DOI QR코드

DOI QR Code

Shear-Rate Dependent Ring-Shear Characteristics of the Waste Materials of the Imgi Mine in Busan

부산 임기광산 광미의 전단속도에 따른 링 전단특성 연구

  • 정승원 (한국지질자원연구원 지구환경연구본부 지질재해연구실) ;
  • 지상우 (한국지질자원연구원 지구환경연구본부 지질재해연구실) ;
  • 임길재 (한국지질자원연구원 지구환경연구본부 지질재해연구실)
  • Received : 2014.01.03
  • Accepted : 2014.07.11
  • Published : 2014.07.31

Abstract

Abandoned mine deposits are exposed to various physico-chemical geo-environmental hazards and disasters, such as acid mine drainage, water contamination, erosion, and landslides. This paper presents the ring shear characteristics of waste materials. The ring shear box with a rotatable O-ring was used in this study. Three tests were performed: (i) Shear stress-time relationship for given normal stress and shear speed, (ii) shear stress as a function of shear speed, and (iii) shear stress as a function of normal stress. For a given normal stress (50 kPa) and speed (0.1 mm/sec), the materials tested exhibit a strain softening behavior, regardless of drainage condition. The peak and residual shear stresses were determined for each normal stress and shear speed. The shear stress was measured when shear speed is equal to 0.01, 0.1, 1, 10, 50, 100 mm/sec or when normal stress is equal to 20, 40, 60, 80, 100, 150 kPa. From the test results, we found that the shear stress increases with increasing shear speed. The shear stress also increases with increasing normal stress. However, different types of shearing mode were observed in drained and undrained conditions. Under drained condition, particle crushing was observed from the shearing zone to the bottom of lower ring. Under undrained condition, particle crushing was observed only at the shearing zone, which has approximately 1 cm thick. It means that a significant high shear speed under undrained condition can result in increased landslide hazard.

휴 폐광산지는 산발생, 지하수 오염뿐만 아니라 침식 및 산사태 등 다양한 물리화학적 지질재해에 노출되어 있다. 임기광산 폐석적치장 광미를 대상으로 링 전단시험을 수행하여 전단속도에 따른 전단특성을 조사하고 한다. 본 연구에 있어 마찰저항을 최소화할 목적으로 링 전단상자 오링(O-ring)은 전단동안 회전이 가능하도록 설계되었다. 1차 시험은 일정한 수직응력(50kPa)과 전단속도(0.1mm/sec) 조건에서 전단시간에 따른 전단응력을 조사하였다. 2차 시험은 일정한 수직응력 조건에서 전단속도를 0.01, 0.1, 1, 10, 50, 100mm/sec로 순차적으로 증가시켜 전단속도에 따른 전단응력을 조사하였다. 3차 시험은 일정한 전단속도(0.1mm/sec)하에서 수직응력을 20, 40, 60, 80, 100, 150kPa로 증가시켜 각 경우에 대한 전단응력을 조사하였다. 시험결과에 따르면, 배수조건에 관계없이 임기광산 폐석적치장광미시료는 전단연화거동(strain softening behavior)을 보였다. 특히 전단속도가 10mm/sec보다 작은 경우 잔류전단응력은 100~300초 사이에 일정한 값에 도달하는 것으로 나타났다. 2차와 3차 시험결과에 따르면, 배수조건에 관계없이 전단응력은 전단속도와 수직응력의 함수로 나타났다. 하지만, 배수조건에 따라 링 전단상자 전단부에서 상이한 입자파쇄 특성이 관측되었다. 배수조건시 전단상자 전단면에서 하단까지 넓은 전단띠가 형성된 것에 반해, 비배수조건시 전단면에 국부 전단띠가 형성되었다. 이러한 점에 비추어 볼 때, 전단속도에 따른 입자파쇄 특성은 산사태 유동성을 높이는 중요한 인자로 판단된다.

