DOI QR코드

DOI QR Code

Study of Electrical Conductivity of BaZr0.85-xPdxY0.15O3-δ/ Carbonates Composite Materials

BaZr0.85-xPdxY0.15O3-δ/ Carbonates 복합전도체 전기적 특성 연구

  • Park, Ka-Young (Department of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Baek, Seung-Seok (Department of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Park, Jun-Young (Department of Nanotechnology and Advanced Materials Engineering, Sejong University)
  • 박가영 (세종대학교 나노신소재공학과) ;
  • 백승석 (세종대학교 나노신소재공학과) ;
  • 박준영 (세종대학교 나노신소재공학과)
  • Received : 2014.06.16
  • Accepted : 2014.07.08
  • Published : 2014.07.31

Abstract

PdO-doped $BaZr_{0.85}Y_{0.15}O_{3-\delta}$ (BZPY) proton conductors have been proposed as applicable for intermediate temperature electrolytes for protonic ceramic fuel cells (PCFCs) because the PdO doping is effective for improving the proton conductivity of $BaZr_{0.85}Y_{0.15}O_{3-\delta}$ (BZY) with high affinity for hydrogen. In order to further improve the conductivity of BZPY, two-phase composite electrolytes consisting of a BZPY and molten carbonate were designed. Dense BZPY-based composite electrolytes were fabricated after sintering at $670^{\circ}C$ for 4 h, since molten carbonates fill the grain boundary of the porous BZPY matrix. Furthermore, BZPY/$(Li-0.5Na)_2CO_3$ composites show a significantly enhanced protonic conductivity at intermediate temperatures. This may be because easy proton transport is possible through the interface of the carbonate and oxide phase.

