
J Electr Eng Technol Vol. 9, No. 4: 1411-1417, 2014
http://dx.doi.org/10.5370/JEET.2014.9.4.1411

 1411

Multi-symbol Accessing Huffman Decoding Method
for MPEG-2 AAC

Eun-Seo Lee*, Kyoung-Cheol Lee**, Kyou-Jung Son***, Seong-Pil Moon***
and Tae-Gyu Chang†

Abstract – An MPEG-2 AAC Huffman decoding method based on the fixed length compacted
codeword tables, where each codeword can contain multiple number of Huffman codes, was proposed.
The proposed method enhances the searching efficiency by finding multiple symbols in a single
search, i.e., a direct memory reading of the compacted codeword table. The memory usage is
significantly saved by separately handling the Huffman codes that exceed the length of the compacted
codewords. The trade-off relation between the computational complexity and the amount of memory
usage was analytically derived to find the proper codeword length of the compacted codewords for the
design of MPEG-2 AAC decoder. To validate the proposed algorithm, its performance was
experimentally evaluated with an implemented MPEG-2 AAC decoder. The results showed that the
computational complexity of the proposed method is reduced to 54% of that of the most up-to-date
method.

Keywords: MPEG-2 AAC, Huffman decoding, Look-up table, Computational complexity, DSP
implementation

1. Introduction

Huffman decoder, which occupies about 30% of overall

computational complexity of an MPEG-2 AAC decoder, is
known to be one of the major processing blocks [1-2]. This
paper proposes a new Huffman decoding method for the
purpose to improve the implementation efficiency of the
MPEG-2 AAC decoder.

The proposed algorithm uses a reconstructed Huffman
table in a form of a look-up table so that the symbol search
can be performed by direct memory reading. Moreover, by
concatenating multiple Huffman codes within a compacted
codeword, the reconstructed Huffman table allows
decoding of multiple symbols in a single search, resulting
in a significant enhancement of searching efficiency.

The memory usage and the searching efficiency, which
normally show a trade-off relation when the Huffman table
is implemented in the direct look-up table form, are the major
design parameters which affect the power consumption of
the Huffman decoding algorithm [3-6].

In general, the conventional binary Huffman tree is not
feasible to implement in a direct look-up table form because
of the requirement of a huge memory space to represent the
full address range corresponding to the maximum codeword

length, i.e., 19 bits in MPEG-2 AAC. Moreover, poor bit
resolving ratio and bit alignment overhead of the conventional
binary tree aggravate the difficulty of applying a direct
look-up based decoding [7].

The memory explosion problem has been considered as
one of the major technical limitations that must be resolved
for the application of a direct look-up table method.
Hashemian search method [8], CHT search method [9], and
Hybrid search method [7] are the typical examples of the
effort to minimize the problem of memory sparsity by
introducing the memory space grouping or the numerical
interpretation of the Huffman codes for the direct memory
accessing.

The Hashemian search method [8] groups Huffman
codeword into many clusters according to the range of
Huffman codeword length, e.g., the range in multiple of
four bit, and searches a symbol in a cascaded way by
applying direct look-up table to each group. The problem
of memory sparsity still exists within the memory sub-
group in Hashemian method, although the total memory
size is significantly reduced by the memory sub-grouping
technique.

In the CHT search method [9], the memory size is
further reduced by sub-grouping of the memory in further
condensed and detailed levels, i.e., one group of memory
for the Huffman codes having the same bit length. The
Hybrid search method [7] is another example of numerical
interpretation of Huffman code and direct accessing of
Huffman symbol. Among these methods, the Hybrid search
method shows the smallest memory usage with a comparable
level of searching speed to the other most up-to-date

† Corresponding Author: Dept. of Electrical and Electronics Engi-
neering, Chung-Ang University, Korea. (tgchang@cau.ac.kr)

* Electronics and Telecommunications Research Institute (ETRI),
Korea. (eslee@etri.re.kr)

** LIG Nex1 Co., LTd., Korea. (lejesk@gmail.com)
*** Dept. of Electrical and Electronics Engineering, Chung-Ang Uni-

versity, Korea. ({skj9865, mczz01}@dmc.cau.ac.kr)
Received: November 21, 2013; Accepted: January 15, 2014

