DOI QR코드

DOI QR Code

Antiangiogenesis therapy: an update after the first decade

  • De Falco, Sandro (Angiogenesis LAB, Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso')
  • Received : 2013.10.08
  • Accepted : 2013.11.19
  • Published : 2014.01.01

Abstract

Angiogenesis is a complex biological phenomenon that forms new blood vessels from the pre-existing vasculature. Aberrant angiogenesis has been implicated in a variety of diseases such as cancer, atherosclerosis, arthritis, obesity, pulmonary hypertension, diabetic retinopathy, and age-related macular degeneration. These conditions collectively affect nearly 10% of the global population. Much effort has focused on identifying new therapeutic agents that inhibit pathological angiogenesis since 1971, when Judah Folkman published the hypothesis that tumor growth is angiogenesis-dependent and that its inhibition may be therapeutic. In 2004, the U.S. Food and Drug Administration approved the first antiangiogenic drug for the treatment of metastatic colon cancer, bevacizumab (Avastin, Genentech). This drug is a humanized monoclonal antibody that neutralizes the vascular endothelial growth factor. It is used in combination with chemotherapy, and its use began the era of antiangiogenesis therapy. Several new therapeutic agents have been added to the list of approved drugs, and clinical trials of new therapeutic options and antiangiogenic agents are ongoing. This review describes the progress made in the first decade of antiangiogenesis therapy, and addresses both validated and possible targets for future drug development.

