DOI QR코드

DOI QR Code

Association of rs1042522 Polymorphism with Increased Risk of Prostate Adenocarcinoma in the Pakistani Population and its HuGE Review

  • Published : 2014.05.15

Abstract

Prostate adenocarcinoma is one of the leading causes of cancer related mortality in men but still limited knowledge is available about its associated functional SNPs including rs1042522 (Pro72Arg). The present study was undertaken to explore the association of this SNP with susceptibility to prostate adenocarcinoma along with its structural and functional impacts in the Pakistani population in a case-control study. Three-dimensional structure of human TP53 with Pro72Arg polymorphism was predicted through homology modeling, refined and validated for detailed structure-based assessment. We also carried out a HuGE review of the previous available data for this polymorphism. Different genetic models were used to evaluate the genotypes association with the increased risk of PCa (Allelic contrast: OR=0.0.34, 95%CI 0.24-0.50, p=0.000; GG vs CC: OR=0.17, 95%CI 0.08-0.38, p=0.000; Homozygous: OR=0.08, 95%CI 0.04-0.15, p=0.000; GC vs CC: OR=2.14, 95%CI 1.01-4.51, p=0.046; Recessive model: OR=0.10, 95%CI 0.05-0.18, p=0.000; Log Additive: OR=3.54, 95%CI 2.13-5.89, p=0.000) except the Dominant model (OR=0.77, 95%CI 0.39-1.52, p=0.46). Structure and functional analysis revealed that the SNP in the proline rich domain is responsible for interaction with HRMT1L2 and WWOX. In conclusion, it was observed that the Arg coding G allele is highly associated with increased risk of prostate adenocarcinoma in the Pakistani population (p=0.000).

