DOI QR코드

DOI QR Code

Ceramic Materials for Interconnects in Solid Oxide Fuel Cells - A Review

고체산화물 연료전지 연결재용 세라믹 소재

  • Park, Beom-Kyeong (New and Renewable Energy Research Division, Korea Institute of Energy Research) ;
  • Song, Rak-Hyun (New and Renewable Energy Research Division, Korea Institute of Energy Research) ;
  • Lee, Seung-Bok (New and Renewable Energy Research Division, Korea Institute of Energy Research) ;
  • Lim, Tak-Hyoung (New and Renewable Energy Research Division, Korea Institute of Energy Research) ;
  • Park, Seok-Joo (New and Renewable Energy Research Division, Korea Institute of Energy Research) ;
  • Park, Chong-Ook (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Jong-Won (New and Renewable Energy Research Division, Korea Institute of Energy Research)
  • 박범경 (한국에너지기술연구원 신재생에너지연구본부) ;
  • 송락현 (한국에너지기술연구원 신재생에너지연구본부) ;
  • 이승복 (한국에너지기술연구원 신재생에너지연구본부) ;
  • 임탁형 (한국에너지기술연구원 신재생에너지연구본부) ;
  • 박석주 (한국에너지기술연구원 신재생에너지연구본부) ;
  • 박종욱 (한국과학기술원 신소재공학과) ;
  • 이종원 (한국에너지기술연구원 신재생에너지연구본부)
  • Received : 2014.06.13
  • Accepted : 2014.07.17
  • Published : 2014.07.31

Abstract

An interconnect in solid oxide fuel cells (SOFCs) electrically connects unit cells and separates fuel from oxidant in the adjoining cells. The interconnects can be divided broadly into two categories - ceramic and metallic interconnects. A thin and gastight ceramic layer is deposited onto a porous support, and metallic interconnects are coated with conductive ceramics to improve their surface stability. This paper provides a short review on ceramic materials for SOFC interconnects. After a brief discussion of the key requirements for interconnects, the article describes basic aspects of chromites and titanates with a perovskite structure for ceramic interconnects, followed by the introduction of dual-layer interconnects. Then, the paper presents protective coatings based on spinel-or perovskite-type oxides on metallic interconnects, which are capable of mitigating oxide scale growth and inhibiting Cr evaporation.

Keywords

References

  1. J. H. Hirschenhofer, D. B. Stauffer, R. R. Engleman, and M. G. Klett, Fuel Cell Handbook; pp. 1-3, US Department of Energy, Morgantown, WV, 1998.
  2. S. C. Singhal, "Science and Technology of Solid Oxide Fuel Cell," MRS Bull., 25 [3] 16-21 (2000).
  3. N. Q. Minh and T. Takahashi, Science and Technology of Ceramic Fuel Cells; pp. 165-98, Elsevier, Amsterdam, 1995.
  4. W. Z. Zhu and S. C. Deevi, "Development of Interconnect Materials for Solid Oxide Fuel Cells," Mater. Sci. Eng. A, 348 [1-2] 227-43 (2003). https://doi.org/10.1016/S0921-5093(02)00736-0
  5. S. C. Singhal and K. Kendall, High Temperature Solid Oxide Fuel Cells; Fundamentals, Design and Applications; pp. 173-74, Elsevier, Amsterdam, 2003.
  6. N. Sakai, H. Yokokawa, T. Horita, and K. Yamaji, "Lanthanum Chromite-based Interconnects as Key Materials for SOFC Stack Development," Int. J. Appl. Ceram. Tech., 1 [1] 23-30 (2004).