Keywords

References

  1. Folkman J, Shing Y. Angiogenesis. J Biol Chem 1992; 267:10931-10934.
  2. Carmeliet P. Angiogenesis in health and disease. Nat Med 2003;9:653-660. https://doi.org/10.1038/nm0603-653
  3. Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature 2005;438:967-974. https://doi.org/10.1038/nature04483
  4. Carmeliet P. Angiogenesis in life, disease and medicine. Nature 2005;438:932-936. https://doi.org/10.1038/nature04478
  5. Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 2007;6:273-286. https://doi.org/10.1038/nrd2115
  6. Ferrara N, Mass RD, Campa C, Kim R. Targeting VEGF-A to treat cancer and age-related macular degeneration. Annu Rev Med 2007;58:491-504. https://doi.org/10.1146/annurev.med.58.061705.145635
  7. Crawford Y, Ferrara N. VEGF inhibition: insights from preclinical and clinical studies. Cell Tissue Res 2009;335:261-269. https://doi.org/10.1007/s00441-008-0675-8
  8. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell 2011;146:873-887. https://doi.org/10.1016/j.cell.2011.08.039
  9. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011;473:298-307. https://doi.org/10.1038/nature10144
  10. Tugues S, Koch S, Gualandi L, Li X, Claesson-Welsh L. Vascular endothelial growth factors and receptors: anti-angiogenic therapy in the treatment of cancer. Mol Aspects Med 2011;32:88-111. https://doi.org/10.1016/j.mam.2011.04.004
  11. Lee S, Chen TT, Barber CL, et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell 2007;130:691-703. https://doi.org/10.1016/j.cell.2007.06.054
  12. Stockmann C, Doedens A, Weidemann A, et al. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 2008;456:814-818. https://doi.org/10.1038/nature07445
  13. Tvorogov D, Anisimov A, Zheng W, et al. Effective suppression of vascular network formation by combination of antibodies blocking VEGFR ligand binding and receptor dimerization. Cancer Cell 2010;18:630-640. https://doi.org/10.1016/j.ccr.2010.11.001
  14. Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise. Cell 2010;140:460-476. https://doi.org/10.1016/j.cell.2010.01.045
  15. Carmeliet P, Moons L, Luttun A, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 2001;7:575-583. https://doi.org/10.1038/87904
  16. Gigante B, Morlino G, Gentile MT, Persico MG, De Falco S. Plgf-/-eNos-/- mice show defective angiogenesis associated with increased oxidative stress in response to tissue ischemia. FASEB J 2006;20:970-972. https://doi.org/10.1096/fj.05-4481fje
  17. De Falco S. The discovery of placenta growth factor and its biological activity. Exp Mol Med 2012;44:1-9. https://doi.org/10.3858/emm.2012.44.1.025
  18. Tarallo V, Vesci L, Capasso O, et al. A placental growth factor variant unable to recognize vascular endothelial growth factor (VEGF) receptor-1 inhibits VEGF-dependent tumor angiogenesis via heterodimerization. Cancer Res 2010;70:1804-1813. https://doi.org/10.1158/0008-5472.CAN-09-2609
  19. Rolny C, Mazzone M, Tugues S, et al. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through down-regulation of PlGF. Cancer Cell 2011;19:31-44. https://doi.org/10.1016/j.ccr.2010.11.009
  20. Hagberg CE, Falkevall A, Wang X, et al. Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 2010;464:917-921. https://doi.org/10.1038/nature08945
  21. Luttun A, Tjwa M, Moons L, et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 2002;8:831-840. https://doi.org/10.1038/nm731
  22. Bry M, Kivela R, Holopainen T, et al. Vascular endothelial growth factor-B acts as a coronary growth factor in transgenic rats without inducing angiogenesis, vascular leak, or inflammation. Circulation 2010;122:1725-1733. https://doi.org/10.1161/CIRCULATIONAHA.110.957332
  23. De Falco S, Gigante B, Persico MG. Structure and function of placental growth factor. Trends Cardiovasc Med 2002;12:241-246. https://doi.org/10.1016/S1050-1738(02)00168-8
  24. Fischer C, Mazzone M, Jonckx B, Carmeliet P. FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat Rev Cancer 2008;8:942-956. https://doi.org/10.1038/nrc2524
  25. Schwartz JD, Rowinsky EK, Youssoufian H, Pytowski B, Wu Y. Vascular endothelial growth factor receptor-1 in human cancer: concise review and rationale for development of IMC-18F1 (human antibody targeting vascular endothelial growth factor receptor-1). Cancer 2010;116(4 Suppl):1027-1032. https://doi.org/10.1002/cncr.24789
  26. Jain RK. Molecular regulation of vessel maturation. Nat Med 2003;9:685-693. https://doi.org/10.1038/nm0603-685
  27. Hellberg C, Ostman A, Heldin CH. PDGF and vessel maturation. Recent Results Cancer Res 2010;180:103-114. https://doi.org/10.1007/978-3-540-78281-0_7
  28. Song S, Ewald AJ, Stallcup W, Werb Z, Bergers G. PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol 2005;7:870-879. https://doi.org/10.1038/ncb1288