Keywords

References

  1. Acikgoz A, Ergor G (2013). Compliance with screening recommendations according to breast cancer risk levels in Izmir, Turkey. Asian Pac J Cancer Prev, 14, 1737-42. https://doi.org/10.7314/APJCP.2013.14.3.1737
  2. Adzhubei IA, Schmidt S, Peshkin L, et al (2010). A method and server for predicting damaging missense mutations. Nat Methods, 7, 248-9. https://doi.org/10.1038/nmeth0410-248
  3. Aydin Z, Singh A, Bilmes J, Noble WS (2011). Learning sparse models for a dynamic bayesian network classifier of protein secondary structure. BMC Bioinformatics, 12, 154. https://doi.org/10.1186/1471-2105-12-154
  4. Bensaad K, Tsuruta A, Selak MA, et al (2006). TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 126, 107-20. https://doi.org/10.1016/j.cell.2006.05.036
  5. Berger MF, Lawrence MS, Demichelis F, et al (2011). The genomic complexity of primary human prostate cancer. Nature, 470, 214-20. https://doi.org/10.1038/nature09744
  6. Boyd LK, Mao X, Lu YJ (2012). The complexity of prostate cancer: genomic alterations and heterogeneity. Nat Rev Urol, 9, 652-64. https://doi.org/10.1038/nrurol.2012.185
  7. Capriotti E, Marti-Renom MA (2010). Quantifying the relationship between sequence and three-dimensional structure conservation in RNA. BMC Bioinformatics, 11, 322. https://doi.org/10.1186/1471-2105-11-322
  8. Cheng J, Randall AZ, Sweredoski MJ, Baldi P (2005). SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res, 33, 72-6.
  9. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012). Predicting the Functional Effect of Amino Acid Substitutions and Indels. PLoS ONE, 7, 46688. https://doi.org/10.1371/journal.pone.0046688
  10. Doosti A, Dehkordi PG (2011). The p53 codon 72 polymorphism and association to prostate cancer in Iranian patients. A J Biotechnol, 10, 12821-5. https://doi.org/10.5897/AJB11.1442
  11. Dumont P, Leu JI, Della PA III, George DL, Murphy M (2003). The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet, 33, 357-65. https://doi.org/10.1038/ng1093
  12. Eswar N, Marti-Renom Ma, Webb B, et al (2006). Comparative protein structure modeling with MODELLER. Curr Protoc Protein Sci, ps0209s50.
  13. Henner WD, Evans AJ, Hough KM, et al (2001). Association of codon 72 polymorphism of p53 with lower prostate cancer risk. Prostate, 49, 263-6. https://doi.org/10.1002/pros.10021
  14. Hirata H, Hinoda Y, Kikuno N, et al (2007). CXCL12 G801A polymorphism is a risk factor for sporadic prostate cancer susceptibility. Clin Cancer Res, 13, 5056-62. https://doi.org/10.1158/1078-0432.CCR-07-0859
  15. Hu ZH, Lin YW, Xu X, et al (2013). Genetic polymorphisms of glutathione S-transferase M1 and prostate cancer risk in Asians: a meta-analysis of 18 studies. Asian Pac J Cancer Prev, 14, 393-8. https://doi.org/10.7314/APJCP.2013.14.1.393
  16. Huang SP, Wu WJ, Chang WS, et al (2004). p53 Codon 72 and p21 codon 31 polymorphisms in prostate cancer. Cancer Epidemiol Biomarkers Prev, 13, 2217-24.
  17. Karimpur-Zahmatkesh A, Farzaneh F, Pouresmaeili F, Hosseini J, Azarghashb E, Yaghoobi M (2013). A2 allele polymorphism of the CYP17 gene and prostate cancer risk in an iranian population. Asian Pac J Cancer Prev, 14, 1049-52. https://doi.org/10.7314/APJCP.2013.14.2.1049
  18. Khaldi N, Shields DC (2011). Shift in the isoelectric-point of milk proteins as a consequence of adaptive divergence between the milks of mammalian species. Biol Direct, 6, 40. https://doi.org/10.1186/1745-6150-6-40
  19. Khoo KH, Andreeva A, Fersht AR (2009). Adaptive evolution of p53 thermodynamic stability. J Mol Biol, 393, 161-75. https://doi.org/10.1016/j.jmb.2009.08.013
  20. Kiraga J, Mackiewicz P, Mackiewicz D, et al (2007). The relationships between the isoelectric point and: length of proteins, taxonomy and ecology of organisms. BMC Genomics, 8, 163. https://doi.org/10.1186/1471-2164-8-163
  21. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993). PROCHECK-a program to check the stereochemical quality of protein structures. J App Cryst, 26, 283-91. https://doi.org/10.1107/S0021889892009944
  22. Leiros GJ, Galliano SR, Sember ME (2005). Kahn T, Schwarz E, Eiguchi K. Detection of human papillomavirus DNA and p53 codon 72 polymorphism in prostate carcinomas of patients from Argentina. BMC Urol, 5, 15. https://doi.org/10.1186/1471-2490-5-15
  23. Levine AJ, Oren M (2009). The first 30 years of p53: growing ever more complex. Nat Rev Cancer, 9, 749-58. https://doi.org/10.1038/nrc2723
  24. Murphy ME (2006). Polymorphic variants in the p53 pathway. Cell Death Differ, 13, 916-20. https://doi.org/10.1038/sj.cdd.4401907
  25. Nandi S, Mehra N, Lynn AM, Bhattacharya A (2005). Comparison of theoretical proteomes: identification of COGs with conserved and variable pI within the multimodal pI distribution. BMC Genomics, 6, 116. https://doi.org/10.1186/1471-2164-6-116
