DOI QR코드

DOI QR Code

Comparison of landmark positions between Cone-Beam Computed Tomogram (CBCT) and Adjusted 2D lateral cephalogram

Cone-Beam Computed Tomogram (CBCT)과 Adjusted 2D lateral cephalogram의 계측점 차이에 관한 비교 연구

  • Son, Soo-Jung (Graduate School of Clinical Dentistry, Ewha Womans University) ;
  • Chun, Youn-Sic (Graduate School of Clinical Dentistry, Ewha Womans University) ;
  • Kim, Minji (Graduate School of Clinical Dentistry, Ewha Womans University)
  • 손수정 (이화여자대학교 임상치의학대학원) ;
  • 전윤식 (이화여자대학교 임상치의학대학원) ;
  • 김민지 (이화여자대학교 임상치의학대학원)
  • Received : 2014.06.20
  • Accepted : 2014.07.14
  • Published : 2014.07.31

Abstract

Purpose: This study aims to investigate if 2D analysis method is applicable to analysis of CBCT by comparing measuring points of CBCT with those of Adjusted 2D Lateral Cephalogram (Adj-Ceph) with magnification adjusted to 100% and finding out at which landmarks the difference in position appear. Materials and methods: CBCT data and Adj-Ceph (100% magnification) data from 50 adult patients have been extracted as research objects, and the horizontal (Y axis) and vertical (Z axis) coordinates of landmarks were compared. Landmarks have been categorized into 4 groups by the position and whether they are bilaterally overlapped. Paired t-test was used to compare differences between Adj-Ceph and CBCT. Results: Significant difference was found at 11 landmarks including Group B (S, Ar, Ba, PNS), Group C (Po, Or, Hinge axis, Go) and Group D (U1RP, U6CP, L6CP) in the horizontal (Y) axis while all the landmarks in vertical (Z) axis showed significant difference (P<.05). As a result of landmark difference analysis, a meaningful difference with more than 1 mm at 13 landmarks were indentifed in the horizontal axis. In the vertical axis, significant difference over 1 mm was detected from every landmark except Sella. Conclusion: Using the conventional lateral cephalometric measurements on CBCT is insufficient. A new 3D analysis or a modified 2D analysis adjusted on 19 landmarks of the vertical axis and 13 of the horizontal axis are needed when implementing CBCT diagnosis.

목적: 본 연구에서는 CBCT (Cone-Beam Computed Tomogram)와 100%로 확대율을 보정한 조절된 측모 두부 방사선 규격 계측 사진(Adjusted 2D Lateral Cephalogram; 이하 Adj-Ceph)의 좌표값을 비교하여 차이가 있는 계측점들의 항목을 분석하여 기존의 2D 분석법을 CBCT 분석에 적용할 수 있는지 여부를 평가해보고자 하였다. 재료 및 방법: 성인 환자 50명의 CBCT 자료 50개와, 동일 환자의 측모 두부 방사선 규격사진을 100% 확대율로 보정한 자료(Adj-Ceph) 50개를 대상으로 하여, 수평축과 수직축의 좌표를 비교하였다. 계측점들의 위치와 좌우 중첩 여부에 따라 두개골 전방에 위치한 점들(group A), 두개 중후방에 위치한 점들(group B), 좌우 양측성 점들(group C), 치아부위 계측점들(group D) 네 그룹으로 나누어 분석 하였고, 좌표값에 유의한 차이가 있는지 분석하기 위하여 paired t-test를 시행하였다. 결과: 수평축(Y축)에서는 Group B (S, Ar, Ba, PNS), Group C (Po, Or, Hinge axis, Go), Group D (U1RP, U6CP, L6CP) 등 11개의 계측점에서 유의한 차이가 있었다. 수직축(Z축)에서는 전체 계측점에서 유의한 차이가 있었다(P<.01). 좌표값의 차이 분석 결과 수평축에서는 13개의 계측점에서 1 mm 이상의 유의한 차이가 있었다. 수직축에서는 Group B의 Sella를 제외한 전체 계측점에서 1 mm 이상의 유의한 차이가 있었다. 결론: CBCT 분석 시에는 기존의 측모두부방사선 규격사진의 분석법을 그대로 사용하기에는 어려움이 있다. 3D 분석법, 또는 수평축에서 13개의 계측점들이 보정되고, 수칙축 19개가 보정된 수정된 새로운 2D 분석법이 사용되어야 한다.