  29. di Tomaso E, London N, Fuja D, et al. PDGF-C induces maturation of blood vessels in a model of glioblastoma and attenuates the response to anti-VEGF treatment. PLoS One 2009;4:e5123. https://doi.org/10.1371/journal.pone.0005123
  30. Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 2009;8:235-253. https://doi.org/10.1038/nrd2792
  31. Murakami M, Nguyen LT, Zhuang ZW, et al. The FGF system has a key role in regulating vascular integrity. J Clin Invest 2008;118:3355-3366. https://doi.org/10.1172/JCI35298
  32. Augustin HG, Koh GY, Thurston G, Alitalo K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 2009;10:165-177. https://doi.org/10.1038/nrm2639
  33. Saharinen P, Eklund L, Miettinen J, et al. Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell-cell and cell-matrix contacts. Nat Cell Biol 2008;10:527-537. https://doi.org/10.1038/ncb1715
  34. De Palma M, Venneri MA, Galli R, et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 2005;8:211-226. https://doi.org/10.1016/j.ccr.2005.08.002
  35. Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 2009;16:209-221. https://doi.org/10.1016/j.devcel.2009.01.004
  36. Mazzone M, Dettori D, Leite de Oliveira R, et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 2009;136:839-851. https://doi.org/10.1016/j.cell.2009.01.020
  37. Thurston G, Noguera-Troise I, Yancopoulos GD. The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nat Rev Cancer 2007;7:327-331. https://doi.org/10.1038/nrc2130
  38. Jakobsson L, Franco CA, Bentley K, et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 2010;12:943-953. https://doi.org/10.1038/ncb2103
  39. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000;407:242-248. https://doi.org/10.1038/35025215
  40. Mosch B, Reissenweber B, Neuber C, Pietzsch J. Eph receptors and ephrin ligands: important players in angiogenesis and tumor angiogenesis. J Oncol 2010; 2010:135285.
  41. Gu C, Giraudo E. The role of semaphorins and their receptors in vascular development and cancer. Exp Cell Res 2013;319:1306-1316. https://doi.org/10.1016/j.yexcr.2013.02.003
  42. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2002;2:727-739. https://doi.org/10.1038/nrc905
  43. Presta LG, Chen H, O'Connor SJ, et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 1997;57:4593-4599.
  44. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350:2335-2342. https://doi.org/10.1056/NEJMoa032691
  45. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer 2012;12:278-287. https://doi.org/10.1038/nrc3236
  46. Ciombor KK, Berlin J, Chan E. Aflibercept. Clin Cancer Res 2013;19:1920-1925. https://doi.org/10.1158/1078-0432.CCR-12-2911
  47. Escudier B, Eisen T, Stadler WM, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 2007;356:125-134. https://doi.org/10.1056/NEJMoa060655
  48. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359:378-390. https://doi.org/10.1056/NEJMoa0708857
  49. Motzer RJ, Michaelson MD, Redman BG, et al. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 2006;24:16-24. https://doi.org/10.1200/JCO.2005.02.2574
  50. Demetri GD, van Oosterom AT, Garrett CR, et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 2006;368:1329-1338. https://doi.org/10.1016/S0140-6736(06)69446-4
  51. Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 2007;356:115-124. https://doi.org/10.1056/NEJMoa065044
  52. Ward JE, Stadler WM. Pazopanib in renal cell carcinoma. Clin Cancer Res 2010;16:5923-5927. https://doi.org/10.1158/1078-0432.CCR-10-0728
  53. Schoffski P. Pazopanib in the treatment of soft tissue sarcoma. Expert Rev Anticancer Ther 2012;12:711-723. https://doi.org/10.1586/era.12.41
  54. Ho TH, Jonasch E. Axitinib in the treatment of metastatic renal cell carcinoma. Future Oncol 2011;7:1247-1253. https://doi.org/10.2217/fon.11.107
  55. Wells SA Jr, Robinson BG, Gagel RF, et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol 2012;30:134-141. https://doi.org/10.1200/JCO.2011.35.5040
  56. Elisei R, Schlumberger MJ, Muller SP, et al. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol 2013;31:3639-3646. https://doi.org/10.1200/JCO.2012.48.4659
  57. Andre T, Dumont SN. Regorafenib approved in metastatic colorectal cancer. Bull Cancer 2013;100:1027-1029.
  58. Lyseng-Williamson KA. Regorafenib: a guide to its use in advanced gastrointestinal stromal tumor (GIST) after failure of imatinib and sunitinib. BioDrugs 2013;27:525-531. https://doi.org/10.1007/s40259-013-0061-2
  59. Ambati J, Ambati BK, Yoo SH, Ianchulev S, Adamis AP. Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol 2003;48:257-293. https://doi.org/10.1016/S0039-6257(03)00030-4
  60. Brown DM, Kaiser PK, Michels M, et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 2006;355:1432-1444. https://doi.org/10.1056/NEJMoa062655
  61. Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 2006;355:1419-1431. https://doi.org/10.1056/NEJMoa054481