ISSN(Print) 1975-0102
ISSN(Online) 2093-7423

Multi-symbol Accessing Huffman Decoding Method for MPEG-2 AAC

 1412

Huffman decoding methods.
The proposed method in this paper tries to achieve both

high memory efficiency and high search efficiency by
capitalizing the highly skewed statistical distribution of
VLC (variable length code). In the proposed method, the
amount of memory usage can be significantly saved by
applying the direct look-up table technique only for short
Huffman codes having high probability of occurrence. The
Huffman codes which exceed the length of the compacted
codeword are exceptionally treated for decoding based on a
binary tree search method. The trade-off relation between
the memory usage and the searching efficiency of the
proposed algorithm is also analytically investigated to
provide a design guide to select a proper size of the look-
up table.

To verify the performance of the proposed method, it is
implemented for MPEG-2 AAC decoder and its processing
speed, i.e., computational complexity is measured and
compared with those of the other three conventional
methods, i.e., the sequential search method, the binary tree
search method, and the up-to-date Hybrid method [7]. The
average savings of computational complexity, when tested
for 63 MPEG-2 AAC files, are shown as 84%, 63% and
46%, respectively to those of the three methods. Such
complexity reductions can be considered as a significant
contribution, especially for the purpose of low power
implementation of MPEG2 AAC audio decoder.

2. Multi-symbol Accessing Huffman Decoding

Method

In the proposed method, the conventional Huffman

binary tree is reconstructed into the form of a complete
binary tree and multiple number of Huffman codes are
allocated in its leaf nodes. A compacted codeword table is
constructed based on the leaf nodes of the fully expanded
Huffman tree.

In the reconstructed table, the compacted codewords
themselves are the addresses of the compacted codeword
table, equivalently the addresses of the leaf nodes in the
tree. It is a structure of content addressable memory where
symbol decoding can be performed by direct reading of the
table with the compacted codeword as its address. In this
way, the use of comparison and branch instruction, which
is considered as one of the major complexity increasing
factors because of its pipeline stalling effect, is eliminated
in the decoding algorithm.

For each address, the corresponding Huffman symbols
are stored together with two values of side information.
The side information, i.e., the number of Huffman symbols
and the occupied bit length by the Huffman codes in the
compacted codeword are needed for bit alignment
operation in decoding process. A compacted codeword may
contain a certain number of the truncated bits of a Huffman
code at its tail part. Therefore at each decoding iteration of

a compacted codeword, unused bits must be concatenated
with the incoming bit stream to construct a bit-aligned new
compacted codeword.

An example of compacted codeword table and its
constructions are shown in the following. A conventional
skewed Huffman binary tree in Fig. 1(a) is fully expanded
to a complete binary tree in Fig. 1(b). Each leaf node in Fig.
1(b) corresponds to a compacted codeword having three bit
word-length. The compacted codeword table is constructed
using the fully expanded Huffman tree of Fig. 1(b) together
with the side information as shown in Table 1.

In the Table 1, the shaded part in each compacted
codeword represents the bits to be translated to their
corresponding symbols. The rest bits, un-shaded part, are
concatenated with the next incoming bits by the bit-
alignment work. For example, in the codeword ‘0 0 1’ of
index 2, the first two ‘0’s are translated to the two symbols
‘a, a’ and rest ‘0’ is handed over for the next compacted
codeword.

(a)

(b)

Fig. 1. An example of (a) Huffman tree and (b) its fully
expanded Huffman tree to generate a compacted
codeword table.

Table 1. Reconstructed compacted codeword table.

Index
(Compacted codeword)

Number of
symbols

Sequence
of symbols

Occupied
bit length

0 (0 0 0) 3 a, a, a 3
1 (0 0 1) 2 a, a 2
2 (0 1 0) 2 a, b 3
3 (0 1 1) 1 a 1
4 (1 0 0) 2 b, a 3
5 (1 0 1) 1 b 2
6 (1 1 0) 1 c 3
7 (1 1 1) 1 d 3