  7. S. Fontana, R. Amendola, S. Chevalier, P. Piccardo, G. Caboche, M. Viviani, R. Molins, and M. Sennour, "Metallic Interconnects for SOFC: Characterization of Corrosion Resistance and Conductivity Evaluation at Operating Temperature of Differently Coated Alloys," J. Power Sources, 171 [2] 652-62 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.255
  8. H. Yokokawa, N. Sakai, T. Horita, and K. Yamaji, "Recent Developments in Solid Oxide Fuel Cell Materials," Fuel Cells, 1 [2] 117-31 (2001). https://doi.org/10.1002/1615-6854(200107)1:2<117::AID-FUCE117>3.0.CO;2-Y
  9. H. Ullmann, N. Trofimenko, F. Tietz, D. Strover, and A. A. Khanlou, "Correlation between Thermal Expansion and Oxide Ion Transport in Mixed Conducting Perovskite-type Oxides for SOFC Cathodes," Solid State Ionics, 138 [1-2] 79-90 (2000). https://doi.org/10.1016/S0167-2738(00)00770-0
  10. F. Tietz, "Thermal Expansion of SOFC Materials," Ionics, 5 [1-2] 129-39 (1999). https://doi.org/10.1007/BF02375916
  11. D. B. Meadowcroft, International Conference on Strontium Containing Compounds; pp. 119, Ed. by T. Gray, Atlantic Research Institute, Halifax, Canada, 1973.
  12. N. Q. Minh, "Ceramic Fuel Cells," J. Am. Ceram. Soc., 76 [3] 563-88 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  13. O. A. Marina, N. L. Canfield, and J. W. Stevenson, "Thermal, Electrical and Electrocatalytic Properties of Lanthanum-doped Strontium Titanate," Solid State Ionics, 149 [1-2] 21-8 (2002). https://doi.org/10.1016/S0167-2738(02)00140-6
  14. S. Hashimoto, S. L. Kindermann, P. H. Larsen, F. W. Poulsen, and M. Mogensen, "Conductivity and Expansion at High Temperature in $Sr_{0.7}La_{0.3}TiO_{3-{\delta}}$ Prepared under Reducing Atmosphere," J. Electroceram, 16 [2] 103-07 (2006). https://doi.org/10.1007/s10832-006-3490-1
  15. Q. X. Fu and F. Tietz, "Ceramic-based Anode Materials for Improved Redox Cycling of Solid Oxide Fuel Cells," Fuel Cells, 8 [5] 283-93 (2008). https://doi.org/10.1002/fuce.200800018
  16. Z. Wang, M. Mori, and T. Itoh, "Thermal Expansion Properties of $Sr_{1-x}La_{x}TiO_{3}$ ($0{\leq}{\times}{\leq}0.3$) Perovskites in Oxidizing and Reducing Atmospheres," J. Electrochem. Soc., 157 [12] B1783-89 (2010). https://doi.org/10.1149/1.3481458
  17. W. Vielstich, A. Hubert, M. Gasteiger, and A. Lamm, Handbook of Fuel Cells-fundamentals, Technology and Applications: Fuel Cell Technology and Applications; pp. 74, Wiley, New York, 2003.
  18. I. Yasuda and T. Hikita, "Electrical Conductivity and Defect Structure of Calcium-doped Lanthanum Chromites," J. Electrochem. Soc., 140 [6] 1699 (1993). https://doi.org/10.1149/1.2221626
  19. I. Yasuda, T. Ogiwara and H. Yakabe, Proceedings of the Seventh International Symposium on Solid Oxide Fuel Cells, SOFC-VII; pp. 783, Ed. by H. Yokokawa and S. C. Singhal, Tsukuba, Japan, 2001.
  20. J. W. Park and Y. K. Lee, Proceedings of the Fifth International Symposium on Solid Oxide Fuel Cells, SOFC-V; pp. 1253, Ed. by U. Stimming and S. C. Singhal, Aachen, Germany, 1997.
  21. S. P. Simner, J. S. Hardy, J. W. Stevenson, and T. R. Armsrong, Proceedings of the Sixth International Symposium on Solid Oxide Fuel Cells, SOFC-VI; pp. 696, Ed. by S. C. Singhal and M. Dokiya, Honolulu, Hawaii, 1999.
