DOI QR코드

DOI QR Code

Synthesis of Fe-Doped TiO2/α-Fe2O3 Core-Shell Nanowires Using Co-Electrospinning and Their Magnetic Property

복합 전기방사법을 이용한 Fe-doped TiO2/α-Fe2O3 이중구조 나노와이어의 합성 및 자성 특성

  • Koo, Bon-Ryul (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 구본율 (서울과학기술대학교 신소재공학과) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2014.07.17
  • Accepted : 2014.07.24
  • Published : 2014.08.27

Abstract

We synthesized Fe-doped $TiO_2/{\alpha}-Fe_2O_3$ core-shell nanowires(NWs) by means of a co-electrospinning method and demonstrated their magnetic properties. To investigate the structural, morphological, chemical, and magnetic properties of the samples, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy were used, as was a vibrating sample magnetometer. The morphology of the nanostructures obtained after calcination at $500^{\circ}C$ exhibited core/shell NWs consisting of $TiO_2$ in the core region and ${\alpha}-Fe_2O_3$ in the shell region. In addition, the XPS results confirmed the formation of Fe-doped $TiO_2$ by the doping effect of $Fe^{3+}$ ions into the $TiO_2$ lattice, which can affect the ferromagnetic properties in the core region. For comparison, pure ${\alpha}-Fe_2O_3$ NWs were also fabricated using an electrospinning method. With regard to the magnetic properties, the Fe-doped $TiO_2/{\alpha}-Fe_2O_3$ core-shell NWs exhibited improved saturation magnetization(Ms) of approximately ~2.96 emu/g, which is approximately 6.1 times larger than that of pure ${\alpha}-Fe_2O_3$ NWs. The performance enhancement can be explained by three main mechanisms: the doping effect of Fe ions into the $TiO_2$ lattice, the size effect of the $Fe_2O3_$ nanoparticles, and the structural effect of the core-shell nanostructures.

Keywords

References

  1. J. Dobson, Drug Dev. Res., 67, 55 (2006). https://doi.org/10.1002/ddr.20067
  2. R. Dronskowski, Adv. Funct. Mater., 11, 27 (2001). https://doi.org/10.1002/1616-3028(200102)11:1<27::AID-ADFM27>3.0.CO;2-X
  3. J. A. Wiemann, E. E. Carpenter, J. Wiggins, W. Zhou, J. Tang, S. Li, V. T. John, G. J. Long and A. Mohan, J. Appl. Phys., 87, 7001 (2000). https://doi.org/10.1063/1.372911
  4. E. Taboada, R. Solanas, E. Rodríguez, R. Weissleder and A. Roig, Adv. Funct. Mater., 19, 2319 (2009). https://doi.org/10.1002/adfm.200801681
  5. S. K Apte, S. D. Naik, R. S. Sonawane, B. B. Kale and J. O. Baeg, J. Am. Ceram. Soc., 90, 412 (2007). https://doi.org/10.1111/j.1551-2916.2006.01424.x
  6. S. Sun and H. Zeng, J. Am. Chem. Soc., 124, 8204 (2002). https://doi.org/10.1021/ja026501x
  7. Q. Song and Z. J. Zhang, J. Am. Chem. Soc., 126, 6164 (2004). https://doi.org/10.1021/ja049931r
  8. A. Demortiere, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio and S. Begin-Colin, Nanoscale, 3, 225 (2011). https://doi.org/10.1039/c0nr00521e
  9. I. Cesar, A. Kay, J. A. G. Martinez and M. Gratzel, J. Am. Chem. Soc., 128, 4582 (2006). https://doi.org/10.1021/ja060292p
  10. J. Chen, L. Xu, W. Li and X. Gou, Adv. Mater., 17, 582 (2005). https://doi.org/10.1002/adma.200401101
  11. B. Jia and L. Gao, Cryst. Growth Des., 8, 1372 (2008). https://doi.org/10.1021/cg070300t
  12. J. Zhang, A. Thurber, C. Hanna and A. Punnoose, Langmuir, 26, 5273 (2010). https://doi.org/10.1021/la903544a
  13. H. T. Kim, C. Y Hwang, H. B. Song, K. J. Lee, Y. J. Joo, S. J. Hong, N. K. Kang, S. D. Park, K. D. Kim and Y. H. Choa, J. Kor. Powd. Met. Inst., 15, 114 (2008). https://doi.org/10.4150/KPMI.2008.15.2.114
  14. S. Megelski, J. S. Stephens, D. B. Chase and J. F. Rabolt, Macromolecules, 35, 8456 (2002). https://doi.org/10.1021/ma020444a
  15. W. Y. Lee, H. J. Yun and J. W. Yoon, J. Alloys Comp., 583, 320 (2014). https://doi.org/10.1016/j.jallcom.2013.08.191
  16. W. Ponhan and S. Maensiri, Solid State Sci., 11, 479 (2009). https://doi.org/10.1016/j.solidstatesciences.2008.06.019
  17. A. L. Medina-Castillo and J. F. Fernandez-Sanchez, Adv. Funct. Mater, 21, 3488 (2011). https://doi.org/10.1002/adfm.201100707
  18. M. Saleem, M. F. Al-Kuhaili, S. M. A. Durrani and I. A. Bakhtiari, Phys. Scr., 85, 055802 (2012). https://doi.org/10.1088/0031-8949/85/05/055802
  19. T. Yamashita and P. Hayes, Appl. Surf. Sci., 254, 2441 (2008). https://doi.org/10.1016/j.apsusc.2007.09.063
  20. H. L An and H. J Ahn, Mater. Lett., 81, 41 (2012). https://doi.org/10.1016/j.matlet.2012.04.143
  21. J. Li, J. Xu, W.L Dai, H. Li and K. Fan, Appl. Catal. B, 85, 162 (2009). https://doi.org/10.1016/j.apcatb.2008.07.008
  22. Z. Li, W. Shen, W. He and X. Zu, J. Hazard. Mater., 155, 590 (2008). https://doi.org/10.1016/j.jhazmat.2007.11.095
  23. P. Xiaoyan, J. Dongmei, L. Yan and M. Xueming, J. Magn. Magn. Mater., 305, 388 (2006). https://doi.org/10.1016/j.jmmm.2006.01.109
  24. B. R. Koo, I. K. Park and H. J. Ahn, J. Alloys Comp., 603, 52 (2014). https://doi.org/10.1016/j.jallcom.2014.03.058