DOI QR코드

DOI QR Code

Diversity and Physiological Characteristics of Culturable Bacteria from Marine Sediments of Ross Sea, Antarctica

남극 로스해 퇴적물로부터 분리된 세균의 다양성 및 생리학적 특성

  • Lee, Yung Mi (Division of Polar Life Sciences, Korea Polar Research Institute) ;
  • Jung, You-Jung (Division of Polar Life Sciences, Korea Polar Research Institute) ;
  • Hong, Soon Gyu (Division of Polar Life Sciences, Korea Polar Research Institute) ;
  • Kim, Ji Hee (Division of Polar Life Sciences, Korea Polar Research Institute) ;
  • Lee, Hong Kum (Division of Polar Life Sciences, Korea Polar Research Institute)
  • 이영미 (극지연구소 극지생명과학연구부) ;
  • 정유정 (극지연구소 극지생명과학연구부) ;
  • 홍순규 (극지연구소 극지생명과학연구부) ;
  • 김지희 (극지연구소 극지생명과학연구부) ;
  • 이홍금 (극지연구소 극지생명과학연구부)
  • Received : 2014.03.14
  • Accepted : 2014.04.02
  • Published : 2014.06.30

Abstract

The affiliations and physiological characteristics of culturable bacteria isolated from the sediments of Ross Sea, Antarctica were investigated. Sixty-three isolates obtained by cultivation were grouped into 21 phylotypes affiliated with the phyla Actinobacteria and Bacteroidetes and with the classes Alphaproteobacteria and Gammaproteobacteria by phylogenetic analysis of 16S rRNA gene sequences. Based on phylogenetic analysis (<98.65% sequence similarity), approximately 49% of total isolates represented potentially novel species or genus. Among them, extracellular protease, lipase, and exopolysaccharide activities at $10^{\circ}C$ or $20^{\circ}C$ were detected in approximately 46%, 25%, and 32% of the strains, respectively. Forty-three isolates produced at least one type of extracellular material and 21 of them produced at least two extracellular protease, lipase, and/or exopolysaccharides. Our findings indicate that culturable bacterial diversity present within the marine sediments of Ross Sea, Antarctica may contribute to the hydrolysis of the major organic constituents which is closely related with carbon and nitrogen cycling in this environment.

남극 로스해의 퇴적물로부터 배양을 통해 분리한 균주의 분류 및 생리학적 특성 분석을 수행하였다. 분리 세균 63균주의 16S rRNA 유전자 염기서열을 이용한 계통분류학적 분석 결과, 이들은 Actinobacteria, Bacteroidetes, Alphaproteobacteria 및 Gammaproteobacteria 내의 21개의 파일로타입(phylotypes)에 속하였다. 98.65% 염기서열 유사도를 기준으로, 약 49%의 균주가 잠재적으로 신종 또는 신속 후보인 것으로 나타났다. 분리된 균주 중, 각각 46%, 25% 및 32%의 균주가 세포외 단백질분해효소, 지질분해효소 및 외부다당체 생성에 대한 활성을 나타냈다. 43개의 균주는 최소 1개의 세포외 분비 물질을 생산하였고, 이들 중 21개 균주는 최소 2개의 세포외 단백질분해효소, 지질분해효소 또는/및 세포외다당체를 생성하였다. 이러한 결과는 남극 로스해 퇴적물 내의 배양된 세균 군집이 해당 환경에서 탄소와 질소와 관련된 유기물질의 가수분해에 영향을 미치고 있다는 것을 시사한다.