Eun-Seo Lee, Kyoung-Cheol Lee, Kyou-Jung Son, Seong-Pil Moon and Tae-Gyu Chang

 1413

The proposed method has advantages in terms of both
searching efficiency and memory usage when compared to
the conventional binary search method. The conventional
binary search method performs the comparison and branch
instructions for the every single incoming bit to follow the
tree structure. This results in larger amount of processing
time relatively to the proposed method where only the
comparable amount of comparison and branch instructions
are performed during one time iteration for the multiple
symbols decoding. [10]

The complexity comparison of the proposed method and
the conventional method can be simply demonstrated by
counting the average numbers of searching operation per
one symbol decoding in their example Huffman tables. In
Table 1, the proposed Huffman decoding method requires
average 0.615 operation to decode a single symbol as
8codeword/13symbols. In Table 2, the example of memory
structure of conventional binary tree search method is
shown. The conventional binary tree search method
requires average 1.9 times search to decode one symbol as
(1×0.4)+(2×0.3)+(3×0.2)+(3×0.1). These examples show
that the number of searching times of proposed method is
less as much as 1/3 than those of the conventional Huffman
decoding method with only 38% (29words / 21words)
increase of memory occupation in the proposed method.

In the Table 2, the index is assigned for each node, and
each node contains the information where the current node
is a leaf node or not. If current node is a leaf node, ‘return
value’ indicates the Huffman symbol data. If it is not a leaf
node, ‘left-child’s address’ and ‘right-child’s address’ are
selected by next input bit (0 or 1) to indicate the index to
the followed branch.

In the following section, the computational complexities
of the both algorithms are calculated in more detail way
with their algorithm flow-charts and compared to
investigate the trade-off relation between the complexity
and the memory usage.

3. Analysis of the trade-off relation between the

Computational Complexity and the Memory
Usage

In this section, the trade-off characteristics between

the computational complexity and the amount of memory

usage are investigated. In this analysis, the computational
complexity and the amount of memory usage of the
binary tree search method are used as the references of
comparison.

The flow charts of the proposed compacted codeword
search method and the binary tree search method are
shown in Figs. 2 (a) and (b), respectively. The decoding
computational complexity was obtained by counting the
number of ‘load’ operations and ‘compare-and-branch’
operations needed for each symbol decoding.

The Huffman decoding of MPEG-2 AAC is performed
in the unit of each scalefactor band by associating one
codebook among the eleven codebooks. The iteration of
the Huffman decoding starts from the first spectral
coefficient in the scalefactor band, i.e., SFB [start], to the
last spectral coefficient, i.e., SFB[end] [11].

Table 2. The example of memory structure of conventional
binary tree search method.

Index
(name of node) Leaf node Left-child’s address

or return value
Right-child’s

address
0 (R) False 1 2
1 (a) True A -

2 False 3 4
3 (b) True B -

4 False 5 6
5 (c) True C -
6 (d) True D -

(a)

(b)

Fig. 2. The flow charts of (a) the proposed Huffman
decoding method and (b) the conventional binary
search method.

Multi-symbol Accessing Huffman Decoding Method for MPEG-2 AAC

 1414

In Fig. 2 (a), the proposed Huffman algorithm performs
each iteration with the multiple bits of the compacted
codeword instead of the bit-wise iteration operation. At
the beginning of each iteration, if the test for sufficiency
of margin to the end of scalefactor band is passed, one
compacted codeword of a fixed number of bits is
constructed by loading and concatenating the number of
bits decoded in the previous iteration. The loading operation
is indicated as ‘Get_bits(N, cons_bit)’ in the figure. By
addressing with the compacted codeword, the reconstructed
Huffman codebook table is accessed to retrieve the
associated Huffman symbols.

The reconstructed Huffman table also contains the
information about the number of symbols to retrieve, i.e.,
‘sym_num’. If the value of ‘sym_num’ is zero, it means
that the length of the codeword for the next symbol
exceeds that of the compacted codeword. This case is
handled exceptionally. The Huffman table also contains the
number of bits consumed to decode in the current iteration,
i.e., ‘cons_bits’.

In Fig. 2(b), the conventional binary tree search method
performs one depth search with one time of loading
operation, i.e., ‘Get_bits(1)’, and two times of comparison
operations, i.e., one to check for a leaf node and the other
for the index direct to a child node. Where, if the result of
the ‘Get_bit(1)’ is zero, i.e., ‘taken_bit=0’, the algorithm
goes down to the left-side node. This one depth search is
repeated from the root until the iteration index reaches to a
leaf node, consequently to complete the acquisition of one
Huffman symbol data.