  22. J. Fergus, "Lanthanum Chromite-based Materials for Solid Oxide Fuel Cell Interconnects," Solid State Ionics, 171 [1-2] 1-15 (2004). https://doi.org/10.1016/j.ssi.2004.04.010
  23. H. Yokokawa, N. Sakai, T. Kawada, and M. Dokiya, "Chemical Thermodynamic Considerations in Sintering of $LaCrO_3$-based Perovskites," J. Electrochem. Soc., 138 [4] 1018-27 (1991). https://doi.org/10.1149/1.2085708
  24. R. Koc and H. U. Anderson, "Liquid Phase Sintering of $LaCrO_3$," J. Eur. Ceram. Soc., 9 [4] 285-92 (1992). https://doi.org/10.1016/0955-2219(92)90063-J
  25. N. M. Sammes, R. Ratnaraj, and M. G. Fee, "The Effect of Sintering on the Mechanical Properties of SOFC Ceramic Interconnect Materials," J. Mater. Sci., 29 [16] 4319-24 (1994). https://doi.org/10.1007/BF00414217
  26. M. Mori, Y. Hiei, and N. M. Sammes, "Sintering Behavior of Ca-or Sr-doped $LaCrO_3$ Perovskites Including Second Phase of $AECrO_4$ (AE= Sr, Ca) in Air," Solid State Ionics, 135 [1-4] 743-48 (2000). https://doi.org/10.1016/S0167-2738(00)00372-6
  27. G. Y. Lee, R. H. Song, J. H. Kim, D. H. Peck, T. H. Lim, Y. G. Shul, and D. R. Shin, "Properties of Cu, Ni, and V doped-$LaCrO_3$ Interconnect Materials Prepared by Pechini, Ultrasonic Spray Pyrolysis and Glycine Nitrate Processes for SOFC," J. Electroceram, 17 [2-4] 723-27 (2006). https://doi.org/10.1007/s10832-006-0473-1
  28. L. A. Chick, J. Liu, J. W. Stevenson, T. R. Armstrong, D. E. McCready, G. D. Maupin, G. W. Coffey, and C. A. Coyle, "Phase Transitions and Transient Liquid-phase Sintering in Calcium-substituted Lanthanum Chromite," J. Am. Ceram. Soc., 80 [8] 2109-20 (1997).
  29. T. R. Armstrong, J. W. Stevenson, D. E. McCready, S. W. Paulik, and P. E. Raney, "The Effect of Reducing Environments on the Stability of Acceptor Substituted Yttrium Chromite," Solid State Ioncis, 92 [3-4] 213-23 (1996). https://doi.org/10.1016/S0167-2738(96)00448-1
  30. T. R. Armstrong, J. W. Stevenson, L. R. Pederson, and P. E. Raney, "Dimensional Instability of Doped Lanthanum Chromite," J. Electrochem. Soc., 143 [9] 2919-25 (1996). https://doi.org/10.1149/1.1837127
  31. B. K. Flandermeyer, M. M. Nasrallah, A. K. Agarwal, and H. U. Anderson, "Defect Structure of Mg-doped $LaCrO_3$ Model and Thermogravimetric Measurements," J. Am. Ceram. Soc., 67 [3] 195-98 (1984).
