. {z}. Then
r ¢ Ay} = Yy iz}, a contradiction. Thus v, ;. {z} C Ky {x}.
Conversely, if y & v, 4, {7}, then there exists W € p;(y) such that

(f
(g
(h
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& ey, W 2 cuj{y} and so y ¢ kzuj{x}. Thus kuj{x} C 'Ym,uj{x} and
hence 7, ,.; {z} = Ky, {z}.

(e) = (d): Let, y € vy u; {7} = ky, {z}, thenx € ¢, {y}. Nowy ¢ ¢, {z}
implies = ¢ ky, {y} = v, 11y} 2 cu;{y} which is a contradiction. Con-
sequently, vy, 4, {7} C ¢y, {x}. The other part, i.e. ¢, {z} C vy, 417} is
obvious.

(a) = (f): Follows from (b), (c) and (d).

(f) = (d): {z} C cu{x} gives vy, {z} S Yo (cu{z}) = cu{z} and
cudr} € Yy 12} is obvious. Hence v, 4 {7} = ¢y, {x} for each z € X.

(a) = (g): It follows from (b), (c) and (e).

(9) = (e): Since ky ;{x} is 0(u;, p15)-closed for each x € X, vy, 1, (K {x})
= ky,{r} and so (e) follows from Corollary 2.4.

(h) = (d): For each z € X, ¢,,{z} is a p;-closed set containing x and
hence by (h), Y, u; {7} C cp{z}. Again since ¢, {x} C vy, {2} is ob-
vious, we have ¢, {x} = v, 4, {z}. The implications “(b) = (h)”, “(b) =
(1)” and “(i) = (e)” follow respectively from (4.),(3.) and (2.) of corol-
lary 2.4. O

COROLLARY 2.12. If (X, p1, p2) is pairwise Ri-space, then vy, ., {z}
is (s, p1)-closed for each x € X.

DEFINITION 2.13. For any subset A of a bi-GTS (X, u1, o) we define
'Y;L,-,;L]-(A) ={zreX: ’Yuzwuj{l‘} NAF#¢};d,5=1,2 (i #j).

It is easy to oll)serve from the above (;eﬁnition t/hat for A, BC X,
(1) AC Kk, AC Vm,ujA’ (ii) AC B= 'Yui,ujA C ’y%ujB and
(#41) Yy, (AU B) =7, AU, L B.

DEFINITION 2.14. ([2]) Let (X, u1,u2) be two bi-GTS. Then X is

said to be pairwise-Hausdorff if for  # y in X, there exist U € u;(z),
V € pj(y) such that UNV =0. 4,5 = 1,2 (i # j).

1 149 pairwise-Hausdorff
T T T

SO(X) | SO(X) semi Ty [12]
PO(X) | PO(X) pre T [9]

Every pairwise Hausdorff space is also a pairwise R; space. The
example below shows that the converse is not neccessarily true.

EXAMPLE 2.15. Let us consider the set X = {a,b,c}. Let p; = po =
w={¢,{a},{b,c}, X}. Then for the point b and c there exist no pair of
disjoint p-open containing them. i.e. X is not pairwise Hausdorff. But
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for any two points x,y € X s.t. x € ¢y, {y}, there are pi-open set U
containing x and ps-open set V' containinig y s.t. UNV = ¢. ie. X is
pairwise Rj.

THEOREM 2.16. For any bi-GTS (X, u1, o) the following are equiv-
alent :

(a) X is pairwise Hausdorff.

(b) For each z € X, {x} - ’Y,uiyuj{m} U ﬁ)/lijnui{x}'

(¢) For any two distinct points z,y of X, vy, u AT} O Vs 1y} = ¢
(d) For any subset A of X, A = '7//%#3' (A); 4,7 =1,2 (i # 7).

Proof.

