DOI QR코드

DOI QR Code

Cytotoxic Activity of Biosynthesized Gold Nanoparticles with an Extract of the Red Seaweed Corallina officinalis on the MCF-7 Human Breast Cancer Cell Line

  • El-Kassas, Hala Yassin (Department of Hydrobiology, National Institute of Oceanography and Fisheries) ;
  • El-Sheekh, Mostafa M. (Botany Department, Faculty of Science, Tanta University)
  • 발행 : 2014.05.30

초록

Background: Nano-biotechnology is recognized as offering revolutionary changes in the field of cancer therapy and biologically synthesized gold nanoparticles are known to have a wide range of medical applications. Materials and Methods: Gold nanoparticles (GNPs) were biosynthesized with an aqueous extract of the red alga Corallina officinalis, used as a reducing and stabilizing agent. GNPs were characterized using UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive analysis (EDX) and Fourier transform infra-red (FT-IR) spectroscopy and tested for cytotoxic activity against human breast cancer (MCF-7) cells cultured in Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum, considering their cytotoxicty and effects on cellular DNA. Results: The biosynthesized GNPs were $14.6{\pm}1nm$ in diameter. FT-IR analysis showed that the hydroxyl functional group from polyphenols and carbonyl group from proteins could assist in formation and stabilization. The GNPs showed potent cytotoxic activity against MCF-7 cells, causing necrosis at high concentrations while lower concentrations were without effect as indicated by DNA fragmentation assay. Conclusions: The antitumor activity of the biosynthesized GNPs from the red alga Corallina officinalis against human breast cancer cells may be due to the cytotoxic effects of the gold nanoparticles and the polyphenolcontent of the algal extract.

