References
- Baranzini SE, Mousavi P, Rio J, et al (2005). Transcriptionbased prediction of response to IFNb-eta using supervised computational methods, PLoS Biol, 3, 2. https://doi.org/10.1371/journal.pbio.0030002
- Burczynski ME, Twine NC, Dukart G, et al (2005). Transcriptional profiles in peripheral blood mononuclear cells prognostic of clinical outcomes in patients with advanced renal cell carcinoma. Clin Cancer Res, 11, 1181-9.
- Chan-On W, Nairismagi ML, Ong CK, et al (2013). Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers. Nat Genet, 45, 1474-8. https://doi.org/10.1038/ng.2806
- de Reynies A, Assie G, Rickman DS, et al (2009). Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival. J Clin Oncol, 27, 1108-15. https://doi.org/10.1200/JCO.2008.18.5678
- Desire L, Blondiaux E, Carriere J, et al (2013). Blood transcriptomic biomarkers of Alzheimer's disease patients treated with EHT 0202. J Alzheimers Dis, 34, 469-83.
- Greene FL (2002). The American joint committee on cancer: updating the strategies in cancer staging. Bull Am Coll Surg, 87, 13-5.
- Hasita H, Komohara Y, Okabe K, et al (2010). Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma. Cancer Sci, 101, 1913-9. https://doi.org/10.1111/j.1349-7006.2010.01614.x
- Jinawath N, Chamgramol Y, Furukawa Y, et al (2006). Comparison of gene expression profiles between Opisthorchis viverrini and non-Opisthorchis viverrini associated human intrahepatic cholangiocarcinoma. Hepatology, 44, 1025-38. https://doi.org/10.1002/hep.21330
- Kraiklang R, Pairojkul C, Khuntikeo N, et al (2014). A novel predictive equation for potential diagnosis of cholangiocarcinoma. PLoS One, 9, 89337. https://doi.org/10.1371/journal.pone.0089337
- Loilome W, Bungkanjana P, Techasen A, et al (2014). Activated macrophages promote Wnt/beta-catenin signaling in cholangiocarcinoma cells. Tumour Biol, 24549785.
- Luan J, Shattuck-Brandt R, Haghnegahdar H, et al (1997). Mechanism and biological significance of constitutive expression of MGSA/GRO chemokines in malignant melanoma tumor progression. J Leukoc Biol, 62, 588-97.
- Ma XJ, Salunga R, Dahiya S, et al (2008). A five-gene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer. Clin Cancer Res, 14, 2601-8. https://doi.org/10.1158/1078-0432.CCR-07-5026
- Mantovani A, Allavena P, Sica A, et al (2004). Tumor-associated macrophage as a prototypic type II polarised phagocyte population: role in tumor progression. Eur J Cancer, 40, 1660-7. https://doi.org/10.1016/j.ejca.2004.03.016
- Martinez FO, Gordon S, Locati M, et al (2006). Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol, 177, 7303-11. https://doi.org/10.4049/jimmunol.177.10.7303
- Mohr S, Liew CC (2007). The peripheral-blood transcriptome: new insights into disease and risk assessment. Trends Mol Med, 13, 422-32. https://doi.org/10.1016/j.molmed.2007.08.003
- Nishino R, Honda M, Yamashita T, et al (2008). Identification of novel candidate tumour marker genes for intrahepatic cholangiocarcinoma. J Hepatol, 49, 207-16. https://doi.org/10.1016/j.jhep.2008.03.025
- Obama K, Ura K, Li M, et al (2005). Genome-wide analysis of gene expression in human intrahepatic cholangiocarcinoma. Hepatology, 41, 1339-48. https://doi.org/10.1002/hep.20718
- Ong CK, Subimerb C, Pairojkul C, et al (2012). Exome sequencing of liver fluke-associated cholangiocarcinoma. Nat Genet, 44, 690-3. https://doi.org/10.1038/ng.2273
- Osman I, Bajorin DF, Sun TT, et al (2006). Novel blood biomarkers of human urinary bladder cancer. Clin Cancer Res, 12, 3374-80. https://doi.org/10.1158/1078-0432.CCR-05-2081
- Owen JD, Strieter R, Burdick M, et al (1997). Enhanced tumorforming capacity for immortalized melanocytes expressing melanoma growth stimulatory activity/growth-regulated cytokine beta and gamma proteins. Int J Cancer, 73, 94-103. https://doi.org/10.1002/(SICI)1097-0215(19970926)73:1<94::AID-IJC15>3.0.CO;2-5
- Paterlini-Brechot P, Benali NL (2007). Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett, 253, 180-204. https://doi.org/10.1016/j.canlet.2006.12.014
- Pollard JW (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer, 4, 71-8. https://doi.org/10.1038/nrc1256
- Silsirivanit A, Sawanyawisuth K, Riggins GJ, Wongkham C (2014). Cancer biomarker discovery for cholangiocarcinoma: the high-throughput approaches. J Hepatobiliary Pancreat Sci, [Epub ahead of print].