(a) = (b): Let y € X such that y # x. Then there exist U € u;(z) and
V' € pj(y) such that UNV = ¢. Thus x ¢ ¢,V and hence y ¢ v,,; 4, {7}
Similarly y & v, 4, {z}. Consequently, {x} = vy, Az} Uy miz}-

(b) = (c): straightforward.

(¢) = (d): A € v,,,,(A) is evident. Now let z € =, , (A) so that
Vi1t N A # ¢. let y € X such that y # x. Then vy, .. {y} N
Vi 12} = ¢ and consequently, y ¢ v, 4, {z}. Thus x € A and hence

(d) = (a): Let = and y be any two distinct points of X. Now, {z} =
fy;;wj {z} implies y ¢ 7;“7% {z} and hence = ¢ 7y, ., {y}. So there exists
a U € pi(x) such that y ¢ ¢,,U, ie. y € (X\c,,U)(=V, say ) € p; and
U NV = ¢. Hence the bi-GTS is pairwise Hausdorff. O

COROLLARY 2.17. The following statements are equivalent for a bi-
GTS (X7 M, IMQ):

(a) X is pairwise Hausdorff.

(b) For each x € X, {z} = 7, uo{x}, i.e. every singleton of X is
0(p1, p2)-closed.

(c) For each x € X, {z} = 7y, {2z}, i.e. every singleton of X is
0(p2, p1)-closed.

DEFINITION 2.18. A bi-GTS (X, u1, p2) is said to be pairwise Urysohn
if for any two distinct point =,y of X, there exist U € pj(x) and
V' € pa(x) such that c,,UNc,, V = o.

1 142 Pairwise Urysohn
T T Urysohn [19]

SO(X) | SO(X) | semi-Urysohn [1]
PO(X) | PO(X) | pre-Urysohn [16]
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Every pairwise Urysohn space is also a pairwise Hausdorff space. The
converse does not always hold. This follows from the following example.

EXAMPLE 2.19. Let X = {a,b,c,d,e}. Let us consider p = 3 = pg =
{¢a {CL, b}a {C? d}’ {a7 C}? {b’ d}’ {a” bv C}7 {CL, ba d}’ {CL, G d}? {b7 ) d}a {CL, Gy 6},
{b,d,e}, {b,c,d,e},{a,c,d, e}, {a,b,d, e}, {a,b,c e}, {a,b,c,d}, X}. Then
for every pair of distinct x,y there exist disjoint u-open set U,V contain-
ing x,y respectively. i.e. X is pairwise Hausdorff. But if we take a and
¢ then there exist no pair of p-open set U,V containing x,y respectively
s.t. ¢y, UNey, V= ¢. ie. X is not pairwise Urysohn.

DEFINITION 2.20. Let (X, 1, u2) be a bi-GTS. Then for any subset
A of X we define,

P(A) = (ﬂ{rY,ul,,U«Z (7#1,#2[]) tACU e MQ}) U (m{7ﬂ27ﬂl(7N2,HlU) A C
U € p}).

LEMMA 2.21. For any point x in a bi-GTS (X, p1, p2), p1[(X x {z})N
Wiy Al = p2[({x} X X) Ny 0, Al 4,5 = 1,2 (i # ).

Proof. Let y ¢ L.H.S. This implies that (y,z) ¢ 7,,.,,A. So there
exists V' € p;(y) and U € py(z) such that c,,(V x U)NA = ¢ ie.
(e; V x ¢,,U) N A = ¢ which gives ¢,V N¢y,,U = ¢. Thus we have
(e, Uxcy,VINA = ¢iec,,(UxV)NA = ¢ which gives (z,y) € v, . A
iey ¢ R.H.S.