  62. Garnock-Jones KP. Ranibizumab: in macular oedema following retinal vein occlusion. Drugs 2011;71:455-463.
  63. CATT Research Group, Martin DF, Maguire MG, et al. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med 2011;364:1897-1908. https://doi.org/10.1056/NEJMoa1102673
  64. Schmidt-Erfurth U, Kaiser PK, Korobelnik JF, et al. Intravitreal aflibercept injection for neovascular age-related macular degeneration: ninety-six-week eesults of the VIEW studies. Ophthalmology 2013.
  65. Famiglietti EV, Stopa EG, McGookin ED, Song P, LeBlanc V, Streeten BW. Immunocytochemical localization of vascular endothelial growth factor in neurons and glial cells of human retina. Brain Res 2003;969:195-204. https://doi.org/10.1016/S0006-8993(02)03766-6
  66. Sayanagi K, Sharma S, Kaiser PK. Photoreceptor status after antivascular endothelial growth factor therapy in exudative age-related macular degeneration. Br J Ophthalmol 2009;93:622-626. https://doi.org/10.1136/bjo.2008.151977
  67. Yodoi Y, Tsujikawa A, Nakanishi H, et al. Central retinal sensitivity after intravitreal injection of bevacizumab for myopic choroidal neovascularization. Am J Ophthalmol 2009;147:816-824. https://doi.org/10.1016/j.ajo.2008.11.020
  68. Mintz-Hittner HA, Kennedy KA, Chuang AZ; BEATROP Cooperative Group. Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N Engl J Med 2011;364:603-615. https://doi.org/10.1056/NEJMoa1007374
  69. Kimoto K, Kubota T. Anti-VEGF agents for ocular angiogenesis and vascular permeability. J Ophthalmol 2011;2012:852183.
  70. Peeters M, Strickland AH, Lichinitser M, et al. A randomised, double-blind, placebo-controlled phase 2 study of trebananib (AMG 386) in combination with FOLFIRI in patients with previously treated metastatic colorectal carcinoma. Br J Cancer 2013;108:503-511. https://doi.org/10.1038/bjc.2012.594
  71. Besse B, Tsao LC, Chao DT, et al. Phase Ib safety and pharmacokinetic study of volociximab, an anti-alpha- 5beta1 integrin antibody, in combination with carboplatin and paclitaxel in advanced non-small-cell lung cancer. Ann Oncol 2013;24:90-96. https://doi.org/10.1093/annonc/mds281
  72. Macdonald TJ, Vezina G, Stewart CF, et al. Phase II study of cilengitide in the treatment of refractory or relapsed high-grade gliomas in children: a report from the Children's Oncology Group. Neuro Oncol 2013;15:1438-1444. https://doi.org/10.1093/neuonc/not058
  73. Clarke JM, Hurwitz HI. Targeted inhibition of VEGF receptor 2: an update on ramucirumab. Expert Opin Biol Ther 2013;13:1187-1196. https://doi.org/10.1517/14712598.2013.810717
  74. Wu Y, Zhong Z, Huber J, et al. Anti-vascular endothelial growth factor receptor-1 antagonist antibody as a therapeutic agent for cancer. Clin Cancer Res 2006;12:6573-6584. https://doi.org/10.1158/1078-0432.CCR-06-0831
  75. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 2008;8:592-603. https://doi.org/10.1038/nrc2442
  76. Ribatti D. The inefficacy of antiangiogenic therapies. J Angiogenes Res 2010;2:27. https://doi.org/10.1186/2040-2384-2-27
  77. Sennino B, McDonald DM. Controlling escape from angiogenesis inhibitors. Nat Rev Cancer 2012;12:699-709. https://doi.org/10.1038/nrc3366
  78. Verma S, McLeod D, Batist G, Robidoux A, Martins IR, Mackey JR. In the end what matters most? A review of clinical endpoints in advanced breast cancer. Oncologist 2011;16:25-35.
  79. O'Connor R, Clynes M, Dowling P, O'Donovan N, O'Driscoll L. Drug resistance in cancer: searching for mechanisms, markers and therapeutic agents. Expert Opin Drug Metab Toxicol 2007;3:805-817. https://doi.org/10.1517/17425255.3.6.805
  80. Rubenstein JL, Kim J, Ozawa T, et al. Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2000;2:306-314. https://doi.org/10.1038/sj.neo.7900102
  81. Du R, Lu KV, Petritsch C, et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 2008;13:206-220. https://doi.org/10.1016/j.ccr.2008.01.034
  82. Ebos JM, Kerbel RS. Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol 2011;8:210-221. https://doi.org/10.1038/nrclinonc.2011.21
  83. Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 2004;4:423-436. https://doi.org/10.1038/nrc1369
  84. Jain RK, Duda DG, Willett CG, et al. Biomarkers of response and resistance to antiangiogenic therapy. Nat Rev Clin Oncol 2009;6:327-338. https://doi.org/10.1038/nrclinonc.2009.63
  85. Grunewald M, Avraham I, Dor Y, et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 2006;124:175-189. https://doi.org/10.1016/j.cell.2005.10.036
  86. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005;307:58-62. https://doi.org/10.1126/science.1104819
  87. Ambati J, Atkinson JP, Gelfand BD. Immunology of age-related macular degeneration. Nat Rev Immunol 2013;13:438-451. https://doi.org/10.1038/nri3459

