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Abstract – An MPEG-2 AAC Huffman decoding method based on the fixed length compacted 
codeword tables, where each codeword can contain multiple number of Huffman codes, was proposed. 
The proposed method enhances the searching efficiency by finding multiple symbols in a single 
search, i.e., a direct memory reading of the compacted codeword table. The memory usage is 
significantly saved by separately handling the Huffman codes that exceed the length of the compacted 
codewords. The trade-off relation between the computational complexity and the amount of memory 
usage was analytically derived to find the proper codeword length of the compacted codewords for the 
design of MPEG-2 AAC decoder. To validate the proposed algorithm, its performance was 
experimentally evaluated with an implemented MPEG-2 AAC decoder. The results showed that the 
computational complexity of the proposed method is reduced to 54% of that of the most up-to-date 
method. 
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1. Introduction 
 
Huffman decoder, which occupies about 30% of overall 

computational complexity of an MPEG-2 AAC decoder, is 
known to be one of the major processing blocks [1-2]. This 
paper proposes a new Huffman decoding method for the 
purpose to improve the implementation efficiency of the 
MPEG-2 AAC decoder. 

The proposed algorithm uses a reconstructed Huffman 
table in a form of a look-up table so that the symbol search 
can be performed by direct memory reading. Moreover, by 
concatenating multiple Huffman codes within a compacted 
codeword, the reconstructed Huffman table allows 
decoding of multiple symbols in a single search, resulting 
in a significant enhancement of searching efficiency. 

The memory usage and the searching efficiency, which 
normally show a trade-off relation when the Huffman table 
is implemented in the direct look-up table form, are the major 
design parameters which affect the power consumption of 
the Huffman decoding algorithm [3-6]. 

In general, the conventional binary Huffman tree is not 
feasible to implement in a direct look-up table form because 
of the requirement of a huge memory space to represent the 
full address range corresponding to the maximum codeword 

length, i.e., 19 bits in MPEG-2 AAC. Moreover, poor bit 
resolving ratio and bit alignment overhead of the conventional 
binary tree aggravate the difficulty of applying a direct 
look-up based decoding [7]. 

The memory explosion problem has been considered as 
one of the major technical limitations that must be resolved 
for the application of a direct look-up table method. 
Hashemian search method [8], CHT search method [9], and 
Hybrid search method [7] are the typical examples of the 
effort to minimize the problem of memory sparsity by 
introducing the memory space grouping or the numerical 
interpretation of the Huffman codes for the direct memory 
accessing. 

The Hashemian search method [8] groups Huffman 
codeword into many clusters according to the range of 
Huffman codeword length, e.g., the range in multiple of 
four bit, and searches a symbol in a cascaded way by 
applying direct look-up table to each group. The problem 
of memory sparsity still exists within the memory sub-
group in Hashemian method, although the total memory 
size is significantly reduced by the memory sub-grouping 
technique. 

In the CHT search method [9], the memory size is 
further reduced by sub-grouping of the memory in further 
condensed and detailed levels, i.e., one group of memory 
for the Huffman codes having the same bit length. The 
Hybrid search method [7] is another example of numerical 
interpretation of Huffman code and direct accessing of 
Huffman symbol. Among these methods, the Hybrid search 
method shows the smallest memory usage with a comparable 
level of searching speed to the other most up-to-date 
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Huffman decoding methods. 
The proposed method in this paper tries to achieve both 

high memory efficiency and high search efficiency by 
capitalizing the highly skewed statistical distribution of 
VLC (variable length code). In the proposed method, the 
amount of memory usage can be significantly saved by 
applying the direct look-up table technique only for short 
Huffman codes having high probability of occurrence. The 
Huffman codes which exceed the length of the compacted 
codeword are exceptionally treated for decoding based on a 
binary tree search method. The trade-off relation between 
the memory usage and the searching efficiency of the 
proposed algorithm is also analytically investigated to 
provide a design guide to select a proper size of the look-
up table. 