By reversing the above arguments we can similarly show that y ¢ R.H.S.
implies y ¢ L.H.S. O

LEMMA 2.22. If (X, pu1, o) is a bi-GTS and x € X, then

(
P({z}) = pil(X x{z}) Ny A Upa[({z} X X) 00,4
= pil(X 3 {z}) N AUt [(X X {2}) N ymp 0, A
= pa[({e} ¥ X) N Al U pa[({2} X X) N Y00 A

Proof. In view of Lemma 2.21 it is sufficies to show that P({z}) =
Prl(X {2 }) MYy, Al Upt[(X X {2}) V05,0, A Now, if y ¢ P({x}) then
there exist Uy € po(x) and Uy € pi(z) such that y & v, o (Vi 0. U2) and
Y & Vuour (Vua,ua U1). Consequently we have Vi € pi(y) and Vo € pa(y)
such that ¢, Vi Ny, wUz = ¢ = ¢y Vo Ny 1 Ur i Vi Ney Us =
¢ = ¢, VaNey,Up (by Theorem 1.4 ). Then (¢, Vi X ¢, Us) NA = ¢ =
(cu Vaxep,Un)NAdLe. ¢, (VixUz)NA = ¢ = ¢, (Vo x U )NA which gives
(1, 2) & YA and (y,2) € Y A. Hence y & pi[(X x {z}) Ny, 0, A
and y & p1[(X x{z})Nyu,1, A] so that y ¢ R.H.S. By reversing the above
argument we can similarly show that y ¢ R.H.S. impliesy ¢ L.H.S. [
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THEOREM 2.23. For a bi-GTS (X, u1, 12) the following are equivalent:
(1) X is pairwise Urysohn.
(2) For each xz € X,{z} = P({x}).
(3) A= (7V1,V2A) U <7V27V1A)'

Proof.
(1) = (2): Let x € X and y be any point of X with y # x. Then there
exist U € pi(z) and V' € pa(y) such that ¢,,U N¢,, V = ¢ and so we
have v, ,,U N¢,, V = ¢ (by Theorem 1.4) so that y & v, 4 (Vo U)-
Similarly we can find W € po(x) such that y & v, o (Y1, W). Hence
we get (2).
(2) = (3) : We have,

(z,y) ¢ A < y¢ P({z})
<y Ep2(({z} X X) Ny AlUpo[({2} X X) N 30,0, A
< (2,9) § YA and (2,9) & Yipn A

Thus (3) follows.

(3) = (1): Let z,y € X such that z # y. Since (z,y) ¢ A, (z,y) ¢
Yor.e A 80 that ¢, (U x Vo) NA = ¢ for some Uy € pq(x) and Va € pa(y).
Then (cu,Ur X ¢, Vo) NA = ¢ ie. ¢, Up Ny, Vo = ¢, proving that X is
pairwise Urysohn. 0

COROLLARY 2.24. A bi-GTS (X, pu1, n2) is pairwise Urysohn iff any
one of the following conditions holds:

(1) For each z € X, {z} = {1 po (Vi1 U) 1 U € pa(x)}.
(2) For each z € X, {z} = { Vo, Vo, U) : U € pa(x)}.
(3) A=y wA.
(4) A=A

DEFINITION 2.25. ( [14]) Let (X, p1,p2) be a bi-GTS. Then X is
said to be (p, p1j)-regular if for any x € X and any f;-closed set F' not
containing x, there exist U € u; and V € p; with x € U, F° C V such
that UNV =0; 4,5 =1,2 (i # j).

If X is (u1, pe) and (pe, 1) regular then X is called pairwise regular.

fi1 142 (411, po)-regular
T T regular
A T almost regular [17]

SO(X) | SO(X) | semi regular [6]
PO(X) | PO(X) | strong regular [13]
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THEOREM 2.26. [14] A bi-GTS (X, p1, p2) 1is (s, puj)-regular iff for
each point x € X and each u;-open set G containing x, there is a p;-open
set H containing x such that ¢,, H C G;i,j = 1,2 (i # j).

THEOREM 2.27. A bi-GTS (X, p1, p2) is (pi, pj)-regular iff for any
set Ain X, ¢y, A =, ,4; 1,5 =1,2 (i # j).

