DOI QR코드

DOI QR Code

다양한 환경에서 감마선으로 조사된 불소고분자 필름들의 구조 및 열적/물성 변화

Changes in the Chemical Structure and the Thermal/Physical Properties of Fluoropolymer Films Induced by Gamma Irradiation under Various Environments

  • 최지선 (한국원자력연구원 첨단방사선연구소 공업환경연구부) ;
  • 손준용 (한국원자력연구원 첨단방사선연구소 공업환경연구부) ;
  • 신준화 (한국원자력연구원 첨단방사선연구소 공업환경연구부)
  • Choi, Ji Sun (Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Sohn, Joon-Yong (Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Shin, Junhwa (Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
  • 투고 : 2013.12.16
  • 심사 : 2014.02.12
  • 발행 : 2014.07.25

초록

본 연구에서는 다양한 환경에서 방사선 조사된 불소고분자 필름(PTFE, FEP, PFA, PVDF 및 ETFE)들의 화학 구조 및 물성 변화를 관찰하였다. 방사선은 $Co^{60}$ 감마선을 사용하였으며, 공기 분위기와 질소 분위기 및 진공 상태에서 조사하였다. 방사선 조사된 불소고분자 필름의 FTIR 분석을 통하여 방사선에 의해 생성된 라디칼이 공기 중 산소와 반응하여 산화반응이 진행되었음을 확인하였다. 또한 DSC를 이용하여 방사선 조사에 의해 변화되는 불소고 분자의 용융열 및 결정화도를 관찰하여 고분자 구조에 따른 절단 및 가교반응을 확인하였다. 인장 강도 실험을 통하여 방사선 조사 환경에 따른 불소고분자의 물성 변화를 관찰한 결과 공기 분위기에서 조사된 불소고분자 필름들의 기계적 물성이 현저히 떨어지는 것을 관찰하였다.

In this study, the changes in the chemical structure and the physical property of fluoropolymer films (PTFE, FEP, PFA, PVDF, and ETFE) induced by $Co^{60}$ gamma ray in air, $N_2$, and vacuum environments were investigated. FTIR spectra of the irradiated fluoropolymers indicate that the oxidation proceeded by the reaction of radicals generated by irradiation with oxygen in air. The changes in the heat of fusion and the degree of crystallinity of the irradiated fluoropolymers were investigated using DSC and the results indicate that the scission and crosslinking reactions of the irradiated fluoropolymers were largely influenced by the chemical structure. It was also found that the mechanical property of the irradiated fluoropolymer films under an air atmosphere was significantly decreased.