키워드

참고문헌

  1. Aleem AA (1993). Marine algae of Alexandria, Egypt. Alexandria: Privately published, 1, 135.
  2. Ardebil MD, Bouzari, Z, Shenas, MH, Zeinalzadeh M, Barat S (2011). Depression and health related quality of life in breast cancer patients. Academic J Cancer Res, 4, 43-6.
  3. American Cancer Society (2007). Global cancer facts and figures_rev.pdf ,accessed on November 05, 2011.
  4. Bhattacharya A, Sood P, Citovsky V (2010).The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol, 11, 705-19.
  5. Borchardt JR, Wyse DL, Sheaffer CC, et al (2008). Antioxidant and antimicrobial activity of seed from plants of the mississippi river basin. J Med Plants Res, 2, 81-93.
  6. Chandran SP, Chaudhary M, Rasricha R, et al (2006). Synthesis of gold nanoparticles and silver nanoparticles using alveolar plant extract. Biotechnol Prog, 22, 577. https://doi.org/10.1021/bp0501423
  7. Chithrani BD, Ghazani AA, Chan WC (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett, 6, 662-8. https://doi.org/10.1021/nl052396o
  8. Chithrani BD, Chan WC (2007). Elucidating the mechanism of cellular uptake and removal of protein coated gold nanoparticles of different sizes and shapes. Nano Lett, 7, 1542-50. https://doi.org/10.1021/nl070363y
  9. Deslandes E, Pondaven P, Auperin T, et al (2000). Preliminary study of the in vitro antiproliferative effect of a hydroethanolic extract from the subtropical seaweed Turbinaria ornata (Turner J. Argadh) on a human non-smallcell bronchopulmonary carcinoma cell line (NSCLC-N6). J Appl Phycol, 12, 257-62. https://doi.org/10.1023/A:1008114831862
  10. Devi JS, Valentin Bhimba B, Peter DM, et al (2013). Production of biogenic silver nanoparticles using Sargassum longifolium and its applications. Ind J Geo-Marine Sci, 42, 125-30.
  11. El-Kassas H, Attia AA (2014). Bactericidal application and cytotoxic activity of biosynthesized silver nanoparticles with an extract of the red seaweed Pterocladiella capillacea on the HepG2 cell line. Asian Pac J Cancer Prev, 15, 1299-06. https://doi.org/10.7314/APJCP.2014.15.3.1299
  12. El-Sayed I, Huang X, El-Sayed MA (2006). Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett, 239, 129. https://doi.org/10.1016/j.canlet.2005.07.035
  13. Ghodake G, Lee DS (2011). Biological synthesis of gold nanoparticles using the aqueous extract of the brown algae Laminaria japonica. J Nanoelectron Optoe, 6, 1-4. https://doi.org/10.1166/jno.2011.1128
  14. Han G, Ghosh P, Rotello VM (2007a). Multi functional gold nanoparticles for drug delivery. Adv Exp Med Biol, 620, 48-56. https://doi.org/10.1007/978-0-387-76713-0_4
  15. Han G, Ghosh P, Rotello VM (2007b). Functionalized gold nanoparticles for drug delivery. Nanomedicine (Lond), 2, 113-23. https://doi.org/10.2217/17435889.2.1.113
  16. Hardman RA (2006). Toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect, 114, 165-71. https://doi.org/10.1289/ehp.8284
  17. Jadhav AP, Kim CW, Cha HG, et al (2009). Effect of different surfactants on the size control and optical properties of Y2O3:Eu3+ nanoparticles prepared by coprecipitation method. J Phys Chem C, 113, 13600-4. https://doi.org/10.1021/jp903067j
  18. Jana NR, Gearheart L, Murphy CJ (2001).Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B, 105, 4065-67.
  19. Krishnan R, Maru GB (2006). Isolation and analyses of polymeric polyphenol fractions from black tea. Food Chem, 94, 331 https://doi.org/10.1016/j.foodchem.2004.11.039
  20. Kroemer G (1995). The pharmacology of T cell apoptosis. Adv Immunol, 58, 211-96. https://doi.org/10.1016/S0065-2776(08)60621-5
  21. Kwon H, Bae S, Kim K, et al (2007). Induction of apoptosis in HeLa cells by ethanolic extract of Corallina pilulifera. Food Chem, 104, 196-201. https://doi.org/10.1016/j.foodchem.2006.11.031
  22. Lee J, Chatterjee DK, Lee MH, et al (2014). Gold nanoparticles in breast cancer treatment: Promise and potential pitfalls. Cancer Lett, (Epub ahead of print).
  23. Li W, Xie XB, Shi QS, et al (2010). Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microb Biotechnol, 85, 1115-22. https://doi.org/10.1007/s00253-009-2159-5
  24. Link S, El-Sayed MA (2000). Shape and size dependence of radiative, nonradiative, and photothermal properties of gold nanocrystals. Int Rev Phys Chem, 19, 409-53. https://doi.org/10.1080/01442350050034180
  25. Loannou YA, Chen FW (1996). Quantitation of DNA Fragmentation in Apoptosis. Nucleic Acids Res, 24, 992-93. https://doi.org/10.1093/nar/24.5.992
  26. Magrez A, Kasas S, Salicio V, et al (2006).Cellular toxicity of carbon-based nanomaterials. Nano Lett, 6, 1121-5. https://doi.org/10.1021/nl060162e
  27. Mohanpuria P, Ran KN, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res, 10, 507-17. https://doi.org/10.1007/s11051-007-9275-x
  28. Muthuirulappan S, Francis SP (2013). Anti-cancer mechanism and possibility of nano-suspension formulations for a marine algae product fucoxanthin. Asian Pac J Cancer Prev, 14, 2213-6. https://doi.org/10.7314/APJCP.2013.14.4.2213
  29. Nagumo T, Iizima-Mizui N, Fujihara M, et al (1988). Separation of sulfated, fucose-containing polysaccharides from brown seaweed, Sargassum kjellmaniaum and their heterogeneity and antitumor activity. Kitasato Archives of Experimental Med, 61, 59-67.
  30. Najar AG, Pashaei-Asl R, Omidi Y, Farajnia S, Nourazarian AR (2013). EGFR antisense oligonucleotides encapsulated with nanoparticles decrease EGFR, MAPK1 and STAT5 expression in a human colon cancer cell line. Asian Pac J Cancer Prev, 14, 495-8. https://doi.org/10.7314/APJCP.2013.14.1.495