The counted ‘load’ (L) and ‘compare-and-branch’ (C)
operations are shown in Eqs. (1) and (2), respectively for
the proposed method and the binary tree search method.

1
((3 2) () (3 2) (())) /

N

proposed i i
i K

C L C p s L C l s D a
= +

= + + × + × -å

 (1)

1

() (3 2) ()
N

binary i i
i

C p s L C l s
=

= × + ×å (2)

where D : compacted codeword length,

N : total number of symbols in the Huffman codebook,
K : number of symbols for which the code length is

shorter than or equal to D,
L, C : numbers of instruction cycles for a 'load' operation

and a 'compare-and-branch' operation, respectively,
p(si), l(si) : the i-th symbol si’s occurrence probability

and its bit length, respectively, and
α : average number of symbols decoded by one search.

The first term in (1), i.e., 3L+2C indicates the three

loading and two comparison operations needed for the
iteration of the main loop in Fig. 2(a). The second term

in (1), i.e.,
1

() (3 2) (())
N

i i
i K

p s L C l s D
= +

× + × -å reflects the

operations to handle the two exceptional cases. One case is
when the Huffman code length exceeds the length of the
compacted codeword, i.e., ‘sym_num==0’. The other case
is to avoid the margin violation in decoding of each unit of
scalefactor band (SFB) of MPEG-2 AAC. The direct search
loop is terminated when the number of remaining spectral
coefficients in the SFB is less than the maximum possible
number of coefficients contained in a single compacted
codeword. The left coefficients are decoded by the binary
tree search method as an exceptional case. The overall

proposedC is obtained by dividing the complexity of one
iteration by the average number of symbols retrieved from
one iteration, i.e., α. It is obtained using the information
of probability distributions computed from the Huffman
codebooks.

In the binary tree search method, the main body iteration
loop in Fig. 2(b), which corresponds 3L+2C operations, is
repeated as much as the bit length of each Huffman
codeword, i.e., l(si). Therefore, the average number of

operations per symbol search is
1

() (3 2) ()
N

i i
i

p s L C l s
=

× + ×å ,

where N indicates the total number of Huffman symbols in
each codebook and p(si) indicates the i-th symbol si’s
occurrence probability.

The compacted codeword length D is a direct parameter
effecting the trade-off relation between the computational
complexity and the usage of memory. By varying the value
of D, the decoding complexity ratios, /proposed binaryC C , are
computed and shown in Fig. 3. The averages of memory
usage are also computed for different values of D by
dividing the total required memory space computed for all
twelve MPEG-2 AAC Huffman tables with the number of
symbols in the tables.

The memory usage ratios, i.e., the ratio between the
average memory usages of the proposed method to those of
the binary search method are also shown in Fig. 3 to
illustrate the trade-off relationships.

The result shown in Fig. 3 can provide a useful design
guide to determine a proper codeword length considering
the memory and processing speed of the implementation

Fig. 3. The trade-off relation between the processing

complexity and the memory usage for different
sizes of compacted codeword D. The ratios of
complexity and memory usage are obtained in
reference to those of binary tree search.

Eun-Seo Lee, Kyoung-Cheol Lee, Kyou-Jung Son, Seong-Pil Moon and Tae-Gyu Chang

 1415

environment. As marked in the Fig. 3, in the case of 5-bit
compacted codeword, the processing complexity of the
algorithm is significantly reduced to 37% while the
average memory usage is increased to 120%. The increase
of 20% memory space is considered as reasonably
marginal compared to the significant improvement in
computational complexity.

4. Measurement and Results

The performance of the proposed Huffman decoding

algorithm is evaluated by measuring the instruction cycles
of the proposed Huffman decoder. The MPEG-2 AAC
decoder, including the Huffman decoding block, is imple-
mented on a typical 32-bit DSP processor. The number of
instruction cycles for ‘load’, ‘branch’ and the other
arithmetic instructions are counted as five (5), six (6), and
one (1), respectively, according to the specifications of the
DSP processor.

