DOI QR코드

DOI QR Code

단층파쇄대 규모 및 조우 조건에 따른 전력구 쉴드 TBM 터널의 거동 특성 분석

The study on the effect of fracture zone and its orientation on the behavior of shield TBM cable tunnel

  • 투고 : 2014.07.09
  • 심사 : 2014.07.25
  • 발행 : 2014.07.31

초록

최근, 기후변화에 따른 하절기 기온 상승으로 인하여 전력사용량이 급증하고 있다. 이에 따라 발전시설이 새로 준공되고 있으며, 생산된 전기를 도심지로 송전할 초고압 송전선로 시설의 필요성이 증가하고 있다. 쉴드 TBM을 이용한 기계화 터널 굴착공법은 기존의 재래식 공법에 비해 지반 침하와 지반에 전달되는 진동을 최소화 할 수 있는 장점이 있다. 도심지에서의 전력구터널 굴착을 위한 쉴드 TBM 공법이 증가함에도 불구하고, 전력구 쉴드 TBM 터널의 거동 분석에 관한 연구는 미비한 실정이다. 본 연구에서는 파쇄대를 포함하는 복합지반에서 파쇄대 너비, 각도에 따른 전력구 쉴드 TBM 터널의 거동 특성을 분석하고, 인터페이스 요소를 적용한 파쇄대와 연속체로 모델링한 파쇄대의 거동 특성을 비교하고자 한다. 쉴드 TBM을 이용한 터널 굴착은 3D FEM을 이용하여 시뮬레이션 하였다. 파쇄대의 방향과 크기의 변화에 따라 세그먼트 라이닝에 작용되는 축력, 전단력, 휨 모멘트를 검토하고 지표면에서의 연직변위를 분석하였다. FEM 해석으로 얻어진 결과와 안정성 분석에 기초하여, 전방의 파쇄대를 예측하여 터널 구조물의 안정성을 확보할 수 있다.

Recently, the temperature rise in the summer due to climate change, power usage is increasing rapidly. As a result, power generation facilities have been newly completed and the need for ultra-high-voltage transmission line for power transmission of electricity to the urban area has increased. The mechanized tunnelling method using a shield TBM have an advantage that it can minimize vibrations transmitted to the ground and ground subsidence as compared with the conventional tunnelling method. Despite the popularity of shield TBM for cable tunnel construction, study on the mechanical behavior of cable tunnel driven by shield TBM is insufficient. Thus, in this study, the effect of fractured zone ahead of tunnel face on the mechanical behavior of the shield TBM cable tunnel is investigated. In addition, it is intended to compare the behavior characteristics of the fractured zone with continuous model and applying the interface elements. Tunnelling with shield TBM is simulated using 3D FEM. According to the change of the direction and magnitude of the fractured zone, Sectional forces such as axial force, shear force and bending moment are monitored and vertical displacement at the ground surface is measured. Based on the stability analysis with the results obtained from the numerical analysis, it is possible to predict fractured zone ahead of the shield TBM and ensure the stability of the tunnel structure.

키워드

참고문헌

  1. Cho, W.S., Song, K.I., Ryu, H.H. (2014), "Analysis on the behavior of shield TBM cable tunnel: The effect of the distance of backfill grout injection from the end of skin plate", Korean Tunnelling and Underground Space Association, Vol. 16, No. 2, pp. 213-224. https://doi.org/10.9711/KTAJ.2014.16.2.213
  2. Drucker, D.C., Prager, W. (1952), "Soil mechanics and plastic analysis or limit design", Quaterly of Applied Mathematics 10, pp. 157-165.
  3. Kim, H.W., Jeon, S.K., Park, E.S. (2012), "Evaluation of monitoring items for adverse ground conditions in subsea tunneling", TUNN UNDERGR SP TECH, Vol. 32, pp. 19-33. https://doi.org/10.1016/j.tust.2012.05.001
  4. Kim, J.Y. (2013), "EPB shield TBM tunnel construction -How to set the face pressure value and management for the stability of face-", Korean Geotechnical Society, Vol. 29, No. 2, pp. 21-27.
  5. Lee, I.M. (2013), "Geotechnical engineering principles of the tunnel", CIR, Seoul, pp. 444.
  6. MIDAS Information Technology Co., Ltd. (2013), MIDAS GTS NX User's manual, Seongnam, pp. 443.
  7. Ted Belytschko, Michael Pleasha, Dwding, C.H. (1984), "A computer method for stability analysis of caverns in jointed rock", International journal for numerical method in Geomechanics. Vol. 8, pp. 473-492. https://doi.org/10.1002/nag.1610080506
  8. Yoo, J.K. (2012), "Dynamic Behavior of a Tunnel Considering Discontinuities of Rock Mass", Master Thesis, Hanyang University, pp. 55.

피인용 문헌

  1. Anomaly Prediction Ahead Tunnel Face Using Tunnel Electrical Resistivity Prospecting System (TEPS) in Danyang vol.191, 2017, https://doi.org/10.1016/j.proeng.2017.05.253