Keywords

References

  1. E. D. Wachsman and K. T. Lee, "Lowering the Temperature of Solid Oxide Fuel Cells," Science, 334 [6058] 935-39 (2011). https://doi.org/10.1126/science.1204090
  2. S. M. Haile, "Fuel Cell Materials and Components," Acta Mater., 51 [19] 5981-6000 (2003). https://doi.org/10.1016/j.actamat.2003.08.004
  3. B. C. H. Steele, "Appraisal of $Ce_{1-x}Gd_yO2_{-y/2}$ Electrolytes for IT-SOFC Operation at $500^{\circ}C$," Solid State Ionics, 129 [1-4] 95-110 (2000). https://doi.org/10.1016/S0167-2738(99)00319-7
  4. J. G. Li, T. Ikegami, and T. Mori, "Low Temperature Processing of Dense Samarium-doped $CeO_2$ Ceramics: Sintering and Grain Growth Behaviors," Acta Mater., 52 [8] 2221-28 (2004). https://doi.org/10.1016/j.actamat.2004.01.014
  5. Y. P. Fu, "Electrochemical Performance of $La_{0.9}Sr_{0.1}Cer_{0.8}Ni_{0.2}$O_{3-{\delta}}-Ce_{0.8}Sm_{0.2}O_{1.9}$ Composite Cathode for Solid Oxide Fuel Cells," Int. J. Hydrogen Energy, 36 [9] 5574-80 (2011). https://doi.org/10.1016/j.ijhydene.2011.01.150
  6. H. Iwahara, T. Esaka, H. Uchida, and N. Maeda, "Proton Conduction in Sintered Oxides and Its Application to Steam Electrolysis for Hydrogen Production," Solid State Ionics, 3/4 359-63 (1981). https://doi.org/10.1016/0167-2738(81)90113-2
  7. H. Iwahara, T. Esaka, H. Uchida, and N. Maeda, "Studies on Solid Electrolysis Gas Cells with High-temperature-type Proton Conductor and Oxide Ion Conductor," Solid State Ionics, 11 109-15 (1983). https://doi.org/10.1016/0167-2738(83)90047-4
  8. K. Nomura and H. Kageyama, "Transport Properties of $Ba(Zr_{0.8}Y_{0.2}$)$O_{3-{\delta}}$ Perovskite," Solid State Ionics, 178 [7-10] 661-65 (2007). https://doi.org/10.1016/j.ssi.2007.02.010
  9. L. Malavasi, C. A. J. Fisher, and M. S. Islam, "Oxide-ion and Proton Conducting Electrolyte Materials for Clean Energy Applications: Structural and Mechanistic Features," Chem. Soc. Rev., 39 [11] 4370-87 (2010). https://doi.org/10.1039/b915141a
  10. K. D. Kreuer, "Proton-conducting Oxides," Annu. Rev. Mater. Res., 33 333-59 (2003). https://doi.org/10.1146/annurev.matsci.33.022802.091825
  11. M. A. Azimova and S. McIntosh, "Transport Properties and Stability of Cobalt doped Proton Conducting Oxides," Solid State Ionics, 180 [2-3] 160-67 (2009). https://doi.org/10.1016/j.ssi.2008.12.013
  12. D. Han, Y. Nose, K. Shinoda, and T. Uda, "Site Selectivity of Dopants in $BaZr_{1-y}M_yO_{3-{\delta}}$ (M = Sc, Y, Sm, Eu, Dy) and Measurement of Their Water Contents and Conductivities," Solid State Ionics, 213 2-7 (2012). https://doi.org/10.1016/j.ssi.2011.09.005
  13. H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, and H. Suzuki, "Protonic Conduction in Calcium, Strontium and Barium Zirconates," Solid State Ionics, 61 [1-3] 65-69 (1993). https://doi.org/10.1016/0167-2738(93)90335-Z
  14. K. H. Ryu and S. M. Haile, "Chemical Stability and Proton Conductivity of Doped $BaCeO_3$-$BaZrO_3$ Solid Solutions," Solid State Ionics, 125 [1-4] 355-67 (1999). https://doi.org/10.1016/S0167-2738(99)00196-4
  15. A. Magrez and T. Schober, "Preparation, Sintering, and Water Incorporation of Proton Conducting $Ba_{0.99}Zr_{0.8}Y_{0.2}O_{3-{\delta}}$: Comparison between Three Different Synthesis Techniques," Solid State Ionics, 175 [1-4] 585-88 (2004). https://doi.org/10.1016/j.ssi.2004.03.045
  16. E. Fabbri, D. Pergolesi, S. Licoccia, and E. Traversa, "Does the Increase in Y-dopant Concentration Improve the Proton Conductivity of Ba$Zr_{1-x}$Yx$O_{3-{\delta}}$ Fuel Cell Electrolytes?," Solid State Ionics, 181 [21-22] 1043-51 (2010). https://doi.org/10.1016/j.ssi.2010.06.007