To verify the performance of the proposed method, it is 
implemented for MPEG-2 AAC decoder and its processing 
speed, i.e., computational complexity is measured and 
compared with those of the other three conventional 
methods, i.e., the sequential search method, the binary tree 
search method, and the up-to-date Hybrid method [7]. The 
average savings of computational complexity, when tested 
for 63 MPEG-2 AAC files, are shown as 84%, 63% and 
46%, respectively to those of the three methods. Such 
complexity reductions can be considered as a significant 
contribution, especially for the purpose of low power 
implementation of MPEG2 AAC audio decoder. 

 
 
2. Multi-symbol Accessing Huffman Decoding 

Method 
 
In the proposed method, the conventional Huffman 

binary tree is reconstructed into the form of a complete 
binary tree and multiple number of Huffman codes are 
allocated in its leaf nodes. A compacted codeword table is 
constructed based on the leaf nodes of the fully expanded 
Huffman tree. 

In the reconstructed table, the compacted codewords 
themselves are the addresses of the compacted codeword 
table, equivalently the addresses of the leaf nodes in the 
tree. It is a structure of content addressable memory where 
symbol decoding can be performed by direct reading of the 
table with the compacted codeword as its address. In this 
way, the use of comparison and branch instruction, which 
is considered as one of the major complexity increasing 
factors because of its pipeline stalling effect, is eliminated 
in the decoding algorithm. 

For each address, the corresponding Huffman symbols 
are stored together with two values of side information. 
The side information, i.e., the number of Huffman symbols 
and the occupied bit length by the Huffman codes in the 
compacted codeword are needed for bit alignment 
operation in decoding process. A compacted codeword may 
contain a certain number of the truncated bits of a Huffman 
code at its tail part. Therefore at each decoding iteration of 

a compacted codeword, unused bits must be concatenated 
with the incoming bit stream to construct a bit-aligned new 
compacted codeword. 

An example of compacted codeword table and its 
constructions are shown in the following. A conventional 
skewed Huffman binary tree in Fig. 1(a) is fully expanded 
to a complete binary tree in Fig. 1(b). Each leaf node in Fig. 
1(b) corresponds to a compacted codeword having three bit 
word-length. The compacted codeword table is constructed 
using the fully expanded Huffman tree of Fig. 1(b) together 
with the side information as shown in Table 1. 

In the Table 1, the shaded part in each compacted 
codeword represents the bits to be translated to their 
corresponding symbols. The rest bits, un-shaded part, are 
concatenated with the next incoming bits by the bit-
alignment work. For example, in the codeword ‘0 0 1’ of 
index 2, the first two ‘0’s are translated to the two symbols 
‘a, a’ and rest ‘0’ is handed over for the next compacted 
codeword. 

 
(a) 

 

 
(b) 

Fig. 1. An example of (a) Huffman tree and (b) its fully 
expanded Huffman tree to generate a compacted 
codeword table. 

 
Table 1. Reconstructed compacted codeword table. 

Index 
(Compacted codeword) 

Number of 
symbols 

Sequence 
of symbols 

Occupied 
bit length 

0 (0 0 0) 3 a, a, a 3 
1 (0 0 1) 2 a, a 2 
2 (0 1 0) 2 a, b 3 
3 (0 1 1) 1 a 1 
4 (1 0 0) 2 b, a 3 
5 (1 0 1) 1 b 2 
6 (1 1 0) 1 c 3 
7 (1 1 1) 1 d 3 
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The proposed method has advantages in terms of both 
searching efficiency and memory usage when compared to 
the conventional binary search method. The conventional 
binary search method performs the comparison and branch 
instructions for the every single incoming bit to follow the 
tree structure. This results in larger amount of processing 
time relatively to the proposed method where only the 
comparable amount of comparison and branch instructions 
are performed during one time iteration for the multiple 
symbols decoding. [10] 