  32. I. Yasuda and T. Hikita, "Electrical Conductivity and Defect Structure of Calcium-doped Lanthanum Chromites," J. Electrochem. Soc., 140 [6] 1699-704 (1993). https://doi.org/10.1149/1.2221626
  33. M. Mori, T. Yamamoto, H. Itoh, and T. Watanabe, "Compatibility of Alkaline Earth Metal (Mg, Ca, Sr)-doped Lan thanum Chromites as Separators in Planar-type Hightemperature Solid Oxide Fuel Cells," J. Mater. Sci., 32 [9] 2423-31 (1997). https://doi.org/10.1023/A:1018565409603
  34. N. H. Chan, R. K. Sharma, and D. M. Smyth, "Nonstoichiometry in $SrTiO_3$," J. Electrochem. Soc., 128 [8] 1762-69 (1981). https://doi.org/10.1149/1.2127727
  35. F. J. Lepe, J. Fernandez-Uban, L. Metres, and M. L. Martinez-Sarrion, "Synthesis and Electrical Properties of New Rare-earth Titanium Perovskites for SOFC Anode Applications," J. Power Sources, 151 74-78 (2005). https://doi.org/10.1016/j.jpowsour.2005.02.087
  36. H. Kurokawa, L. Yang, C. P. Jacobson, L. C. D. Jonghe, and S. J. Visco, "Y-doped $SrTiO_3$ Based Sulfur Tolerant Anode for Solid Oxide Fuel Cells," J. Power Sources, 164 [2] 510-18 (2007). https://doi.org/10.1016/j.jpowsour.2006.11.048
  37. X. Li, H. Zhao, W. Shen, F. Gao, X. Huang, Y. Li, and Z. Zhu, "Synthesis and Properties of Y-doped $SrTiO_3$ as an Anode Material for SOFCs," J. Power Sources, 166 [1] 47-52 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.008
  38. X. Sun, S. Wang, Z. Wang, X. Ye, T. Wen, and F. Huang, "Anode Performance of $LST-_xCeO_2$ for Solid Oxide Fuel Cells," J. Power Sources, 183 [1] 114-17 (2008). https://doi.org/10.1016/j.jpowsour.2008.05.007
  39. B. F. Flandermeyer, A. K. Agarwal, H. U. Anderson, and M. M. Nasrallah, "Oxidation-reduction Behavior of La-doped $SrTiO_3$," J. Mater. Sci., 19 [8] 2593-98 (1984). https://doi.org/10.1007/BF00550814
  40. M. R. Pillai, I. Kim, D. M. Bierschenk, and S. A. Barnett, "Fuel-flexible Operation of a Solid Oxide Fuel Cell with $Sr_{0.8}La_{0.3}TiO_3$ Support," J. Power Sources, 185 [2] 1086-93 (2008). https://doi.org/10.1016/j.jpowsour.2008.07.063
  41. M. J. Escudero and J. T. S. Irvine, "Development of Anode Material Based on La-substituted $SrTiO_3$ Perovskites Doped with Manganese and/or Gallium for SOFC," J. Power Sources, 192 [1] 43-50 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.132
  42. Z. Wang, M. Mori, and T. Itoh, "Thermal Expansion Properties of $Sr_{1-x}La_{x}TiO_{3}$ ($0{\leq}{\times}{\leq}0.3$) Perovskites in Oxidizing and Reducing Atmospheres," J. Electrochem. Soc., 157 [12] B1783-89 (2010). https://doi.org/10.1149/1.3481458
  43. S. Hashimoto, L. Kinermann, F. W. Poulsen, and M. Mogensen, "A Study on the Structural and Electrical Properties of Lanthanum-doped Strontium Titanate Prepared in Air," J. Alloys. Compd., 397 [1-2] 245-49 (2005). https://doi.org/10.1016/j.jallcom.2004.11.066