Proof. First suppose that X is (fu;, 1j)-regular. Obviously ¢,, A C
Vyiu; A for A C X. Now let z € 7y, ;A and U be any p;-open set con-
taining x, then by Theorem 2.23 there exists a p;-open set V' containing
x such that ¢,;V C U. Now since z € vy, ,,; A, we get ¢,, VN A # ¢ and
hence U N A # ¢. Thus z € ¢;,; A and consequently, v, ., A = ¢, A.
Conversly, let z € X and U be a p;-open set containing x. Then
v ¢ X\U = ¢,,(X\U) = Y u;(X\U). Thus there exists a j;-open
set V' containing z such that c,,V N (X\U) = ¢ ie. ¢,V C U and
hence X is (ui, ptj)-regular. O

COROLLARY 2.28. A Bi-BT'S (X, pi, pt5) is pairwise regular iff every
pi-closed set is 6(pu, puj)-closed; i,j = 1,2 (i # j).

DEFINITION 2.29. ( [15]) A bi-GTS (X, p1, p2) is said to be (u, p15)-
almost regular if for each x € X and 7(u;, p15)-closed set F' with « ¢ F,
there exist U € p; and V' € pj such that x ¢ U, F CV and UNV = ¢;
ij=1,2 (i #j).

X is called pairwise almost regular if it is both (1, u2)-almost regular
and (g, p1)-almost regular.

It is easy to check that every pairwise regular space is also a pairwise
almost regular space. But the converse is not so. This follows from the
following example.

EXAMPLE 2.30. Let us consider the set X = {a,b,c,d}. Let uy =
H2 = p = {¢7 {CL, b}7 {a7 C}, {CL, d}7 {b7 d}7 {Ca d}7 {CL, b, C}7 {CL, b, d}7 {CL, ¢ d}a
{b,c,d}, X'}. Then for the point a and the u-closed set F' = {b,c} there
exist no pair of u-open sets U and V s.t. a €¢ U, F CV andUNV = ¢.
i.e. X is not pairwise regular. But the r(p;, pj)-closed set in X are
¢,{a,b},{c,d},{b,d},{a,c}. So for each x € X and r(u;, pj)-closed set
F with « ¢ F, there exist U € p; and V' € pj such that x € U/ F CV
and UNV = ¢. Hence X is pairwise almost regular.

THEOREM 2.31. ([15]) A bi-GTS (X, pt1, p2) is (4, pt5)-almost regular
iff for x € X and r(u;, p1)-open set U containing x, there exists jp;-open
set V' containing = such that ¢,V C U;i,j = 1,2 (i # j).

THEOREM 2.32. For a bi-GTS (X, p1, u2) the following are equivalent:
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X is (s, prj)-almost regular.
For any set A C X, vy, 1, A = C(pus ) A-
(c) For any set A C X, vy, u; (Vpipi; A) = Vosaou; A-
(d) For any pj-open set A, vy, u; (Vpii; A) = Vugu; A5 5,5 = 1,2 (1 # 7).
Proof.
(a) = (b): It is always true that cs(,, ;)4 € Yy A Let, @ € A
and U € pi(w). Then by (a), there exists V' € p;(x) such that ¢,V C
iy, e U, Since ¢,V N A # ¢, we have (i,,c,,U) N A # ¢ and thus
T € C(pizpuy) A
(b) = (c): We have,
Vatistis Vi A) = Vs (€6 (015,15)A) = C005,11) (C(ps,15)A)
= C5(Mi,uj)A = Vi A
(¢) = (d): Straightforward.