In Fig. 4, the measured computational complexities by
varying the bit length of compacted codeword from 4 to
8 bits are plotted together with those of the analytically
derived Eqs. (1) and (2). Where, the computational
complexity of the binary tree search is used as a
comparison reference of competing method. It is confirmed
that the analytically derived complexities agree well with
those of the experimentally measured results.

The relative performance is defined as Eq. (3) and is
used in the verification of the analytical derivation.

Relative computational complexity=

totalnumber of instruction cyclesof proposed method
totalnumber of instruction cyclesof competing method (3)

By using total of 63 MPEG-2 AAC files, the proposed

method is tested and its performance results are compared
with those of the other three conventional methods, i.e., the
sequential search method, the binary tree search method,

and the Hybrid search method. The MPEG-2 AAC files are
encoded utilizing the total twelve Huffman codebooks.
Where, the length of the compacted word used in the
comparison is five (5) bits.

The measured computational complexity of the proposed
method is reduced to 16.3%, 36.3% and 53.67% in relative
to those measured for the other three decoding methods as
shown in Table 3. In the table, the average complexities of
the tested algorithms normalized for that of the proposed
method are shown together.

Fig. 5 shows the relative performances for each 63
MPEG-2 AAC files that are calculated for the three
conventional decoding methods.

As shown in the simulation results, the average relative
performance for the Binary search method agree with the
analytical results obtained with the Eqs. (1) and (2). This
result confirms that the proposed method reduces the
processing complexity to 36.3% while the average memory
usage is increased as much as only 20%. Also, the
complexity of the proposed algorithm is improved to be
less than 54% even when it is compared with that of the
Hybrid Huffman decoding algorithm, which is known as
one of the most efficient methods.

Fig. 4. Comparison of the measured computational com-

plexities with those of the analytically derived
results.

Table 3. Comparisons of the computational complexity of
the proposed method with the three conventional
Huffman decoding methods. Those average
computational complexities are normalized by the
complexity of the proposed method.

 Proposed
method

Sequential
search
method

Binary
search
method

Hybrid
search
method

Average computational
complexity

(normalized)
1 6.135 2.756 1.863

Relative complexity
of the proposed method

(%)
- 16.3% 36.3% 53.7%

Fig. 5. Comparisons of the proposed method's com-

putational complexity to those of the other typical
Huffman decoding methods. (The length of the
compacted codeword is 5 bits.)

Multi-symbol Accessing Huffman Decoding Method for MPEG-2 AAC

 1416

5. Conclusion

This paper presents an MPEG-2 AAC Huffman decoder

which is based on the construction of a compacted codeword
table. Where each codeword may contain multiple number
of Huffman codes. The table’s direct memory look-up
structure and the multiple codes allocating structure allow
a significant improvement of searching efficiency. The
average computational complexity of the proposed method
measured with 63 MPEG-2 AAC test files shows only
54 % even when it is compared with that of the Hybrid
Huffman decoding algorithm, which is known as one of the
most efficient ones. The computational complexity of the
proposed approach is also analytically derived and its
trade-off relationship with the amount of memory usage is
also provided. The proposed Huffman decoding method is
expected to be utilized broadly especially for low power
implementation of portable multimedia platforms.

Acknowledgements

This research was supported by the Korea National

Research Foundation under Grant 20100786, and by the
Chung-Ang University Excellent Student Scholarship.

References

[1] M.A. Watson and P. Buettner, “Design and imple-
mentation of AAC decoders”, IEEE Transactions on
Consumer Electronics, vol. 46, no. 3, pp. 819-824,
Aug. 2000.

[2] K. Sayood, “Introduction to Data Compression”, 1996,
Morgan Kaufmann.

[3] R. Freking and K. Parhi, “Low-memory, fixed-latency
Huffman encoder for unbounded-length codes”, in Proc.
34th Asilomar Conf. Signals, Syst., Comput., vol. 2,
pp. 1031-1034, Pacific Grove, CA, Nov. 2000.

[4] K. Chung and J. Wu, “Level-compressed Huffman
decoding”, IEEE Trans. Commun., vol. 47, no. 1-, pp.
1455-1457, Oct. 1999.

[5] S. Ho and P. Law, “Efficient hardware decoding
method for modified Huffman code”, Electron. Lett.,
vol. 27, no. 10, pp. 855-856, May 1991.