  44. S. Hashimoto, F. W. Poulsen, and M. Mogensen, "Conductivity of $SrTiO_3$ Based Oxides in the Reducing atmosphere at High Temperature," J. Alloys. Compd., 439 [1-2] 232-36 (2007). https://doi.org/10.1016/j.jallcom.2006.05.138
  45. N. Sirikanda, H. Matsumoto, and T. Ishihara, "Effects of Rock-salt Layer on Electronic and Oxide Ionic Mixed Conductivity in Strontium Titanate, SrO$(SrTiO_3)_n$ (n = 1, 2, ${\infty}$)," Solid State Ionics, 181 [5-7] 315-21 (2010). https://doi.org/10.1016/j.ssi.2009.12.014
  46. S. Hashimoto, L. Kindermann, P. H. Larsen, F. W. Poulsen, and M. Mogensen, "Conductivity and Expansion at High Temperature in $Sr_{0.7}$$La_{0.3}$$TiO_{3-{\delta}}$ Prepared under Reducing Atmosphere," J. Electroceram, 16 [2] 103-07 (2006). https://doi.org/10.1007/s10832-006-3490-1
  47. X. Li, H. Zhao, F. Gao, N. Chen, and N. Xu, "La and Sc Codoped $SrTiO_3$ as Novel Anode Materials for Solid Oxide Fuel Cells," Electrochem. Commun., 10 [10] 1567-70 (2008). https://doi.org/10.1016/j.elecom.2008.08.017
  48. X. Li, H. Zhao, F. N. Xu, X. Zhou, C. Zhang, and N. Chen, "Electrical Conduction Behavior of La, Co Co-doped $SrTiO_3$ Perovskite as Anode Material for Solid Oxide Fuel Cells," Int. J. Hydrogen Energy, 34 [15] 6407-14 (2009). https://doi.org/10.1016/j.ijhydene.2009.05.079
  49. R. D. Shanon and C. T. Prewitt, "Effective Ionic Radii in Oxides and Fluorides," Acta Crystalloger., B25 [5] 925-46 (1969).
  50. P. R. Slater, D. P. Fagg, and J. T. S. Irvine, "Synthesis and Electrical Characterisation of Doped Perovskite Titanates as Potential Anode Materials for Solid Oxide Fuel Cells," J. Mater. Chem., 7 2495-98 (1997). https://doi.org/10.1039/a702865b
  51. F. Horikiri, L. Han, N. Iizawa, K. Sato, K. Yashiro, T. Kawada, and J. Mizusaki, "Electrical Properties of Nbdoped $SrTiO_3$ Ceramics with Excess $TiO_2$ for SOFC Anodes and Interconnects," J. Electrochem. Soc., 155 [1] B16-20 (2008). https://doi.org/10.1149/1.2799733
  52. W. Huang and S. Gopalan, "Bi-layer Structures as Solid Oxide Fuel Cell Interconnections," Solid State Ionics, 177 [3-4] 347-50 (2006). https://doi.org/10.1016/j.ssi.2005.04.046
  53. Y. Xu, S. Wang, R. Liu, T. Wen, and Z. Wen, "A Novel Bilayered $Sr_{0.6}La_{0.4}TiO_3/La_{0.8}Sr_{0.2}MnO_3$ Interconnector for Anode-supported Tubular Solid Oxide Fuel Cell via Slurrybrushing and Co-sintering Process," J. Power Sources, 196 [3] 1338-41 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.088
  54. Y. Xu, S. Wang, L. Shao, T. Wen, and Z. Wen, "Performance of an Anode-supported Tubular Solid Oxide Fuel Cells Stack with Two Single Cells Connected by a Co-sintered Ceramic Interconnector," Int. J. Hydrogen Energy, 36 [10] 6194-98 (2011). https://doi.org/10.1016/j.ijhydene.2011.01.084
  55. B. K. Park, J. W. Lee, S. B. Lee, T. H. Lim, S. J. Park, R. H. Song, and D. R. Shin, "A Flat-tubular Solid Oxide Fuel Cell with a Dense Interconnect Film Coated on the Porous Anode Support," J. Power Sources, 213 218-22 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.025