  26. Ng PC, Henikoff S (2003). SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res, 31, 3812-4. https://doi.org/10.1093/nar/gkg509
  27. Quinones LA, Irarrazabal CE, Rojas CR, et al (2006). Joint effect among p53, CYP1A1, GSTM1 polymorphism combinations and smoking on prostate cancer risk: an exploratory genotype-environment interaction study. Asian J Androl, 8, 349-55. https://doi.org/10.1111/j.1745-7262.2006.00135.x
  28. Reinhardt HC, Schumacher B (2012). The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet, 28, 128-36. https://doi.org/10.1016/j.tig.2011.12.002
  29. Reva B, Antipin Y, Sander C (2011). Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res, 39, 118.
  30. Ricks-Santi L, Mason T, Apprey V, et al (2010). p53 Pro72Arg polymorphism and prostate cancer in men of African descent. Prostate, 70, 1739-45.
  31. Ricks-Santi LJ, Apprey V, Mason T, et al (2012). Identification of genetic risk associated with prostate cancer using ancestry informative markers. Prostate Cancer Prostatic Dis, 15, 359-64. https://doi.org/10.1038/pcan.2012.19
  32. Rivlin N, Brosh R, Oren M, Rotter V (2011). Mutations in the p53 Tumor Suppressor Gene: important milestones at the various Steps of tumorigenesis. Genes Cancer, 2, 466-74. https://doi.org/10.1177/1947601911408889
  33. Rogler A, Rogenhofer M, Borchardt A, et al (2011). P53 codon 72 (Arg72Pro) polymorphism and prostate cancer risk: association between disease onset and proline genotype. Pathobiol, 78, 193-200. https://doi.org/10.1159/000326767
  34. Shi H, Tan SJ, Zhong H, et al (2009). Winter temperature and UV are tightly linked to genetic changes in the p53 tumor suppressor pathway in Eastern Asia. Am J Hum Genet, 84, 534-41. https://doi.org/10.1016/j.ajhg.2009.03.009
  35. Siegel R, Ward E, Brawley O, Jemal A (2011). Cancer statistics, 2011. CA Cancer J Clin, 61, 212-36. https://doi.org/10.3322/caac.20121
  36. Suzuki K, Matsui H, Ohtake N, et al (2003). A p53 codon 72 polymorphism associated with prostate cancer development and progression in Japanese. J Biomed Sci, 10, 430-5. https://doi.org/10.1007/BF02256434
  37. Tafrihi M, Toosi S, Minaei T, et al (2014). Anticancer properties of Teucrium persicum in PC-3 prostate cancer cells. Asian Pac J Cancer Prev, 15, 785-91. https://doi.org/10.7314/APJCP.2014.15.2.785
  38. Thut CJ, Chen JL, Klemm R, Tjian R (1995). p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science, 267, 100-4. https://doi.org/10.1126/science.7809597
  39. Waheed R, Khan MH, Bano R, Rashid H (2012). Sequence and structure based assessment of nonsynonymous SNPs in hypertrichosis universalis. Bioinformation, 8, 316-8. https://doi.org/10.6026/97320630008316
  40. Wang NN, Xu Y, Yang K, et al (2014). Susceptibility loci associations with prostate cancer risk in northern Chinese men. Asian Pac J Cancer Prev, 14, 3075-8. https://doi.org/10.7314/APJCP.2013.14.5.3075
  41. Wang Z, Eickholt J, Cheng J (2011). APOLLO: A quality assessment service for single and multiple protein models. Bioinformatics, 27, 1715-6. https://doi.org/10.1093/bioinformatics/btr268
  42. Whibley C, Pharoah PD, Hollstein M (2009). p53 polymorphisms: Cancer implications. Nat Rev Cancer, 9, 95-07. https://doi.org/10.1038/nrc2584
  43. Wu HC, Chang CH, Chen HY, et al (2004). p53 gene codon 72 polymorphism but not tumor necrosis factor-alpha gene is associated with prostate cancer. Urol Int, 73, 41-6. https://doi.org/10.1159/000078803
  44. Xu B, Xu Z, Cheng G, et al (2010). Association between polymorphisms of TP53 and MDM2 and prostate cancer risk in southern Chinese. Cancer Genet Cytogenet, 202, 76-81. https://doi.org/10.1016/j.cancergencyto.2010.02.014
  45. Xu CT, Zheng F, Dai X, et al (2012). Association between TP53 Arg72Pro polymorphism and hepatocellular carcinoma risk: a meta-analysis. Asian Pac J Cancer Prev, 13, 4305-9. https://doi.org/10.7314/APJCP.2012.13.9.4305
  46. Xu D, Zhang Y (2011). Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophysical Journal, 101, 2525-34. https://doi.org/10.1016/j.bpj.2011.10.024
  47. Zhang H, Xu Y, Zhang Z, Liu R, Ma B (2012). Association between COX-2 rs2745557 polymorphism and prostate cancer risk: a systematic review and meta-analysis. BMC Immunol, 13, 14. https://doi.org/10.1186/1471-2172-13-14
  48. Zhang LL, Sun L, Zhu XQ, et al (2014). rs10505474 and rs7837328 at 8q24 cumulatively confer risk of prostate cancer in northern Han Chinese. Asian Pac J Cancer Prev, 15, 3129-32. https://doi.org/10.7314/APJCP.2014.15.7.3129
  49. Zhao CX, Liu M, Wang JY, et al (2014). Association of 8 loci on chromosome 8q24 with prostate carcinoma risk in northern Chinese men. Asian Pac J Cancer Prev, 14, 6733-8. https://doi.org/10.7314/APJCP.2013.14.11.6733

Cited by

  1. Association of rs1219648 in FGFR2 and rs1042522 in TP53 with Premenopausal Breast Cancer in an Iranian Azeri Population vol.15, pp.18, 2014, https://doi.org/10.7314/APJCP.2014.15.18.7955