Keywords

References

  1. Cheong, Y.W., Ji, S.W., and Yim, G.J. (2004), "The acid rock drainage and hydraulic characteristics of the waste rock dump", Journal of the Korean Geo-Environmental Society, Vol.5(4), pp. 13-24. (in Korean)
  2. Cheong, Y.W., Jo, Y.D., Lee, H.S., Yim, G.J., Ji, S.W., and Yang, J.E. (2007), "An experimental study with lysimeter for the vegetating on mine waste dump", Journal of The Korean Society for Geosystem Engineering, Vol.44(5), pp.411-417. (in Korean)
  3. Cruden, D.M. and Varnes, D.J. (1996), "Landslide types and processes", In: Landslides Investigation and Mitigation. Turner, A.K. and Schuster, R.L. (eds), Transportation Research Board, National Academy Press, Special Report No. 247, pp.36-75.
  4. Fukuoka, H. and Sassa, K. (1991), "High-speed high stress ring shear tests on granular soils and clayey soils", USDA Forest Service Gen. Tech. Rep. PSW-GTR-130, pp.33-41.
  5. Fukuoka, H., Sassa, K., Wang, G., and Sasaki, R. (2006), "Observation of shear zone development in ring-shear apparatus with a transparent shear box", Landslides, Vol.3, pp.239-251. https://doi.org/10.1007/s10346-006-0043-2
  6. Fukuoka, H., Sassa, K., and Wang, G. (2007), "Influence of shear speed and normal stress on the shear behavior and shear zone structure of granular materials in naturally drained ring shear tests", Landslides, Vol.4, pp.63-74. https://doi.org/10.1007/s10346-006-0053-0
  7. Hurlimann, M., Rickenmann, D., Medina, V., and Bateman, A. (2008), "Evaluation of approaches to calculate debris-flow parameters for hazard assessment", Engineering Geology, Vol.102, pp.152-163. https://doi.org/10.1016/j.enggeo.2008.03.012
  8. Jeong, S.W., Fukuoka, H., and Song, Y.S. (2013), "Ring-shear apparatus for estimating the mobility of debris flow and its application", Journal of Korean Society of Civil Engineering, Vol.33(1), pp. 181-194. (Korean) https://doi.org/10.12652/Ksce.2013.33.1.181
  9. Ji, S.W. and Cheong, Y.W. (2005), "Experiment of reactive media selection for the permeable reactive barrier treating groundwater contaminated by acid mine drainage", Economic and Environmental Geology, Vol.38(3), pp.237-245. (in Korean)
  10. Korea Institute of Geoscience and Mineral Resources (2012), Development of practical technologies for countermeasures for hazards in steep slope and abandoned mine areas, Ministry of Knowledge Economy, GP2012-022-2012(1), 375p. (in Korean)
  11. Lambe, T.W. and Whitman, R.V. (1979), Soil Mechanics, SI Version, John Wiley & Sons, 553p.
  12. Mitchell, J. K. (1993), Fundamentals of Soil Behavior, 2nd Edition, John Wiley & Sons, 437p.
  13. Okada, Y., Sassa, K., and Fukuoka, H. (2004), "Excess pore pressure and grain crushing of sands by means of undrained and naturally drained ring-shear tests", Engineering Geology, Vol.75, pp.325-343.
  14. Park, S.S., Jeong, S.W., Yoon, J.H., and Chae, B.G. (2013), "Ring shear characteristics of two different soils", Journal of the Korean Geotechnical Society, Vol.29(5), pp.39-52. https://doi.org/10.7843/kgs.2013.29.5.39
  15. Sassa, K. (1997), "A new intelligent-type dynamic-loading ring-shear apparatus", Landslide News, No.10, p.33.
  16. Sassa, K. (2000), "Mechanism of flows in granular soils", In: Proceedings of the International Conference of Geotechnical and Geological Engineering, GEOENG2000, Vol.1, Melbourne, Australia.
  17. Sassa, K., Wang, G., and Fukuoka, H. (2003), "Performing Undrained shear tests on saturated sands in a new intelligent type of ring shear apparatus", Geotechnical Testing Journal, Vol.26(3), pp.1-9.
  18. Sassa, K., Fukuoka, H., Wang, G., and Ishikawa, N. (2004), "Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics", Landslides, Vol.1, pp.7-19. https://doi.org/10.1007/s10346-003-0004-y
  19. Tika, T.E., Vaughan, P.R., and Lemos, L.J. (1996), "Fast shearing of pre-existing shear zones in soil", Geotechnique, Vol.46, No.2, pp.197-233. https://doi.org/10.1680/geot.1996.46.2.197
  20. Tika, T.E. and Hutchinson, J.N. (1999), "Ring shear tests on soil from the Vaiont landslide slip surface", Geotechnique, Vol.49, No.1, pp.59-74. https://doi.org/10.1680/geot.1999.49.1.59
  21. Wang, F.W., Sassa, K., and Wang, G. (2002), "Mechanism of a long-runout landslide triggered by the August 1998 heavy rainfall in Fukushima Prefecture, Japan", Engineering Geology, 63, pp. 169-185. https://doi.org/10.1016/S0013-7952(01)00080-1
  22. Wang, G., Suemine A., and Schulz, W.H. (2010), "Shear-rate-dependent strength control on the dynamics of rainfall-triggered landslides, Tokushima Prefecture, Japan", Earth Surface Processes and Landforms, Vol.35(4), pp.407-416.
  23. IUGS-WGL (1995), "A suggested method for describing the rate of movement of a landslide. International Union of Geological Sciences Working Group on Landslides", Bulletin of the International Association of Engineering Geology, Vol.52(1), pp.75-78. https://doi.org/10.1007/BF02602683
  24. Youm, S.J., Yun, S.T., Kim, J.H., and Park, M.E. (2002), "Neutralization of acid rock drainage from the Dongrae pyrophyllite deposit: A study on behavior of heavy metals", Korean Society of Soil and Groundwater Environment, Vol.7(4), pp.68-76. (in Korean)

Cited by

  1. 사질토의 전단거동에 실트 함량이 미치는 영향 vol.21, pp.11, 2014, https://doi.org/10.14481/jkges.2020.21.11.21
  2. 수중 자갈의 전단 및 파쇄 특성에 관한 실험적 연구 vol.42, pp.2, 2014, https://doi.org/10.5467/jkess.2021.42.2.164