  31. Naqvi SA, Kamat SY, Fernandes L, et al (1980). Screening of some marine plants from the Indian coast for biological activity. Bot Mar, 24, 51-55.
  32. Niemeyer CM, Ceyhan B (2001). DNA-directed functionalization of colloidal gold with proteins. Angew Chem Int Ed Engl, 40, 3685-88. https://doi.org/10.1002/1521-3773(20011001)40:19<3685::AID-ANIE3685>3.0.CO;2-E
  33. Noda H, Amano H, Arashima K, et al (1989). Studies on the antitumor activity of marine algae. Nippon Suisan Gakkaishi, 55, 1259-64. https://doi.org/10.2331/suisan.55.1259
  34. Oberdorster G, Maynard A, Donaldson K, et al (2005). Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol, 2, 8-42. https://doi.org/10.1186/1743-8977-2-8
  35. Paciotti GF, Myer L, Weireich D, et al (2004). Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Delivery, 11, 3169-83.
  36. Niemeyer CM, Ceyhan B (2001) DNA-directed functionalization of colloidal gold with proteins. Angew Chem Int Ed Engl, 40, 3685-88. https://doi.org/10.1002/1521-3773(20011001)40:19<3685::AID-ANIE3685>3.0.CO;2-E
  37. Pan Y, Neuss S, Leifert A, et al (2007). Size-dependent cytotoxicity of gold nanoparticles. Small, 3, 1941-49. https://doi.org/10.1002/smll.200700378
  38. Pan Y, Leifert A, Ruau D, et al (2009). Gold Nanoparticles of Diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small, 5, 2067-76. https://doi.org/10.1002/smll.200900466
  39. Rajathi FAA, Parthiban C, Ganesh Kumar V, et al (2012). Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kutzing). Spectrochim Acta Part A Mol Biomol Spectrosc, 99, 166-73. https://doi.org/10.1016/j.saa.2012.08.081
  40. Rajeshkumar S, Malarkodi1 C, Vanaja M, et al (2013a). Antibacterial activity of algae mediated synthesis of gold nanoparticles from Turbinaria conoides. Der Pharma Chemica, 5, 224-29.
  41. Rajeshkumar S, Malarkodil C, Gnanajobitha G, et al (2013b). Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J Nanostr Chem, 3, 44-50. https://doi.org/10.1186/2193-8865-3-44
  42. Ramakrishna D, Rao P (2011). Nanoparticles: is toxicity a concern? J Int Fed Clin Chem Lab Med, 22, 1-10.
  43. Selim ME, Hendi AA (2012). Gold nanoparticles induce apoptosis in MCF-7 human breast cancer cells. Asian Pac J Cancer Prev, 13, 1617-20. https://doi.org/10.7314/APJCP.2012.13.4.1617
  44. Siegel R, DeSantis C, Virgo K, et al (2012). Cancer treatment and survivorship statistics. CA Cancer J Clin, 62, 220-41. https://doi.org/10.3322/caac.21149
  45. Sigee DC, Dean A, Levado E, et al (2002). Fourier-transform infrared spectroscopy of Pediastrum duplex: characterization of a micro-population isolated from aeutrophic lake. Eur J Phycol, 37, 19-26. https://doi.org/10.1017/S0967026201003444
  46. Singaravelu G, Arockiyamari J, Ganesh Kumar V, et al (2007). A novel extracellular biosynthesis of monodisperse gold nanoparticles using marine algae, Sargassum wightii Greville. Colloid Surf B: Biointerf, 57, 97-101. https://doi.org/10.1016/j.colsurfb.2007.01.010
  47. Singh OP, Nehru RM (2008). Nanotechnology and cancer treatment. Asian J Exp Sci, 22, 45-50.
  48. Smit AJ (2004). Medicinal and pharmaceutical uses of seaweed natural products: A review. J Appl Phycology, 16, 245-62. https://doi.org/10.1023/B:JAPH.0000047783.36600.ef
  49. Song JY, Kim BS, (2009). Rapid biological synthesis of silver nanoparticles usingplant leaf extracts. Bioprocess Biosyst Eng, 32, 79-84. https://doi.org/10.1007/s00449-008-0224-6
  50. Srivastava S K, Yamada R, Ogino C, et al (2013). Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol. Nanoscale Res Lett , 8, 70-8. https://doi.org/10.1186/1556-276X-8-70
  51. Sun Y, Xia Y (2002). Shape-controlled synthesis of gold and silver nanoparticles. Science, 298, 2176-9. https://doi.org/10.1126/science.1077229
  52. Venkatesan J, Manivasagan P, Kim S, et al (2014). Marine algae-mediated synthesis of gold nanoparticles using a novel ecklonia cava. Bioprocess Biosyst Eng, 1131-37.
  53. Vijayaraghavan K, Mahadevan A, Sathishkumar M, et al (2011). Biosorption and subsequent bioreduction of trivalent aurum by a brown marine alga Turbinaria conoides. Chem Eng J, 167, 223-27. https://doi.org/10.1016/j.cej.2010.12.027
  54. World Health Organization (2007). Cancer control, Knowledge into action: WHO guide for effective programmes. Update ed. USA: WHO Press. Pp: 1-2
  55. Xie J, Lee JY, Wang DIC, et al (2007). Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in alga solutions. Small, 3, 672-82. https://doi.org/10.1002/smll.200600612
  56. Yezhelyev MV, Gao X, Xing Y, et al (2006). Emerging use of nanoparticles in diagnosis and treatment of breast cancer, Lancet Oncol, 7, 657-67. https://doi.org/10.1016/S1470-2045(06)70793-8
  57. Yin HT, Zhang DG, Wu XL, Huang XE, Chen G (2013). In vivo evaluation of curcumin-loaded nanoparticles in a A549 xenograft mice model. Asian Pac J Cancer Prev, 14, 409-12. https://doi.org/10.7314/APJCP.2013.14.1.409
  58. Yoshie Y, Wang W, Hsieh YP, et al (2002). Compositional difference of phenolic compounds between two seaweeds, halimeda spp. J Tok Univer Fisher, 88, 21-4.
  59. Yuqing M, Sun K, Qiu J, et al (2009). Preparation and characterization of gold nanoparticles using ascorbic acid as reducing agent in reverse micelles. J Mater Sci, 44, 754-8. https://doi.org/10.1007/s10853-008-3162-4

