References
- Arif M, Pradhan SK, Thanuja GR, et al (2009). Mechanism of p300 specific histone acetyltransferase inhibition by small molecules. J Med Chem, 52, 267-77. https://doi.org/10.1021/jm800657z
- Balasubramanyam K, Altaf M, Varier RA, et al (2004). Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem, 279, 33716-26. https://doi.org/10.1074/jbc.M402839200
- Baumgarten SC, Frasor J (2012). Minireview: Inflammation: an instigator of more aggressive estrogen receptor (ER) positive breast cancers. Mol Endocrinol, 26, 360-71. https://doi.org/10.1210/me.2011-1302
- Chen LF, Mu Y, Greene WC (2002). Acetylation of RelA at discrete sites regulates distinct nuclear functions of NFkappaB. EMBO J, 21, 6539-48. https://doi.org/10.1093/emboj/cdf660
- Chen H, Ln RJ, Xie W, et al (1999). Regulation of hormoneinduced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell, 98, 675-86. https://doi.org/10.1016/S0092-8674(00)80054-9
- Dhalluin C, Carlson JE, Zeng L, et al (1999). Structure and ligand of a histone acetyltransferase bromodomain. Nature, 399, 491-6. https://doi.org/10.1038/20974
- Dicerbo V, Schneider R (2013). Cancers with wrong HATs: the impact of acetylation. Brief Funct Genomics, 12, 231-43. https://doi.org/10.1093/bfgp/els065
- Han D, Denison MS, Tachibana H, et al (2002). Effects of estrogenic compounds on immunoglobulin production by mouse splenocytes. Biol Pharm Bull, 25, 1263-7. https://doi.org/10.1248/bpb.25.1263
- Iiuzka M, Takahashi Y, Mizzen CA, et al (2009). Histone acetyltransferase Hbo1: catalytic activity, cellular abundance, and links to primary cancers. Gene, 436, 108-14. https://doi.org/10.1016/j.gene.2009.01.020
- Jin W, Chen L, ChenY, et al (2010). UHRF1 is associated with epigenetic silencing of BRCA1 in sporadic breast cancer. Breast Cancer Res Treat, 123, 359-73. https://doi.org/10.1007/s10549-009-0652-2
- Jin W, Liu Y, Chen L, et al (2011). Involvement of MyoD and c-myb in regulation of basal and estrogen-induced transcription activity of the BRCA1 gene. Breast Cancer Res Treat, 125, 699-713. https://doi.org/10.1007/s10549-010-0876-1
-
Jana D, Das S, Sarkar DK, et al (2012). Role of nuclear factor-
$\kappa{B}$ in female breast cancer: a study in Indian patients. Asian Pac J Cancer Prev, 13, 5511-5. https://doi.org/10.7314/APJCP.2012.13.11.5511 - Jemal A, Siegel R, Ward E, et al (2009). Cancer statistics, 2009. CA Cancer J Clin, 59, 225-49. https://doi.org/10.3322/caac.20006
- Kininis M, Chen BS, Diehl AG, et al (2007). Genomic analyses of transcription factor binding, histone acetylation, and gene expression reveal mechanistically distinct classes of estrogen-regulated promoters. Mol Cell Biol, 27, 5090-104. https://doi.org/10.1128/MCB.00083-07
- Kutanzi KR, Koturbash I, Kovalchuk O (2010). Reversibility of pre-malignant estrogen-induced epigenetic changes. Cell Cycle, 9, 3078-84.