- Sithithaworn P, Yongvanit P, Duenngai K, et al (2014). Roles of liver fluke infection as risk factor for cholangiocarcinoma. J Hepatobiliary Pancreat Sci, [Epub ahead of print].
- Smith DR, Polverini PJ, Kunkel SL, et al (1994). Inhibition of interleukin 8 attenuates angiogenesis in bronchogenic carcinoma. J Exp Med, 179, 1409-15. https://doi.org/10.1084/jem.179.5.1409
- Strieter RM, Burdick MD, Mestas J, et al (2006). Cancer CXC chemokine networks and tumour angiogenesis. Eur J Cancer, 42, 768-78. https://doi.org/10.1016/j.ejca.2006.01.006
- Subimerb C, Pinlaor S, Khuntikeo N, et al (2010). Tissue invasive macrophage density is correlated with prognosis in cholangiocarcinoma. Molecular Medicine Reports, 3, 597-605.
-
Subimerb C, Pinlaor S, Lulitanond V, et al (2010). Circulating
$CD14^+CD16^+$ monocyte levels predict tissue invasive character of cholangiocarcinoma. Clin Exp Immunol, 161, 471-9. https://doi.org/10.1111/j.1365-2249.2010.04200.x - Subrungruanga I, Thawornkunob C, Chawalitchewinkoon-Petmitr P (2013). Gene expression profiling of intrahepatic cholangiocarcinoma. Asian Pac J Cancer Prev, 14, 557-63. https://doi.org/10.7314/APJCP.2013.14.1.557
- Techasen A, Loilome W, Namwat N, et al (2012). Cytokines released from activated human macrophages induce epithelial mesenchymal transition markers of cholangiocarcinoma cells. Asian Pac J Cancer Prev, 13, 115-8.
- Vaeteewoottacharn K, Seubwai W, Bhudhisawasdi V, Okada S, Wongkham S (2014). Potential targeted therapy for liver fluke associated cholangiocarcinoma. J Hepatobiliary Pancreat Sci, [Epub ahead of print].
- Wang AG, Yoon SY, Oh JH, et al (2006). Identification of intrahepatic cholangiocarcinoma related genes by comparison with normal liver tissues using expressed sequence tags. Biochem Biophys Res Commun, 345, 1022-32. https://doi.org/10.1016/j.bbrc.2006.04.175
- Wongkham S, Silsirivanit A (2012). State of serum markers for detection of cholangiocarcinoma. Asian Pac J Cancer Prev, 13, 17-27.
- Wopereis S, Radonjic M, Rubingh C, et al (2012). Identification of prognostic and diagnostic biomarkers of glucose intolerance in ApoE3Leiden mice. Physiol Genomics, 44, 293-304. https://doi.org/10.1152/physiolgenomics.00072.2011
- Xu Y, Xu Q, Yang L, et al (2013). Identification and validation of a blood-based 18-gene expression signature in colorectal cancer. Clin Cancer Res, 19, 3039-49. https://doi.org/10.1158/1078-0432.CCR-12-3851
- Yang IV, Luna LG, Cotter J, et al (2012). The peripheral blood transcriptome identifies the presence and extent of disease in idiopathic pulmonary fibrosis. PLoS One, 7, 37708. https://doi.org/10.1371/journal.pone.0037708
- Yoneda J, Kuniyasu H, Crispens MA, et al (1998). Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst, 90, 447-54. https://doi.org/10.1093/jnci/90.6.447
Cited by
- Cholangiocyte senescence caused by lysophosphatidylcholine as a potential implication in carcinogenesis vol.22, pp.9, 2015, https://doi.org/10.1002/jhbp.256
- The microRNA-15a-PAI-2 axis in cholangiocarcinoma-associated fibroblasts promotes migration of cancer cells vol.17, pp.1, 2018, https://doi.org/10.1186/s12943-018-0760-x
- Prognostic biomarkers for cholangiocarcinoma and their clinical implications vol.18, pp.6, 2018, https://doi.org/10.1080/14737140.2018.1467760