(d) = (a): Let F be any r(f;, ptj)-open set in X and p € F. Now A =
X\F is an r(u;, p1)-closed set and then A = ¢, (i,;A). Put B =i, A.
Then Yy, ;A = Vi (€0 B) = Vi Vi; B) = Vi B = ¢ B = A.
Then p ¢ 7,11, A and hence there exist G € p;(p) such that ¢,, GNA = ¢
ie. ¢,,GC X\A=F. Hence X is (1, p1j)-almost regular. O

(a)
(b)
)
)

3. Separation axioms via generalized cluster sets and graph
of a function

This section is devoted to establish necessary and sufficient conditions
for separation properties of a bi-GTS via generalized cluster sets and
graph of a function. We begin with a few useful lemmas and already
known definitions.

LEMMA 3.1. Let f be a function from a set X to a set Y. Then for
any AC X andany BCY, f(AANB={yeY :(z,y) € (Ax B)N
G(f)), for some x € X}.

LEMMA 3.2. Let (X, p1, pu2) and (Y,m1,m2) be bi-GTS. Then
Vi {@ 9} = Vs {2} X vy mi{y}, for any (z,y) € X x Y.

Proof. Let (a,b) € vy, p;{(7,y)} and U € p;(a), V' € n;(b). Then
(r,y) € c,,(UxV) = (z,y) € c,,U xcp,V =€ ¢,;Uandy e
¢y, V. Hence a € v, ,;{r} and b € v, . {y}. This shows that (a,b) €

Vpwispis {z} X'Vm‘,m{y}' Then ')/Vi,Vj{(wv y)} C Vst {z} X’W]jﬂh‘{y}' Revers-
ing the argument we get the reverse inclusion. Hence v,, ., {(7,y)} =

o {2} X Ay Ly} for any (z,) € X x Y. =
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DEFINITION 3.3. ( [2]) Let f: (X, u1, pu2) — (Y, m1,m2) be a function.
Then for any € X, then the generalized cluster set of f at any point x
is given by gzl(;l(f’x) = m{f}/ﬂkf’ilf(clijU) U e IU,Z($)} i7j7kal =1,2 (Z 7éj
and k #1).

LEMMA 3.4. Let f : (X, p1, p2) — (Y, m1,12) be a function and z € X.
Then

(1) pa(({x} X V) N3, G(f)) = G ().

(2) pa(({z} xY) N k/uiG(f)) = ky ( (Cui{x}))-

(3) p2(({z} xY)N Vi vj G(f) 'Yng,m( (’Yuuu,y{af}))-
Proof. -

(1) Let y € Qg;(f,x) and U € pi(z),V € n;(y). Then y € vy, 1, f(c;U)
and so ¢, VN f(c,,U) # pie. (cp,Uxcy, VING(f) # ¢ie. ¢, (UxV)N
G(f) # ¢. This shows that (x,y) € V., G(f); so that y € pa(({z} x
Y) N ,0,G(f)). Reversing the step we get the reverse inclusion. Hence
p2(({z} X Y) Ny, G(f) = G (f, ).

(2) Let y € L.H.S. Then (z,y) € k,,G(f) ie. c,,{(z,y)} NG(f) # ¢,
which gives (¢, {x} x Cn, {yh)NG(f) # ¢ so f(cu{x}) Ney, {y} # ¢ and
hence y € ky, (f(cp{z})). i.e. y € R.H.S. Then L.H.S. C R.H.S.

(3) Let y € pa(({z} x ¥) N7, G(f). Then (,y) € ., G(f) ie.
Wi {(2,y)} N G(f) # ¢. So by lemma 3.2 (v, u;{z} X vy {y}) 0
G(f) # ¢. Then by lemma 3.1 f(vu,u;{7}) 0 Yy m iy} # ¢, which
gives y € v (f (i {2})). Hence pa(({a} x Y) Ny, G(f) €
7;7]_7772_( J(Yuipix})). Reversal of above aruments yields the inclusion
the other way round. O

COROLLARY 3.5. If f : (X, 1, u2) — (Y, m1,m2) is a function then the
following are equivalent:
(1) f has a 6(v;,v;)-closed graph.
(2) {f(@)} = p2(({x} x Y) Ny, G(f)), for each z € X.
()gﬂ( z) = {f(x)}, for each x € X.