Cited by

  1. Placental growth factor in cancer vol.18, pp.11, 2014, https://doi.org/10.1517/14728222.2014.948420
  2. Antiangiogenic Effect of Ethanol Extract of Vigna angularis via Inhibition of Phosphorylation of VEGFR2, Erk, and Akt vol.2015, pp.None, 2014, https://doi.org/10.1155/2015/371368
  3. Prospects for early investigational therapies for sickle cell disease vol.24, pp.5, 2014, https://doi.org/10.1517/13543784.2015.1012292
  4. Powerful anti-tumor and anti-angiogenic activity of a new anti-vascular endothelial growth factor receptor 1 peptide in colorectal cancer models vol.6, pp.12, 2014, https://doi.org/10.18632/oncotarget.3384
  5. Avastin® in combination with gemcitabine and cisplatin significantly inhibits tumor angiogenesis and increases the survival rate of human A549 tumor-bearing mice vol.9, pp.6, 2014, https://doi.org/10.3892/etm.2015.2402
  6. Efficient exploration of pan-cancer networks by generalized covariance selection and interactive web content vol.43, pp.15, 2015, https://doi.org/10.1093/nar/gkv413
  7. Inflammation and its role in age-related macular degeneration vol.73, pp.None, 2014, https://doi.org/10.1007/s00018-016-2147-8
  8. Identification of peptides derived from the C-terminal domain of fibulin-7 active for endothelial cell adhesion and tube formation disruption : Fibulin-7 Peptides Active for Cell Adhesion vol.106, pp.2, 2014, https://doi.org/10.1002/bip.22754
  9. KSHV-Mediated Angiogenesis in Tumor Progression vol.8, pp.7, 2014, https://doi.org/10.3390/v8070198
  10. The Role of PDGFs and PDGFRs in Colorectal Cancer vol.2017, pp.None, 2014, https://doi.org/10.1155/2017/4708076
  11. Nanobodies As Novel Agents for Targeting Angiogenesis in Solid Cancers vol.8, pp.None, 2014, https://doi.org/10.3389/fimmu.2017.01746
  12. Tumor Blood Vessels and Vasculogenic Mimicry – Current Knowledge and Searching for New Cellular/Molecular Targets of Anti-Angiogenic Therapy vol.5, pp.1, 2014, https://doi.org/10.1515/acb-2017-0005
  13. A novel synthetic small molecule YF-452 inhibits tumor growth through antiangiogenesis by suppressing VEGF receptor 2 signaling vol.60, pp.2, 2014, https://doi.org/10.1007/s11427-016-0369-6
  14. Versatile synthetic alternatives to Matrigel for vascular toxicity screening and stem cell expansion vol.1, pp.7, 2014, https://doi.org/10.1038/s41551-017-0096
  15. A Review of Anti-Angiogenic Targets for Monoclonal Antibody Cancer Therapy vol.18, pp.8, 2017, https://doi.org/10.3390/ijms18081786
  16. Collateral Damage Intended—Cancer-Associated Fibroblasts and Vasculature Are Potential Targets in Cancer Therapy vol.18, pp.11, 2017, https://doi.org/10.3390/ijms18112355
  17. Osteonecrosis of the Jaw Associated with Antiangiogenics in Antiresorptive-Naïve Patient: A Comprehensive Review of the Literature vol.2018, pp.None, 2014, https://doi.org/10.1155/2018/8071579
  18. Preclinical characterization of anlotinib, a highly potent and selective vascular endothelial growth factor receptor‐2 inhibitor vol.109, pp.4, 2014, https://doi.org/10.1111/cas.13536
  19. Osteonecrosis of the Jaws in Patients Receiving Anti-Angiogenic Drugs and Chemotherapeutics: Literature Review and Case Reports vol.46, pp.2, 2014, https://doi.org/10.2478/amb-2019-0019
  20. SNX9 determines the surface levels of integrin β1 in vascular endothelial cells: Implication in poor prognosis of human colorectal cancers overexpressing SNX9 vol.234, pp.10, 2014, https://doi.org/10.1002/jcp.28346
  21. Oral Delivery of a Tetrameric Tripeptide Inhibitor of VEGFR1 Suppresses Pathological Choroid Neovascularization vol.21, pp.2, 2020, https://doi.org/10.3390/ijms21020410
  22. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2020) vol.13, pp.1, 2014, https://doi.org/10.1186/s13045-020-00977-0
  23. Different Presentation and Outcomes in the Surgical Treatment of Advanced MRONJ in Oncological and Nononcological Patients Taking or Not Corticosteroid Therapy vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/7855497
  24. Anti-inflammatory Effects of GTE in Eye Diseases vol.8, pp.None, 2021, https://doi.org/10.3389/fnut.2021.753955
  25. Prolyl 3-Hydroxylase 2 Is a Molecular Player of Angiogenesis vol.22, pp.8, 2014, https://doi.org/10.3390/ijms22083896
  26. Anti-Angiogenic Property of Free Human Oligosaccharides vol.11, pp.6, 2014, https://doi.org/10.3390/biom11060775
  27. The cancer angiogenesis co-culture assay: In vitro quantification of the angiogenic potential of tumoroids vol.16, pp.7, 2014, https://doi.org/10.1371/journal.pone.0253258
  28. Ramucirumab-related osteonecrosis of the jaw vol.125, pp.None, 2014, https://doi.org/10.1016/j.oraloncology.2021.105660