The complexity comparison of the proposed method and 
the conventional method can be simply demonstrated by 
counting the average numbers of searching operation per 
one symbol decoding in their example Huffman tables. In 
Table 1, the proposed Huffman decoding method requires 
average 0.615 operation to decode a single symbol as 
8codeword/13symbols. In Table 2, the example of memory 
structure of conventional binary tree search method is 
shown. The conventional binary tree search method 
requires average 1.9 times search to decode one symbol as 
(1×0.4)+(2×0.3)+(3×0.2)+(3×0.1). These examples show 
that the number of searching times of proposed method is 
less as much as 1/3 than those of the conventional Huffman 
decoding method with only 38% (29words / 21words) 
increase of memory occupation in the proposed method. 

In the Table 2, the index is assigned for each node, and 
each node contains the information where the current node 
is a leaf node or not. If current node is a leaf node, ‘return 
value’ indicates the Huffman symbol data. If it is not a leaf 
node, ‘left-child’s address’ and ‘right-child’s address’ are 
selected by next input bit (0 or 1) to indicate the index to 
the followed branch. 

In the following section, the computational complexities 
of the both algorithms are calculated in more detail way 
with their algorithm flow-charts and compared to 
investigate the trade-off relation between the complexity 
and the memory usage. 

 
 
3. Analysis of the trade-off relation between the 

Computational Complexity and the Memory 
Usage 

 
In this section, the trade-off characteristics between 

the computational complexity and the amount of memory 

usage are investigated. In this analysis, the computational 
complexity and the amount of memory usage of the 
binary tree search method are used as the references of 
comparison. 

The flow charts of the proposed compacted codeword 
search method and the binary tree search method are 
shown in Figs. 2 (a) and (b), respectively. The decoding 
computational complexity was obtained by counting the 
number of ‘load’ operations and ‘compare-and-branch’ 
operations needed for each symbol decoding. 

The Huffman decoding of MPEG-2 AAC is performed 
in the unit of each scalefactor band by associating one 
codebook among the eleven codebooks. The iteration of 
the Huffman decoding starts from the first spectral 
coefficient in the scalefactor band, i.e., SFB [start], to the 
last spectral coefficient, i.e., SFB[end] [11]. 

Table 2. The example of memory structure of conventional 
binary tree search method. 

Index  
(name of node) Leaf node Left-child’s address 

or return value 
Right-child’s 

address 
0 (R) False 1 2 
1 (a) True A - 

2 False 3 4 
3 (b) True B - 

4 False 5 6 
5 (c) True C - 
6 (d) True D - 

 

 
(a) 

 

 
(b) 

Fig. 2. The flow charts of (a) the proposed Huffman 
decoding method and (b) the conventional binary 
search method. 
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In Fig. 2 (a), the proposed Huffman algorithm performs 
each iteration with the multiple bits of the compacted 
codeword instead of the bit-wise iteration operation. At 
the beginning of each iteration, if the test for sufficiency 
of margin to the end of scalefactor band is passed, one 
compacted codeword of a fixed number of bits is 
constructed by loading and concatenating the number of 
bits decoded in the previous iteration. The loading operation 
is indicated as ‘Get_bits(N, cons_bit)’ in the figure. By 
addressing with the compacted codeword, the reconstructed 
Huffman codebook table is accessed to retrieve the 
associated Huffman symbols. 

The reconstructed Huffman table also contains the 
information about the number of symbols to retrieve, i.e., 
‘sym_num’. If the value of ‘sym_num’ is zero, it means 
that the length of the codeword for the next symbol 
exceeds that of the compacted codeword. This case is 
handled exceptionally. The Huffman table also contains the 
number of bits consumed to decode in the current iteration, 
i.e., ‘cons_bits’. 