  17. S. Ricote and N. Bonanos, "Enhanced Sintering and Conductivity Study of Cobalt or Nickel doped Solid Solution of Barium Cerate and Zirconate," Solid State Ionics, 181 694-700 (2010). https://doi.org/10.1016/j.ssi.2010.04.007
  18. T. Schober and H. G. Bohn, "Water Vapor Solubility and Electrochemical Characterization of the High Temperature Proton Conductor $BaZr_{0.9}Y_{0.1}O_{2.95}$," Solid State Ionics, 127 [3-4] 351-360 (2000). https://doi.org/10.1016/S0167-2738(99)00283-0
  19. S. Tao and J. T. S. Irvine, "Conductivity Studies of Dense Yttrium-doped $BaZrO_3$ Sintered at $1325^{\circ}C$," J. Solid Sate Chem., 180 [12] 3493-503 (2007). https://doi.org/10.1016/j.jssc.2007.09.027
  20. D. Gao and R. Guo, "Structural and Electrochemical Properties of Yttrium-doped Barium Zirconate by Addition of CuO," J. Alloys Comp., 493 [1-2] 288-93 (2010). https://doi.org/10.1016/j.jallcom.2009.12.082
  21. J. S. Park, J. H. Lee, H. W. Lee, and B. K. Kim, "Low Temperature Sintering of $BaZrO_3$-based Proton Conductors for Intermediate Temperature Solid Oxide Fuel Cells," Solid State Ionics, 181 [3-4] 163-67 (2010). https://doi.org/10.1016/j.ssi.2009.06.015
  22. S. S. Beak, K. Y. Park, T. H. Lee, N. Lee, Y. Seo, S. J. Song, and J. Y. Park, "PdO-doped $BaZr_{0.8}Y_{0.2}O_3$-${\delta}$ Electrolyte for Intermediate-temperature Protonic Ceramic Fuel Cells," Acta Mater., 66 273-83 (2014). https://doi.org/10.1016/j.actamat.2013.11.014
  23. M. Benamira, A. Ringuede, V. Albin, R. N. Vannier, L. Hildebrandt, C. Lagereren, and M. Cassir, "Gadolinia-doped Ceria Mixed with Alkali Carbonates for Solid Oxide Fuel Cell Applications: I. A Thermal, Structural and Morphological Insight," J. Power Sources, 196 [13] 5546-54 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.004
  24. B. Zhu, X. Liu, P. Zhou, X. Yang, Z. Zhu, and W. Zhu, "Innovative Solid Carbonate-ceria Composite Electrolyte Fuel Cells," Electrochem. Commun., 3 [10] 566-71 (2001). https://doi.org/10.1016/S1388-2481(01)00222-3
  25. M. Mizuhata, T. Ohashi, and A. B. Beleke, "Electrical Conductivity and Related Properties of Molten Carbonates Coexisting with Ceria-based Oxide Powder for Hybrid Electrolyte," Int. J. Hydrogen Eng., 37 [24] 19407-16 (2012). https://doi.org/10.1016/j.ijhydene.2011.09.109
  26. L. Fan, M. Chen, C. Wang, and Bin Zhu, "$Pr_2NiO_4$-Ag Composite Cathode for Low Temperature Solid Oxide Fuel Cells with Ceria-carbonate Composite Electrolyte," Int. J. Hydrogen Eng., 37 [24] 19388-94 (2012). https://doi.org/10.1016/j.ijhydene.2011.09.124
  27. K. Y. Park, T. H. Lee, J. T. Kim, N. Lee, Y. Seo, S. J. Song, and J. Y. Park. "Highly Conductive Barium Zirconate-based Carbonate Composite Electrolytes for Intermediate Temperature-protonic Ceramic Fuel Cells," J. Alloys Comp., 585 103-10 (2014). https://doi.org/10.1016/j.jallcom.2013.09.130
  28. S. Shawuti and M. A. Gulgun, "Solid Oxide-molten carbonate Nano-composite Fuel Cells: Particle Size Effect," J. Power Sources, 267 128-35 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.010
  29. X. Wang, Y. Ma, S. Li, A.-H. Kashyout, B. Zhu, and M. Muhammed, "Ceria-based Nanocomposite with Simultaneous Proton and Oxygen Ion Conductivity for Low-temperature Solid Oxide Fuel Cells," J. Power Sources, 196 2754-58 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.033
  30. X. Wang, Y. Ma, and B. Zhu, "State of the Art Ceria-carbonate Composites (3C) Electrolyte for Advanced Low Temperature Ceramic Fuel Cells (LTCFCs)," Int. J. Hydrogen Eng., 37 [24] 19417-25 (2012). https://doi.org/10.1016/j.ijhydene.2011.09.096
  31. R. Huck, U. Bottger, D. Kohl, and G. Heiland, "Spillover Effects in the Detection of $H_2$ and $CH_4$ by Sputtered $SnO_2$ Films with Pd and PdO Deposits," Sens. Actuators, 17 [3-4] 355-59 (1989). https://doi.org/10.1016/0250-6874(89)80022-8