피인용 문헌

  1. Application of Biosynthesized Silver Nanoparticles Against a Cancer Promoter Cyanobacterium, Microcystis aeruginosa vol.15, pp.16, 2014, https://doi.org/10.7314/APJCP.2014.15.16.6773
  2. Nanoparticles Promise New Methods to Boost Oncology Outcomes in Breast Cancer vol.16, pp.5, 2015, https://doi.org/10.7314/APJCP.2015.16.5.1683
  3. Cytotoxic Induction and Photoacoustic Imaging of Breast Cancer Cells Using Astaxanthin-Reduced Gold Nanoparticles vol.6, pp.4, 2016, https://doi.org/10.3390/nano6040078
  4. Size-Controlled Green Synthesis of Highly Stable and Uniform Small to Ultrasmall Gold Nanoparticles by Controlling Reaction Steps and pH vol.121, pp.16, 2017, https://doi.org/10.1021/acs.jpcc.7b00434
  5. (Turner) J.Agardh 1848 pp.1548-0046, 2018, https://doi.org/10.1080/02726351.2017.1331286
  6. Gold Nanoparticle-Induced Cell Death and Potential Applications in Nanomedicine vol.19, pp.3, 2018, https://doi.org/10.3390/ijms19030754
  7. and its biological application potential vol.9, pp.3, 2018, https://doi.org/10.1088/2043-6254/aadc4a
  8. Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures vol.38, pp.8, 2018, https://doi.org/10.1080/07388551.2018.1440525
  9. pp.2169-141X, 2018, https://doi.org/10.1080/21691401.2018.1489265