DEFINITION 3.6. ([2]) Let (X, u1,p2) and (Y,n1,n) be two bi-GTS.
Then f : (X, p1,p2) — (Y,m,n2) is said to be (pip;, nx)-continuous
at © € X if for each V' € n(f(z)), there exists U € p;(z) such that
If fis (pipj, ni)-continuous at each x € X then f is called (pipe5, Mk )-
continuous on X.

If fis both (wipj, m)nd (pipj, n2)-continuous then f is called pairwise
(fipeg, M )-continuous.
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LEMMA 3.7. If f: (X, p1, p2) — (Y, m,m2) is a function such that f
is (piftj,m;) continuous then, gg;(f, r) = vy, m 1 f(x)}, for each x € X.

Proof. Let V' € n; such that f(x) € V. Since f is (uipj,7;) contin-
uous, there exists U € p;(x) such that f(c,,U) € V. Then Qf;(f, x) C
Yo f(€u;U) € mym V= ¢p; V' ( by Theorem 1.4). Thus g{j(f, x)
cy,V for all Vo € n; with f(z) € V. By Theorem 1.5 gf;(f, x)

Vs f ()} On the other hand, v, ,{f(z)} C Qf;(f, x) is obvious.
Hence the lemma.

-
-

(I

COROLLARY 3.8. A function f : (X, p1,u2) — (Y,m,m2) has the
property that f is (pipuj,1;) continuous , has a 6(v;, v;)-closed graph iff
it has 6(n;,n;)-closed point images.

LEMMA 3.9. A function f : (X, pu1,pu2) — (Y,n1,12) is (Miuhnk)
continuous iff f (7, ;A) C cn f(A); 4,5,k = 1,2 (i # j).

Proof. Let f be a (uiftj,mr) continuous and y € f(vy,,u,A). There
exists ¥ € X such that z € 7, ,,4 and f(x) = y. Let V € np(f()).
Then there exists U € p;(z) such that f(c,,U) C V. Again since x €
Vi A we have ¢, , UNA # ¢ and so f(c,,U)Nf(A) # pie VNf(A) # ¢
ie f(z) € ¢, f(A) and hence y € ¢,, f(A).

Conversely, let 2 € X be arbitrary and V' € ni(f(x)). Then f(z) ¢
e (Y\V) and so f(z) ¢ ¢, (ff71(Y\V)). By the hypothesis f(z) ¢
S Vi (FTH(YAV))), so that @ ¢ v, ., (X\(f71V)). Thus there exists
U € pi(z) such that ¢,,U C f~'V ie. f(c,,U) € V. Hence f is
(pipeg, M) continuous. O

THEOREM 3.10. If f : (X, p1, p2) — (Y,m,m2) is pairwise (pift;, nx)
continuous and (Y, n1,n2) is pairwise Ry, then v, ,.G(f) = k,,G(f).

Proof. Since f is pairwise (415, 1)) continuous and (Y, 71, 72) is pair-
wise Ry, by Lemma 3.7, Theorem 2.11 and Lemma 3.9 we have , Qf;(f, x)
— Ay F@)} = by, {f(2)} and f (3, {2}) € €, L (@)} So by f(2)}
< kmf(c,uj{x}) < kmf(ﬁ)/uj,m{x}) < k77z<cnj{f($)}) Aga’in by theo-
rem 2.11 ji-ck{f(z)} = vy n{f(x)} = cy{f(x)}. So by Lemma 2.3
kn{f(2)} = ko, (ji-ck{f(2)}) = ky,(cq;{f(2)}). Hence ky{f(2)} =
Foni f (cu{x}). ie. Gli(f,x) = kn f(cu{x}). It follows from lemma
3.4 'Yui,VjG(f) = kujG(f) O