Keywords

References

  1. Broadbent BH. A new x-ray technique and its application to orthodontia. Angle Orthod 1981;51:93-114.
  2. Broadbent BH. The face of the normal child. Angle Orthod 1937;7:183-208.
  3. Brodie AG. On the growth pattern of the human head. From the third month to the eighth year of life. Am J Anat 1941;68:209-62. https://doi.org/10.1002/aja.1000680204
  4. Salzmann JA. The face in profile: an anthropological x-ray investigation on Swedish children and conscripts by Arne Bjork. Am J Orthod 1948;34:691-9. https://doi.org/10.1016/0002-9416(48)90083-9
  5. Downs WB. Variations in facial relationships; their significance in treatment and prognosis. Am J Orthod 1948;34:812-40. https://doi.org/10.1016/0002-9416(48)90015-3
  6. Steiner CC. Cephalometrics for you and me. Am J Orthod 1953;39:729-55. https://doi.org/10.1016/0002-9416(53)90082-7
  7. Sassouni V. A roentgenographic cephalometric analysis of cephalo-facio-dental relationships. Am J Orthod 1955;41:735-64. https://doi.org/10.1016/0002-9416(55)90171-8
  8. Tweed CH. Was the development of the diagnostic facial triangle as an accurate analysis based on fact or fancy? Am J Orthod 1962;48:823-40. https://doi.org/10.1016/0002-9416(62)90002-7
  9. Harvold EP. The role of function in the etiology and treatment of malocclusion. Am J Orthod 1968;54:883-98. https://doi.org/10.1016/0002-9416(68)90241-8
  10. Jacobson A. Application of the "Wits" appraisal. Am J Orthod 1976;70:179-89. https://doi.org/10.1016/S0002-9416(76)90318-3
  11. Jacobson A. The "Wits" appraisal of jaw disharmony. Am J Orthod. 1975;67:125-38. https://doi.org/10.1016/0002-9416(75)90065-2
  12. Burstone CJ, James RB, Legan H, Murphy GA, Norton LA. Cephalometrics for orthognathic surgery. J Oral Surg 1978;36:269-77.
  13. Ricketts RM. Perspectives in the clinical application of cephalometrics. The first fifty years. Angle Orthod 1981;51:115-50.
  14. McNamara JA Jr. A method of cephalometric evaluation. Am J Orthod 1984;86:449-69. https://doi.org/10.1016/S0002-9416(84)90352-X
  15. Yen PKJ. Identification Of Landmarks In Cephalometric Radiographs. Angle Orthod 1960;30:35-41.
  16. Marshall D. Interpretation of the posteroanterior skull radiograph- assembly of disarticulated bones. Dent Radiogr Photogr 1969;42:27-35.
  17. Baumrind S, Frantz RC. The reliability of head film measurements. Landmark identification. Am J Orthod 1971;60:111-27. https://doi.org/10.1016/0002-9416(71)90028-5
  18. Midtgard J, Bjork G, Linder-Aronson S. Reproducibility of cephalometric landmarks and errors of measurements of cephalometric cranial distances. Angle Orthod 1974;44:56-61.
  19. Cho HJ. A three-dimensional cephalometric analysis. J Clin Orthod 2009;43:235-52.
  20. Grayson BH, McCarthy JG, Bookstein F. Analysis of craniofacial asymmetry by multiplane cephalometry. Am J Orthod 1983;84:217-24. https://doi.org/10.1016/0002-9416(83)90129-X
  21. Baumrind S, Moffitt FH, Curry S. Three-dimensional x-ray stereometry from paired coplanar images: a progress report. Am J Orthod 1983;84:292-312. https://doi.org/10.1016/S0002-9416(83)90346-9
  22. Kusnoto B, Evans CA, BeGole EA, de Rijk W. Assessment of 3-dimensional computer-generated cephalometric measurements. Am J Orthod Dentofacial Orthop 1999;116:390-9. https://doi.org/10.1016/S0889-5406(99)70223-4
  23. Dale AM, Robert AD. A Clinician's Guide to Understanding Cone Beam Volumetric Imaging (CBVI). 2007 - [cited 2012 December 20]. Available from:http://www.Ineedce.com/courses/1413/PDF/A_Clin_Gde_ConeBeam.pdf
  24. Cavalcanti MG, Vannier MW. Quantitative analysis of spiral computed tomography for craniofacial clinical applications. Dentomaxillofac Radiol 1998;27:344-50. https://doi.org/10.1038/sj.dmfr.4600389
  25. Matteson SR, Bechtold W, Phillips C, Staab EV. A method for three-dimensional image reformation for quantitative cephalometric analysis. J Oral Maxillofac Surg 1989;47:1053-61. https://doi.org/10.1016/0278-2391(89)90180-8
  26. Christiansen EL, Thompson JR, Kopp S. Intra- and inter-observer variability and accuracy in the determination of linear and angular measurements in computed tomography. An in vitro and in situ study of human mandibles. Acta Odontol Scand 1986;44:221-9. https://doi.org/10.3109/00016358608997724
  27. Hildebolt CF, Vannier MW, Knapp RH. Validation study of skull three-dimensional computerized tomography measurements. Am J Phys Anthropol 1990;82:283-94. https://doi.org/10.1002/ajpa.1330820307