  56. M. Dokiya, "SOFC System and Technology," Solid State Ionics, 383 152-53 (2002).
  57. B. C. H. Steele, "Materials for Fuel-cell Technologies," 414 345-52 (2001). https://doi.org/10.1038/35104620
  58. T. Brylewski, M. Nanko, T. Maruyama, and K. Przybylski, "Application of Fe-16Cr Ferritic Alloy to Interconnector for a Solid Oxide Fuel Cell," Solid State Ionics, 143 [2] 131-50 (2001). https://doi.org/10.1016/S0167-2738(01)00863-3
  59. I. Antepara, I. Villarreal, and L. M. Rodriguez-Martinez, "Evaluation of Ferritic Steels for Use as Interconnects and Porous Metal Supports in IT-SOFCs," J. Power Sources, 151 103-07 (2005). https://doi.org/10.1016/j.jpowsour.2005.02.084
  60. Z. Yang, K. S. Weil, D. M. Paxton, and J. W. Stevenson, "Selection and Evaluation of Heat-resistant Alloys for SOFC Interconnect Applications," J. Electrochem. Soc., 150 [9] A1188-201 (2003). https://doi.org/10.1149/1.1595659
  61. S. J. Geng, J. H. Zhu, and Z. G. Lu, "Evaluation of Several Alloys for Solid Oxide Fuel Cell Interconnect Application," Scr. Mater., 55 [3] 239-42 (2006). https://doi.org/10.1016/j.scriptamat.2006.04.008
  62. Z. Zeng and K. Natesan, "Corrosion of Metallic Interconnects for SOFC in Fuel Gases," Solid State Ionics, 167 [1-2] 9-16 (2004). https://doi.org/10.1016/j.ssi.2003.11.026
  63. N. Sakai, T. Horita, and K. Yamaji, "Materials and Reaction Mechanisms at Anode/electrolyte Interfaces for SOFCs," Solid State Ionics, 177 [19-25] 1941-48 (2006). https://doi.org/10.1016/j.ssi.2006.01.013
  64. S. P. Jiang and Y. Zhen, "Mechanism of Cr Deposition and Its Application in the Development of Cr-tolerant Cathodes of Solid Oxide Fuel Cells," Solid State Ionics, 179 [27-32] 1459-64 (2008). https://doi.org/10.1016/j.ssi.2008.01.006
  65. X. Li, J. W. Lee, and B. N. Popov, "Performance Studies of Solid Oxide Fuel Cell Cathodes in the Presence of Bare and Cobalt Coated E-brite Alloy Interconnects," J. Power Sources, 187 [2] 356-62 (187).
  66. H. Yokokawa, T. Horita, N. Sakai, and K. Yamaji, "Thermodynamic Considerations on Cr Poisoning in SOFC Cathodes," Solid State Ionics, 177 [35-36] 3193-98 (2006). https://doi.org/10.1016/j.ssi.2006.07.055
  67. M. Stanislowski, J. Froitzheim, and L. Niewolak, "Reduction of Chromium Vaporization from SOFC Interconnectors by Highly Effective Coatings," J. Power Sources, 164 [2] 578-89 (2007). https://doi.org/10.1016/j.jpowsour.2006.08.013
  68. N. Orlovskaya, A. Coratolo, C. Johnson, and R. Gemmen, "Structural Characterization of Lanthanum Chromite Perovskite Coating Deposited by Magnetron Sputtering on an Iron-based Chromium-containing Alloy as a Promising Interconnect Material for SOFCs," J. Am. Ceram. Soc., 87 [10] 1981-87 (2004).
  69. C. C. Mardare, M. Spiegel, A. Savan, and A. Ludwig, "Thermally Oxidized Mn-Co Thin Films as Protective Coatings for SOFC Interconnects," Int. J. Hydrogen Energy, 156 [12] B1431-39 (2009).
  70. P. Gannon, M. Deibert, P. White, R. Smith, H. Chen H, W. Priyantha, J. Lucas, and V. Gorokhousky, "Advanced PVD Protective Coatings for SOFC Interconnects," Int. J. Hydrogen Energy, 33 [14] 3391-4000 (2008).