In Fig. 2(b), the conventional binary tree search method 
performs one depth search with one time of loading 
operation, i.e., ‘Get_bits(1)’, and two times of comparison 
operations, i.e., one to check for a leaf node and the other 
for the index direct to a child node. Where, if the result of 
the ‘Get_bit(1)’ is zero, i.e., ‘taken_bit=0’, the algorithm 
goes down to the left-side node. This one depth search is 
repeated from the root until the iteration index reaches to a 
leaf node, consequently to complete the acquisition of one 
Huffman symbol data. 

The counted ‘load’ (L) and ‘compare-and-branch’ (C) 
operations are shown in Eqs. (1) and (2), respectively for 
the proposed method and the binary tree search method. 

 

1
((3 2 ) ( ) (3 2 ) ( ( ) )) /

N

proposed i i
i K

C L C p s L C l s D a
= +

= + + × + × -å   

  (1) 

 
1

( ) (3 2 ) ( )
N

binary i i
i

C p s L C l s
=

= × + ×å   (2) 

 
where D : compacted codeword length, 

N : total number of symbols in the Huffman codebook, 
K : number of symbols for which the code length is 

shorter than or equal to D, 
L, C : numbers of instruction cycles for a 'load' operation 

and a 'compare-and-branch' operation, respectively, 
p(si), l(si) : the i-th symbol si’s occurrence probability 

and its bit length, respectively, and 
α : average number of symbols decoded by one search. 
 
The first term in (1), i.e., 3L+2C indicates the three 

loading and two comparison operations needed for the 
iteration of the main loop in Fig. 2(a). The second term 

in (1), i.e., 
1

( ) (3 2 ) ( ( ) )
N

i i
i K

p s L C l s D
= +

× + × -å  reflects the 

operations to handle the two exceptional cases. One case is 
when the Huffman code length exceeds the length of the 
compacted codeword, i.e., ‘sym_num==0’. The other case 
is to avoid the margin violation in decoding of each unit of 
scalefactor band (SFB) of MPEG-2 AAC. The direct search 
loop is terminated when the number of remaining spectral 
coefficients in the SFB is less than the maximum possible 
number of coefficients contained in a single compacted 
codeword. The left coefficients are decoded by the binary 
tree search method as an exceptional case. The overall 

proposedC  is obtained by dividing the complexity of one 
iteration by the average number of symbols retrieved from 
one iteration, i.e., α. It is obtained using the information 
of probability distributions computed from the Huffman 
codebooks. 

In the binary tree search method, the main body iteration 
loop in Fig. 2(b), which corresponds 3L+2C operations, is 
repeated as much as the bit length of each Huffman 
codeword, i.e., l(si). Therefore, the average number of 

operations per symbol search is 
1

( ) (3 2 ) ( )
N

i i
i

p s L C l s
=

× + ×å , 

where N indicates the total number of Huffman symbols in 
each codebook and p(si) indicates the i-th symbol si’s 
occurrence probability. 

The compacted codeword length D is a direct parameter 
effecting the trade-off relation between the computational 
complexity and the usage of memory. By varying the value 
of D, the decoding complexity ratios, /proposed binaryC C , are 
computed and shown in Fig. 3. The averages of memory 
usage are also computed for different values of D by 
dividing the total required memory space computed for all 
twelve MPEG-2 AAC Huffman tables with the number of 
symbols in the tables. 

The memory usage ratios, i.e., the ratio between the 
average memory usages of the proposed method to those of 
the binary search method are also shown in Fig. 3 to 
illustrate the trade-off relationships.  

The result shown in Fig. 3 can provide a useful design 
guide to determine a proper codeword length considering 
the memory and processing speed of the implementation 

 
Fig. 3. The trade-off relation between the processing 

complexity and the memory usage for different 
sizes of compacted codeword D. The ratios of 
complexity and memory usage are obtained in 
reference to those of binary tree search. 
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environment. As marked in the Fig. 3, in the case of 5-bit 
compacted codeword, the processing complexity of the 
algorithm is significantly reduced to 37% while the 
average memory usage is increased to 120%. The increase 
of 20% memory space is considered as reasonably 
marginal compared to the significant improvement in 
computational complexity. 