[6] Lee, Eun-Seo and Lee, Jae-Sik and Son, Kyou-Jung
and Chang, Tae-Gyu, “Compacted codeword Huffman
decoding method for MPEG-2 AAC decoder”, in
IEEE International Conference on Consumer Elec-
tronics (ICCE), 2013, pp. 478-479, 2013.

[7] J.S. Lee, J.H. Jeong, and T.G. Chang, “An Efficient
Method of Huffman Decoding for MPEG-2 AAC and
Its Performance Analysis”, IEEE Transactions on
Speech and Audio Processing, vol. 13, no. 6, pp
1206-1209, Nov. 2005.

[8] R. Hashemian, “Memory efficient and high-speed

search Huffman coding”, IEEE Trans. Commun., vol.
43, pp. 2576-2581, Oct. 1995.

[9] R. Hashemian, “Condensed table of Huffman coding,
a new approach to efficient decoding”, IEEE Trans.
Commun., vol. 52, no. 1, pp. 6-8, Jan. 2004.

[10] T.-H. Tsai, C.-N. Liu and J.-H. Hung, “VLIW-aware
software optimization of AAC decoder on parallel
architecture core DSP (PACDSP) processor”, IEEE
Transactions on Consumer Electronics, vol. 54, no. 2,
pp. 933-939, May 2008.

[11] T. Tsai, C. Liu, “Low-Power System Design for
MPEG-2/4 AAC Audio Decoder Using Pure ASIC
Approach”, IEEE Transactions on Circuits and
Systems, vol. 56, no. 1, Jan. 2009, pp. 144-155, 2009.

Eun-Seo Lee He received the B.S.,
M.S., and Ph.D degrees in electrical
and electronics engineering from
Chung-Ang University, Korea in 2003,
2005, and 2008 respectively. Since
2009, he has been a researcher at
Electronics and Telecommunications
Research Institute (ETRI), where he

has worked on home network middleware especially
device control and management. Also, he has been
participated in standardization activities on ISO/IEC JTC1
SC6. His recent research interests are smart home
appliances, device auto configuration, device control and
management system.

Kyoung-Cheol Lee He received the
B.S., M.S. and Ph.D. degrees from the
Chung-Ang University, Seoul, Korea,
in 1998, 2000, and 2004, respectively,
all in electrical engineering. Since 2009,
he has been a research engineer in
Communication R&D Lab. at LIGNex1,
Republic of Korea. His research in-

terests include satellite communication system, satellite
antenna control, and digital communication system.

Kyou-Jung Son He received his B.S.
degrees in Electrical and Electronics
Engineering from the Chung-Ang
University, Seoul, Korea in 2012. He is
currently pursuing the M.S. degree in
Electrical and Electronics Engineering
from the Chung-Ang University. His
research interests are in the area of

multimedia signal processing.

Eun-Seo Lee, Kyoung-Cheol Lee, Kyou-Jung Son, Seong-Pil Moon and Tae-Gyu Chang

 1417

Seong-Pil Moon He received his B.S.
and M.S. degrees in Electrical and
Electronics Engineering from the
Chung-Ang University, Seoul, Korea in
2010 and 2012, respectively. He is
currently pursuing the Ph.D. degree in
Electrical and Electronics Engineering
from the Chung-Ang University. His

research interests are in the area of adaptive signal pro-
cessing, digital communications, and multimedia signal
processing.

Tae-Gyu Chang He received the B.S.
degree from the Seoul National
University, Seoul, Korea, in 1979, and
M.S. degree from Korea Advanced
Institute of Science and Technology,
Seoul, in 1981, and Ph.D. degree from
University of Florida, Gainesville, in
1987, all in electrical engineering.

From 1981 to 1984, he was with the Hyundai Engineering/
Electronics Inc., Seoul, as a Systems Design Engineer. From
1987 to 1990, he was a Faculty Member of Tennessee State
University, Nashville, as a Research Assistant Professor at
the Center of Excellence in Information Systems Engi-
neering. In March 1990, he joined the faculty of the Chung-
Ang University, Seoul, where he is currently a Professor
at the Department of Electrical and Electronics Engi-
neering. He is a Senior Member of the IEEE Signal
Processing Society. His research interests include adaptive
signal processing, multimedia signal processing and com-
munications.