  28. Lascala CA, Panella J, Marques MM. Analysis of the accuracy of linear measurements obtained by cone beam computed tomography (CBCT-NewTom). Dentomaxillofac Radiol 2004;33:291-4. https://doi.org/10.1259/dmfr/25500850
  29. Schlicher W, Nielsen I, Huang JC, Maki K, Hatcher DC, Miller AJ. Consistency and precision of landmark identification in three-dimensional cone beam computed tomography scans. Eur J Orthod 2012;34:263-75. https://doi.org/10.1093/ejo/cjq144
  30. Grauer D, Cevidanes LS, Styner MA, Heulfe I, Harmon ET, Zhu H, Proffit WR. Accuracy and landmark error calculation using cone-beam computed tomography-generated cephalograms. Angle Orthod 2010;80:286-94. https://doi.org/10.2319/030909-135.1
  31. Park JW, Kim NK, Chang YI. Comparison of landmark position between conventional cephalometric radiography and CT scans projected to midsagittal plane. Korean J Orthod 2008;38:427-36. https://doi.org/10.4041/kjod.2008.38.6.427
  32. Kumar V, Ludlow JB, Mol A, Cevidanes L. Comparison of conventional and cone beam CT synthesized cephalograms. Dentomaxillofac Radiol 2007;36:263-9. https://doi.org/10.1259/dmfr/98032356
  33. Kumar V, Ludlow J, Soares Cevidanes LH, Mol A. In vivo comparison of conventional and cone beam CT synthesized cephalograms. Angle Orthod 2008;78:873-9. https://doi.org/10.2319/082907-399.1
  34. Terajima M, Yanagita N, Ozeki K, Hoshino Y, Mori N, Goto TK, Tokumori K, Aoki Y, Nakasima A. Three-dimensional analysis system for orthognathic surgery patients with jaw deformities. Am J Orthod Dentofacial Orthop 2008;134:100-11. https://doi.org/10.1016/j.ajodo.2006.06.027
  35. Terajima M, Endo M, Aoki Y, Yuuda K, Hayasaki H, Goto TK, Tokumori K, Nakasima A. Four-dimensional analysis of stomatognathic function. Am J Orthod Dentofacial Orthop 2008;134:276-87. https://doi.org/10.1016/j.ajodo.2006.09.061
  36. Suri S, Utreja A, Khandelwal N, Mago SK. Craniofacial computerized tomography analysis of the midface of patients with repaired complete unilateral cleft lip and palate. Am J Orthod Dentofacial Orthop 2008;134:418-29. https://doi.org/10.1016/j.ajodo.2006.09.065
  37. Kau CH, Richmond S. Three-dimensional analysis of facial morphology surface changes in untreated children from 12 to 14 years of age. Am J Orthod Dentofacial Orthop 2008;134:751-60. https://doi.org/10.1016/j.ajodo.2007.01.037
  38. Garrett BJ, Caruso JM, Rungcharassaeng K, Farrage JR, Kim JS, Taylor GD. Skeletal effects to the maxilla after rapid maxillary expansion assessed with cone-beam computed tomography. Am J Orthod Dentofacial Orthop 2008;134:8-9. https://doi.org/10.1016/j.ajodo.2008.06.004
  39. Phatouros A, Goonewardene MS. Morphologic changes of the palate after rapid maxillary expansion: a 3-dimensional computed tomography evaluation. Am J Orthod Dentofacial Orthop 2008;134:117-24. https://doi.org/10.1016/j.ajodo.2007.05.015
  40. Ballanti F, Lione R, Fanucci E, Franchi L, Baccetti T, Cozza P. Immediate and post-retention effects of rapid maxillary expansion investigated by computed tomography in growing patients. Angle Orthod 2009;79:24-9. https://doi.org/10.2319/012008-35.1
  41. Kragskov J, Bosch C, Gyldensted C, Sindet-Pedersen S. Comparison of the reliability of craniofacial anatomic landmarks based on cephalometric radiographs and three-dimensional CT scans. Cleft Palate Craniofac J 1997;34:111-6. https://doi.org/10.1597/1545-1569(1997)034<0111:COTROC>2.3.CO;2
  42. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159-74. https://doi.org/10.2307/2529310
  43. Kim JY, Lee DK, Lee SH. Comparison of the observer reliability of cranial anatomic landmarks based on cephalometric radiograph and three-dimensional computed tomography scans. J Korean Assoc Oral Maxillofac Surg 2010;36:262-9. https://doi.org/10.5125/jkaoms.2010.36.4.262
  44. van Vlijmen OJ, Maal TJ, Berge′SJ, Bronkhorst EM, Katsaros C, Kuijpers-Jagtman AM. A comparison between two-dimensional and three-dimensional cephalometry on frontal radiographs and on cone beam computed tomography scans of human skulls. Eur J Oral Sci 2009;117:300-5. https://doi.org/10.1111/j.1600-0722.2009.00633.x
  45. Adams GL, Gansky SA, Miller AJ, Harrell WE Jr, Hatcher DC. Comparison between traditional 2-dimensional cephalometry and a 3-dimensional approach on human dry skulls. Am J Orthod Dentofacial Orthop 2004;126:397-409. https://doi.org/10.1016/j.ajodo.2004.03.023