- Kim JW, Jang SM, Kim CH, et al (2012). New molecular bridge between RelA/p65 and NF-kappaB target genes via histone acetyltransferase TIP60 cofactor. J Biol Chem, 287, 7780-91. https://doi.org/10.1074/jbc.M111.278465
- Khan ZN, Sabir M, Kayani MA, et al (2013). Acetylation of retinoblastoma like protein2 (Rb2/p130) in tumor tissues. Asian Pac J Cancer Prev, 14, 2255-8. https://doi.org/10.7314/APJCP.2013.14.3.2255
- Lee DY, Hayes JJ, Pruss D, et al (1993). A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell, 72, 73-84. https://doi.org/10.1016/0092-8674(93)90051-Q
- Minatoya M, Kutomi G, Asakura S, et al (2013). Equol, adiponectin, insulin levels and risk of breast cancer. Asian Pac J Cancer Prev, 14, 2191-9. https://doi.org/10.7314/APJCP.2013.14.4.2191
- Mooney SM, Goel A, D'assoro AB, et al (2010). Pleiotropic effects of p300-mediated acetylation on p68 and p72 RNA helicase. J Biol Chem, 285, 30443-52. https://doi.org/10.1074/jbc.M110.143792
- Marmorstein R, Trievel RC (2009). Histone modifying enzymes: structures, mechanisms, and specificities. Biochim Biophys Acta, 1789, 58-68. https://doi.org/10.1016/j.bbagrm.2008.07.009
- Pradhan M, Baumgarten SC, Bembinster LA, et al (2012). CBP mediates NF-kappaB-dependent histone acetylation and estrogen receptor recruitment to an estrogen response element in the BIRC3 promoter. Mol Cell Biol, 32, 569-75. https://doi.org/10.1128/MCB.05869-11
- Quivy V, Van Lint C (2004). Regulation at multiple levels of NF-kappaB-mediated transactivation by protein acetylation. Biochem Pharmacol, 68, 1221-9. https://doi.org/10.1016/j.bcp.2004.05.039
- Rubio MF, Werbajh S, Cafferatae G, et al (2006). TNF-alpha enhances estrogen-induced cell proliferation of estrogendependent breast tumor cells through a complex containing nuclear factor-kappa B. Oncogene, 25, 1367-77. https://doi.org/10.1038/sj.onc.1209176
- Singh BN, Zhang G, Hwa YL, et al (2010). Nonhistone protein acetylation as cancer therapy targets. Expert Rev Anticancer Ther, 10, 935-54. https://doi.org/10.1586/era.10.62
- Sung B, Pandey MK, Ahn KS, et al (2008). Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-kappaB-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-kappaBalpha kinase, leading to potentiation of apoptosis. Blood, 111, 4880-91. https://doi.org/10.1182/blood-2007-10-117994
- Saadat N, Gupta SV (2012). Potential role of garcinol as an anticancer agent. J Oncol, 2012, 647206.
- Wang GG, Allis CD, Chi P (2007). Chromatin remodeling and cancer, Part I: Covalent histone modifications. Trends Mol Med, 13, 363-72. https://doi.org/10.1016/j.molmed.2007.07.003
- Zhang CM, Zhao J, Deng HY (2013). 17beta-estradiol upregulates miR-155 expression and reduces TP53INP1 expression in MCF-7 breast cancer cells. Mol Cell Biochem, 379, 201-11. https://doi.org/10.1007/s11010-013-1642-6
- Zubair A, Frieri M (2013). Role of nuclear factor-kB in breast and colorectal cancer. Curr Allergy Asthma Rep, 13, 44-9. https://doi.org/10.1007/s11882-012-0300-5
Cited by
- KATs in cancer: functions and therapies vol.34, pp.38, 2015, https://doi.org/10.1038/onc.2014.453
- HAT inhibitor, garcinol, exacerbates lipopolysaccharide-induced inflammation in vitro and in vivo vol.13, pp.6, 2016, https://doi.org/10.3892/mmr.2016.5189
- Garcinol inhibits tumour cell proliferation, angiogenesis, cell cycle progression and induces apoptosis via NF-κB inhibition in oral cancer vol.37, pp.6, 2016, https://doi.org/10.1007/s13277-015-4583-8
- The bounty of nature for changing the cancer landscape vol.60, pp.6, 2016, https://doi.org/10.1002/mnfr.201500867
- Histone acetyltransferases: challenges in targeting bi-substrate enzymes vol.8, pp.1, 2016, https://doi.org/10.1186/s13148-016-0225-2
- Garcinol exhibits anti-proliferative activities by targeting microsomal prostaglandin E synthase-1 in human colon cancer cells vol.36, pp.7, 2017, https://doi.org/10.1177/0960327116660865
- Garcinol downregulates Notch1 signaling via modulating miR-200c and suppresses oncogenic properties of PANC-1 cancer stem-like cells vol.64, pp.2, 2017, https://doi.org/10.1002/bab.1446
- and NF-κB/Twist1 signaling pathways in a mouse 4T1 breast tumor model vol.8, pp.3, 2017, https://doi.org/10.1039/C6FO01588C
- Chronic diseases, inflammation, and spices: how are they linked? vol.16, pp.1, 2018, https://doi.org/10.1186/s12967-018-1381-2
- The Histone Acetylation Modifications of Breast Cancer and their Therapeutic Implications vol.24, pp.4, 2018, https://doi.org/10.1007/s12253-018-0433-5
- Effects of RNA interference-mediated silencing of toll-like receptor 4 gene on proliferation and apoptosis of human breast cancer MCF-7 and MDA-MB-231 cells: An in vitro study pp.00219541, 2018, https://doi.org/10.1002/jcp.26573