Keywords

References

  1. Bai, Y., Yang, D., Wang, J., Xu, S., Wang, X., and An, L. 2006. Phylogenetic diversity of culturable bacteria from alpine permafrost in the Tianshan Mountains, Northwestern China. Res. Microbiol. 157, 741-751. https://doi.org/10.1016/j.resmic.2006.03.006
  2. Baldi, F., Marchetto, D., Pini, F., Fani, R., Michaud, L., Lo Giudice, A., Berto, D., and Giani, M. 2010. Biochemical and microbial features of shallow marine sediments along the Terra Nova Bay (Ross Sea, Antarctica). Cont. Shelf Res. 30, 1614-1625. https://doi.org/10.1016/j.csr.2010.06.009
  3. Bowman, J.P. and McCuaig, R.D. 2003. Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment. Appl. Environ. Microbiol. 69, 2463-2483. https://doi.org/10.1128/AEM.69.5.2463-2483.2003
  4. Fabiano, M. and Danovaro, R. 1998. Enzymatic activity, bacterial distribution, and organic matter composition in sediments of the Ross Sea (Antarctica). Appl. Environ. Microbiol. 64, 3838-3845.
  5. Fabiano, M. and Pusceddu, A. 1998. Total and hydrolizable particulate organic matter (carbohydrates, proteins and lipids) at a coastal station in Terra Nova Bay (Ross Sea, Antarctica). Polar Biol. 19, 125-132. https://doi.org/10.1007/s003000050223
  6. Gerday, C., Aittaleb, M., Bentahir, M., Chessa, J.P., Claverie, P., Collins, T., D'Amico, S., Dumont, J., Garsoux, G., Georlette, D., and et al. 2000. Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol. 18, 103-107. https://doi.org/10.1016/S0167-7799(99)01413-4
  7. Groudieva, T., Kambourova, M., Yusef, H., Royter, M., Grote, R., Trinks, H., and Antranikian, G. 2004. Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with arctic sea ice, Spitzbergen. Extremophiles 8, 475-488. https://doi.org/10.1007/s00792-004-0409-0
  8. Helmke, E. and Weyland, H. 2004. Psychrophilic versus psychrotolerant bacteria-occurrence and significance in polar and temperate marine habitats. Cell. Mol. Biol. 50, 553-561.
  9. Humphry, D.R., George, A., Black, G.W., and Cummings, S.P. 2001. Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int. J. Syst. Evol. Microbiol. 51, 1235-1243. https://doi.org/10.1099/00207713-51-4-1235
  10. Jiang, H.L., Tay, S.T., Maszenan, A.M., and Tay, J.H. 2006. Physiological traits of bacterial strains isolated from phenol-degrading aerobic granules. FEMS Microbiol. Ecol. 57, 182-191. https://doi.org/10.1111/j.1574-6941.2006.00114.x
  11. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., and et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716-721. https://doi.org/10.1099/ijs.0.038075-0
  12. Kim, M., Oh, H.S., Park, S.C., and Chun, J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64, 346-351. https://doi.org/10.1099/ijs.0.059774-0
  13. Kim, S.J. and Yim, J.H. 2007. Cryoprotective properties of exopolysaccharide (P-21653) produced by the Antarctic bacterium, Pseudoalteromonas arctica KOPRI 21653. J. Microbiol. 45, 510-514.
  14. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120. https://doi.org/10.1007/BF01731581
  15. Kirchman, D.L. 2002. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 39, 91-100.
  16. Lane, D.J. 1991. 16S/23S rRNA sequencing, pp. 115-175. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons Press, New York, N.Y., USA.
  17. Lee, Y., Kim, G., Jung, Y.J., Choe, C.D., Yim, J., Lee, H., and Hong, S. 2012. Polar and alpine microbial collection (PAMC): a culture collection dedicated to polar and alpine microorganisms. Polar Biol. 35, 1433-1438. https://doi.org/10.1007/s00300-012-1182-7
  18. Li, H., Yu, Y., Luo, W., Zeng, Y., and Chen, B. 2009. Bacterial diversity in surface sediments from the Pacific Arctic Ocean. Extremophiles 13, 233-246. https://doi.org/10.1007/s00792-009-0225-7
  19. Macura, D. and Townsley, P.M. 1984. Scandinavian ropy milk-identification and characterization of endogenous ropy lactic streptococci and their extracellular excretion. J. Dairy Sci. 67, 735-744. https://doi.org/10.3168/jds.S0022-0302(84)81363-6
  20. McCammon, S.A., Innes, B.H., Bowman, J.P., Franzmann, P.D., Dobson, S.J., Holloway, P.E., Skerratt, J.H., Nichols, P.D., and Rankin, L.M. 1998. Flavobacterium hibernum sp. nov., a lactose-utilizing bacterium from a freshwater Antarctic lake. Int. J. Syst. Evol. Microbiol. 48, 1405-1412.