 
 

4. Measurement and Results 
 
The performance of the proposed Huffman decoding 

algorithm is evaluated by measuring the instruction cycles 
of the proposed Huffman decoder. The MPEG-2 AAC 
decoder, including the Huffman decoding block, is imple-
mented on a typical 32-bit DSP processor. The number of 
instruction cycles for ‘load’, ‘branch’ and the other 
arithmetic instructions are counted as five (5), six (6), and 
one (1), respectively, according to the specifications of the 
DSP processor.  

In Fig. 4, the measured computational complexities by 
varying the bit length of compacted codeword from 4 to 
8 bits are plotted together with those of the analytically 
derived Eqs. (1) and (2). Where, the computational 
complexity of the binary tree search is used as a 
comparison reference of competing method. It is confirmed 
that the analytically derived complexities agree well with 
those of the experimentally measured results. 

The relative performance is defined as Eq. (3) and is 
used in the verification of the analytical derivation.  

 
Relative computational complexity= 

totalnumber of instruction cyclesof proposed method
totalnumber of instruction cyclesof competing method  (3) 

 
By using total of 63 MPEG-2 AAC files, the proposed 

method is tested and its performance results are compared 
with those of the other three conventional methods, i.e., the 
sequential search method, the binary tree search method, 

and the Hybrid search method. The MPEG-2 AAC files are 
encoded utilizing the total twelve Huffman codebooks. 
Where, the length of the compacted word used in the 
comparison is five (5) bits. 

The measured computational complexity of the proposed 
method is reduced to 16.3%, 36.3% and 53.67% in relative 
to those measured for the other three decoding methods as 
shown in Table 3. In the table, the average complexities of 
the tested algorithms normalized for that of the proposed 
method are shown together. 

Fig. 5 shows the relative performances for each 63 
MPEG-2 AAC files that are calculated for the three 
conventional decoding methods. 

As shown in the simulation results, the average relative 
performance for the Binary search method agree with the 
analytical results obtained with the Eqs. (1) and (2). This 
result confirms that the proposed method reduces the 
processing complexity to 36.3% while the average memory 
usage is increased as much as only 20%. Also, the 
complexity of the proposed algorithm is improved to be 
less than 54% even when it is compared with that of the 
Hybrid Huffman decoding algorithm, which is known as 
one of the most efficient methods.  

 
Fig. 4. Comparison of the measured computational com-

plexities with those of the analytically derived 
results. 

Table 3. Comparisons of the computational complexity of 
the proposed method with the three conventional 
Huffman decoding methods. Those average 
computational complexities are normalized by the 
complexity of the proposed method. 

 Proposed 
method 

Sequential 
search 
method 

Binary 
search 
method 

Hybrid 
search 
method 

Average computational 
complexity 

(normalized) 
1 6.135 2.756 1.863 

Relative complexity 
of the proposed method 

(%) 
- 16.3% 36.3% 53.7% 

 

 
Fig. 5. Comparisons of the proposed method's com-

putational complexity to those of the other typical 
Huffman decoding methods. (The length of the 
compacted codeword is 5 bits.) 
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5. Conclusion 
 
This paper presents an MPEG-2 AAC Huffman decoder 

which is based on the construction of a compacted codeword 
table. Where each codeword may contain multiple number 
of Huffman codes. The table’s direct memory look-up 
structure and the multiple codes allocating structure allow 
a significant improvement of searching efficiency. The 
average computational complexity of the proposed method 
measured with 63 MPEG-2 AAC test files shows only 
54 % even when it is compared with that of the Hybrid 
Huffman decoding algorithm, which is known as one of the 
most efficient ones. The computational complexity of the 
proposed approach is also analytically derived and its 
trade-off relationship with the amount of memory usage is 
also provided. The proposed Huffman decoding method is 
expected to be utilized broadly especially for low power 
implementation of portable multimedia platforms. 
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