키워드

참고문헌

  1. A. Charlesby, Radiat. Phys. Chem., 9, 17 (1977). https://doi.org/10.1016/0146-5724(77)90070-X
  2. S. Machi, Radiat. Phys. Chem., 47, 333 (1996). https://doi.org/10.1016/0969-806X(95)00125-H
  3. R. Mehnert, Nucl. Instr. Meth. B, 113, 81 (1996). https://doi.org/10.1016/0168-583X(95)01344-X
  4. A. Chapiro, Radiat. Phys. Chem., 51, 9 (1998). https://doi.org/10.1016/S0969-806X(97)00252-1
  5. A. Bhattacharya, Prog. Polym. Sci., 25, 371 (2000). https://doi.org/10.1016/S0079-6700(00)00009-5
  6. P. A. Dworjanyn, J. L. Garnett, M. A. Khan, X. Maojun, Q. M. Ping, and Y. C. Nho, Radiat. Phys. Chem., 42, 31 (1993). https://doi.org/10.1016/0969-806X(93)90198-4
  7. J. Gehring and A. Zyball, Radiat. Phys. Chem., 46, 931 (1995). https://doi.org/10.1016/0969-806X(95)00295-9
  8. H. Dorschner, U. Lappan, and K. Lunkwitz, Nucl. Instr. Meth. B, 139, 495 (1998). https://doi.org/10.1016/S0168-583X(97)00937-3
  9. Y. Rosenberg, A. Siegmann, M. Narkis, and S. Shkolnik, J. Appl. Polym. Sci., 45, 783 (1992). https://doi.org/10.1002/app.1992.070450504
  10. M. R. Cleland, L. A. Parks, and S. Cheng, Nucl. Instr. Meth. B, 208, 66 (2003). https://doi.org/10.1016/S0168-583X(03)00655-4
  11. R. L. Clough, Nucl. Instr. Meth. B, 185, 8 (2001). https://doi.org/10.1016/S0168-583X(01)00966-1
  12. Y. Tabata and A. Oshima, Macromol. Symp., 143, 337 (1999). https://doi.org/10.1002/masy.19991430125
  13. J. H. Choi, Y. J. Lee, Y. M. Lim, P. H. Kang, J. Shin, and Y. C. Nho, Polymer Science and Technology, 18, 253 (2007).
  14. H. Wilski, Radiat. Phys. Chem., 29, 1 (1987).
  15. K. Lunkwitz, H. J. Brink, D. Handte, and A. Ferse, Radiat. Phys. Chem., 33, 526 (1989).
  16. J. S. Forsythe and D. J. T. Hill, Prog. Polym. Sci., 25, 101 (2000). https://doi.org/10.1016/S0079-6700(00)00008-3
  17. T. R. Dargaville, G. A. George, D. J. T. Hill, and A. K. Whittaker, Prog. Polym. Sci., 28, 1355 (2003). https://doi.org/10.1016/S0079-6700(03)00047-9
  18. J. Sun, Y. Zhang, X. Zhong, and X. Zhu, Radiat. Phys. Chem., 44, 655 (1994). https://doi.org/10.1016/0969-806X(94)90226-7
  19. A. Oshima, S. Ikeda, T. Seguchi, and Y. Tabata, Radiat. Phys. Chem., 49, 279 (1997). https://doi.org/10.1016/S0969-806X(96)00138-7
  20. D. Fischer, U. Lappan, I. Hopfe, K. J. Eichhorn, and K. Lunkwitz, Polymer, 39, 573 (1998). https://doi.org/10.1016/S0032-3861(97)00304-2
  21. B. J. Lyons, Radiat. Phys. Chem., 45, 159 (1995). https://doi.org/10.1016/0969-806X(94)E0002-Z
  22. K. Lunkwitz, U. Lappan, and D. Lehmann, Radiat. Phys. Chem., 57, 373 (2000). https://doi.org/10.1016/S0969-806X(99)00407-7
  23. J. T. Kim, E. B. Kim, S. Y. Kim, and C. S. Ju, Korean Chem. Eng. Res., 48, 53 (2010).
  24. F. Cardona, G. A. George, D. J. T. Hill, and S. Perera, Polym. Int., 52, 827 (2003). https://doi.org/10.1002/pi.1181
  25. H. P. Brack, H. G. Buhrer, L. Bonorand, and G. G. Scherer, J. Mater. Chem., 10, 1795 (2000). https://doi.org/10.1039/b001851l
  26. W. K. Fisher and J. C. Corelli, J. Polym, Sci., Polym. Chem. Ed., 19, 2465 (1981). https://doi.org/10.1002/pol.1981.170191010
  27. U. Lappan, U. Geißler, and K. Lunkitz, J. Nucl. Instr. Meth. B, 151, 222 (1999). https://doi.org/10.1016/S0168-583X(99)00115-9
  28. A. M. S. Galante, O. L. Galante, and L. L. Campos, J. Nucl. Instr. Meth. A, 619, 177 (2010). https://doi.org/10.1016/j.nima.2009.10.103
  29. E. Adem, J. Rickards, G. Burillo, and M. A. Borja, Radiat. Phys. Chem., 54, 637 (1999). https://doi.org/10.1016/S0969-806X(98)00289-8
  30. M. M. Nasef and K. Z. M. Dahlan, J. Nucl. Instr. Meth. B, 201, 604 (2003). https://doi.org/10.1016/S0168-583X(02)02068-2
  31. A. S. Medeiros and L. O. Faria, J. Nucl. Instr. Meth. A, 587, 315 (2008). https://doi.org/10.1016/j.nima.2008.01.081
  32. N. Betz, A. L. Moel, E. Balanzat, J. M. Ramillon, J. Lamotte, J. P. Gallas, and G. Jaskierowicz, J. Polym. Phys., 32, 1493 (1994). https://doi.org/10.1002/polb.1994.090320821
  33. M. M. Nasef, H. Saidi, and K. Z. M. Dahlan, Radiat. Phys. Chem., 68, 875 (2003). https://doi.org/10.1016/S0969-806X(03)00209-3
  34. A. Oshima, S. Ikeda, T. Seguchi, and Y. Tabata, Radiat. Phys. Chem., 49, 581 (1997). https://doi.org/10.1016/S0969-806X(96)00189-2
  35. A. Oshima, Y. Tabata, H. Kudoh, and T. Seguchi, Radiat. Phys. Chem., 45, 269 (1995). https://doi.org/10.1016/0969-806X(94)E0009-8
  36. C. Lee, K. Y. Kim, and B. H. Ryu, J. Korean Soc. Saf., 19, 3 (2004).
  37. K. D. Pae, S. K. Bhateja, and J. R. Gilbert, J. Polym. Phys., 25. 717 (1987). https://doi.org/10.1002/polb.1987.090250402
  38. L. Calcago, P. Musumeci, R. Percolla, and G. Foti, J. Nucl. Instr. Meth. B, 91, 461 (1994). https://doi.org/10.1016/0168-583X(94)96269-3
  39. A. Oshima, S. Ikeda, T. Seguchi, and Y. Tabata, Radiat. Phys. Chem., 50, 519 (1997). https://doi.org/10.1016/S0969-806X(97)00080-7

피인용 문헌

  1. Basalt Woven Fabric을 적용한 건축용 막재의 난연특성 vol.30, pp.2, 2014, https://doi.org/10.7731/kifse.2016.30.2.035