  21. McCammon, S.A. and Bowman, J.P. 2000. Taxonomy of Antarctic Flavobacterium species: Description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov., and Flavobacterium xanthum sp. nov., nom. rev. and reclassification of [Flavobacterium] salegens as Salegentibacter salegens gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 50, 1055-1063. https://doi.org/10.1099/00207713-50-3-1055
  22. Michaud, L., Caruso, C., Mangano, S., Interdonato, F., Bruni, V., and Lo Giudice, A. 2012. Predominance of Flavobacterium, Pseudomonas, and Polaromonas within the prokaryotic community of freshwater shallow lakes in the northern Victoria Land, East Antarctica. FEMS Microbiol. Ecol. 82, 391-404. https://doi.org/10.1111/j.1574-6941.2012.01394.x
  23. Polymenakou, P., Bertilsson, S., Tselepides, A., and Stephanou, E. 2005. Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries. Microb. Ecol. 50, 447-462. https://doi.org/10.1007/s00248-005-0005-6
  24. Pusceddu, A., Dell'Anno, A., and Fabiano, M. 2000. Organic matter composition in coastal sediments at Terra Nova Bay (Ross Sea) during summer 1995. Polar Biol. 23, 288-293. https://doi.org/10.1007/s003000050446
  25. Ravenschlag, K., Sahm, K., and Amann, R. 2001. Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard). Appl. Environ. Microbiol. 67, 387-395. https://doi.org/10.1128/AEM.67.1.387-395.2001
  26. Russell, N. 1998. Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications, p. 1-21. In Antranikian, G. (ed.), Biotechnology of extremophiles, Springer Berlin Heidelberg, Germany.
  27. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  28. Selbmann, L., Onofri, S., Fenice, M., Federici, F., and Petruccioli, M. 2002. Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Res. Microbiol. 153, 585-592. https://doi.org/10.1016/S0923-2508(02)01372-4
  29. Staley, J.T. and Herwig, R.P. 1993. Degradation of particulate organic material in the Antarctic, pp. 241-264. In Friedmann, E.I. (ed.), Antarctic Microbiology. Wiley-Liss Inc., New York, N.Y., USA.
  30. Van Trappen, S., Mergaert, J., and Swings, J. 2003. Flavobacterium gelidilacus sp. nov., isolated from microbial mats in Antarctic lakes. Int. J. Syst. Evol. Microbiol. 53, 1241-1245. https://doi.org/10.1099/ijs.0.02583-0
  31. Van Trappen, S., Vandecandelaere, I., Mergaert, J., and Swings, J. 2005. Flavobacterium fryxellicola sp. nov. and Flavobacterium psychrolimnae sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int. J. Syst. Evol. Microbiol. 55, 769-772. https://doi.org/10.1099/ijs.0.03056-0
  32. Vazquez, S.C., Coria, S.H., and Mac Cormack, W.P. 2004. Extracellular proteases from eight psychrotolerant Antarctic strains. Microbiol. Res. 159, 157-166. https://doi.org/10.1016/j.micres.2004.03.001
  33. Webster, G., John Parkes, R., Cragg, B.A., Newberry, C.J., Weightman, A.J., and Fry, J.C. 2006. Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. FEMS Microbiol. Ecol. 58, 65-85. https://doi.org/10.1111/j.1574-6941.2006.00147.x
  34. Whitman, W.B., Coleman, D.C., and Wiebe, W.J. 1998. Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci. USA 95, 6578-6583. https://doi.org/10.1073/pnas.95.12.6578
  35. Yi, H. and Chun, J. 2006. Flavobacterium weaverense sp. nov. and Flavobacterium segetis sp. nov., novel psychrophiles isolated from the Antarctic. Int. J. Syst. Evol. Microbiol. 56, 1239-1244. https://doi.org/10.1099/ijs.0.64164-0
  36. Yi, H., Oh, H.M., Lee, J.H., Kim, S.J., and Chun, J. 2005. Flavobacterium antarcticum sp. nov., a novel psychrotolerant bacterium isolated from the Antarctic. Int. J. Syst. Evol. Microbiol. 55, 637-641. https://doi.org/10.1099/ijs.0.63423-0
  37. Yu, Y., Li, H.R., Zeng, Y.X., and Chen, B. 2011. Bacterial diversity and bioprospecting for cold-active hydrolytic enzymes from culturable bacteria associated with sediment from Nella Fjord, Eastern Antarctica. Mar. Drugs 9, 184-195. https://doi.org/10.3390/md9020184

Cited by

  1. Algibacter psychrophilus sp. nov., a psychrophilic bacterium isolated from marine sediment vol.65, pp.6, 2015, https://doi.org/10.1099/ijs.0.000168
  2. Psychroserpens jangbogonensis sp. nov., a psychrophilic bacterium isolated from Antarctic marine sediment vol.65, pp.Pt 1, 2015, https://doi.org/10.1099/ijs.0.069740-0