THEOREM 3.11. If f : (X, 1, p2) — (Y, m1,m2) is (pifes, ms) continuous
and (Y, n1,m2) is pairwise Hausdorff, then v, ,,G(f) = fyl/,i,l,jG(f).
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Proof. Since f is (pif15,;) continuous and (Y, n1,72) is pairwise Haus-
dorff, by Lemma, 3.7, Corollary 2.17 and Lemma 3.9 we have , gf;(f, x) =
oy {f (2)} = {f ()} and f(yu; u,{x}) € e {f(2)}. Again using Theo-
rem 2.16, Lemma 3.9 and Corollary 2.17 we have

(@)} S 0 (F sy {2))
= f('Yui,Mj {z}) C an{f(x)} C 'Yﬁiﬂ?j{f(x)} ={f(=)}.

Then fy;]jmi(f('y%w {z})) = {f(x)} = gf;(f, z). Hence by Lemma 3.4
’YVzHVjG(f) = ’VzI/i,ujG(f)' ]

THEOREM 3.12. If a bi-GTS (Y, n1,1n2) is pairwise Ry, then for any bi-
GTS (X, p1, p2) and every (pifi4,m;) continuous function f : (X, 1, po) —
(Y, m,n2) with n;-closed point image, f has a 6(v;,v;)-closed graph.

Proof. Let f be a (;4¢5,7;) continuous function from a bi-GTS (X, 1,
w2) to (Y,n1, n2) with n; closed point image and let Y be a pairwise R;.
Then for each z € X, {f(z)} = ¢, {f(x)} = w,;m1f(2)}( by Theorem
2.11)= gg;(f,x)( by Lemma 3.7). Then by the Corollary 3.5 f has a
(v, vj) closed graph. O

THEOREM 3.13. If a bi-GTS (Y,n1,n2) is pairwise Hausdorff then
every (piftj,m;) continuous function f from any (X, p1, p2) to (Y, n1,12)
has an 0(v;, v;)-closed graph.

Proof. 1t follows from Lemma 3.7, Corollary 2.17 and Corollary 3.5.
O

DEFINITION 3.14. A multifunction F' : (X, pu1,pu2) — (Y,m1,m2) is
called (pipj,nx) continuous at a point = of X if for each n; open set W
in Y such that F'(z) C W, there is a V' € p;(r) satisfying F'(c,,,V) C W,
where F(V) = U{F(y) : y € V'}; Fis (pipj, n) continuous if F' is so at
each x € X. i,j,k=1,2 (i # j).

THEOREM 3.15. If a bi-GTS (Y,m,n2) is pairwise regular. Then for
each x € X and each (y;j15,1;) continuous multifunction F' from any bi-

GTS (X7M17ﬂ2) to (Y7 7717772)7 gi;(F,x) = anF(CL') for 27.7 = 172 (7' 7é j)a
where G/ (F,x) = N{yy; n, F(cy;U) 2 U € pi()}.

Proof. Let (Y,m1,72) be pairwise regular. Now obviously ¢, F(z) C
G};(F,x). On the other hand, if z € X and W € #; such that F(z) C W,

then by (uipj,m;) continuity of F' there exists V' € p;(x) such that
F(ew,V) © W. So, gz];(va) = Mgy ley,V) « V€ pi(x)} C
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WmW + F(z) €W € i} = N{e,,W : F(x) € W € n;}. It suf-
ficies to show that N{c,,W : F(x) C W € n;} = ¢, F(z). In fact
cn F(z) C€ 0 {ey,W : F(z) €W € n;} is obvious. Now let y € N{e,, W :
F(z) CW €n;} and y ¢ ¢, F'(x). Since Y is pairwise regular, there ex-
ist U €njand V' € withy € U, ¢, F(z) CV and U NV’ = ¢. But
since F'(z) C V' e n; we have y € ¢, V', which contradicts U' NV’ = ¢.

Hence G/ (F,x) = ¢, F(z). O
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