  71. Z. Yang, J. S. Hardy, M. S. Walker, G. Xia, S. P. Simner, and J. W. Stevenson, "Structure and Conductivity of Thermally Grown Scales on Ferritic Fe-Cr-Mn Steel for SOFC Interconnect Applications," J. Electrochem. Soc., 151 [11] A1825-31 (2004). https://doi.org/10.1149/1.1797031
  72. S. P. Simner, M. D. Anderson, G. Xia, Z. Yang, L. R. Pederson, and J. W. Stevenson, "SOFC Performance with Fe-Cr-Mn Alloy Interconnect," J. Electrochem. Soc., 152 [4] A740 (2005). https://doi.org/10.1149/1.1864332
  73. A. Petric and H. Ling, "Electrical Conductivity and Thermal Expansion of Spinels at Elevated Temperatures," J. Am. Ceram. Soc., 90 [5] 1515-20 (2007). https://doi.org/10.1111/j.1551-2916.2007.01522.x
  74. Z. Yang, G. Xia, X. Li, and J. W. Stevenson, "$(Mn,Co)_3O_4$ Spinel Coatings on Ferritic Stainless Steels for SOFC Interconnect Applications," Int. J. Hydrogen Energy, 32 [16] 3648-54 (2007). https://doi.org/10.1016/j.ijhydene.2006.08.048
  75. Z. Yang, G. Xia, S. Simner, and J. Stevenson, "Thermal Growth and Performance of Manganese Cobaltite Spinel Protection Layers on Ferritic Stainless Steel SOFC Interconnects," J. Electrochem. Soc., 152 [9] A1896 (2005). https://doi.org/10.1149/1.1990462
  76. N. J. Magdefrau, L. Chen, E. Y. Sun, J. Yamanis, and M. Aindow, "Formation of Spinel Reaction Layers in Manganese Cobaltite-coated Crofer22 APU for Solid Oxide Fuel Cell Interconnects," J. Power Sources, 227 318-26 (2013). https://doi.org/10.1016/j.jpowsour.2012.07.091
  77. Z. Yang, G. Xia, Z. Nie, J. Templeton, and J. W. Stevenson, "Ce-modified $(Mn,Co)_3O_4$ Spinel Coatings on Ferritic Stainless Steels for SOFC Interconnect Applications," Electrochem. Solid-State Lett., 11 [8] B140-3 (2008). https://doi.org/10.1149/1.2929066
  78. Y. Xu, Z. Wen, S. Wang, and T. Wen, "Cu doped Mn-Co Spinel Protective Coating on Ferritic Stainless Steels for SOFC Interconnect Applications," Solid State Ionics, 192 [1] 561-64 (2011). https://doi.org/10.1016/j.ssi.2010.05.052
  79. B. K. Park, J. W. Lee, S. B. Lee, T. H. Lim, S. J. Park, C. O. Park, and R. H. Song, "Cu-and Ni-doped $Mn_{1.5}Co_{1.5}O_4$ Spinel Coatings on Metallic Interconnects for Solid Oxide Fuel Cells," Int. J. Hydrogen Energy, 38 [27] 12043-50 (2013). https://doi.org/10.1016/j.ijhydene.2013.07.025
  80. N. S. Waluyo, B. K. Park, S. B. Lee, T. H. Lim, S. J. Park, R. H. Song, and J. W. Lee, "$(Mn,Cu)_3O_4$-based Conductive Coatings as Effective Barriers to High-temperature Oxidation of Metallic Interconnects for Solid Oxide Fuel Cells," J. Solid State Electrochem., 18 [2] 445-52 (2014). https://doi.org/10.1007/s10008-013-2245-6
  81. Z. Yang, G. Xia, G. D. Maupin, and J. W. Stevenson, "Evaluation of Perovskite Overlay Coatings on Ferritic Stainless Steels for SOFC Interconnect Applications," J. Electrochem. Soc., 153 [10] A1852-58 (2006). https://doi.org/10.1149/1.2239371
  82. Z. Yang, G. Xia, G. D. Maupin, and J. W. Stevenson, "Conductive Protection Layers on Oxidation Resistant Alloys for SOFC Interconnect Applications," Surf. Coat. Technol., 201 [7] 4476-83 (2006). https://doi.org/10.1016/j.surfcoat.2006.08.082