DOI QR코드

DOI QR Code

Hydrazine Doped Graphene and Its Stability

  • Song, MinHo (Department of Physics, Sejong University) ;
  • Shin, Somyeong (Department of Physics, Sejong University) ;
  • Kim, Taekwang (Department of Physics, Sejong University) ;
  • Du, Hyewon (Department of Physics, Sejong University) ;
  • Koo, Hyungjun (Department of Physics, Sejong University) ;
  • Kim, Nayoung (Micro Device&Machinery Solution Division, Samsung Techwin R&D Center) ;
  • Lee, Eunkyu (Micro Device&Machinery Solution Division, Samsung Techwin R&D Center) ;
  • Cho, Seungmin (Micro Device&Machinery Solution Division, Samsung Techwin R&D Center) ;
  • Seo, Sunae (Department of Physics, Sejong University)
  • Received : 2014.06.16
  • Accepted : 2014.07.30
  • Published : 2014.07.30

Abstract

The electronic property of graphene was investigated by hydrazine treatment. Hydrazine ($N_2H_4$) highly increases electron concentrations and up-shifts Fermi level of graphene based on significant shift of Dirac point to the negative gate voltage. We have observed contact resistance and channel length dependent mobility of graphene in the back-gated device after hydrazine monohydrate treatment and continuously monitored electrical characteristics under Nitrogen or air exposure. The contact resistance increases with hydrazine-treated and subsequent Nitrogen-exposed devices and reduces down in successive Air-exposed device to the similar level of pristine one. The channel conductance curve as a function of gate voltage in hole conduction regime keeps analogous value and shape even after Nitrogen/Air exposure specially whereas, in electron conduction regime change rate of conductance along with the level of conductance with gate voltage are decreased. Hydrazine could be utilized as the highly effective donor without degradation of mobility but the stability issue to be solved for future application.

Keywords

References

  1. S. De and J. N. Coleman, ACS Nano 4, 2713-2720 (2010). https://doi.org/10.1021/nn100343f
  2. V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril and K. S. Kim, Chemical Reviews 112, 6156-6214 (2012). https://doi.org/10.1021/cr3000412
  3. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim and K. S. Novoselov, Science 323, 610-613 (2009). https://doi.org/10.1126/science.1167130
  4. D. W. Boukhvalov and M. I. Katsnelson, Journal of Physics: Condensed Matter 21, 344205 (2009). https://doi.org/10.1088/0953-8984/21/34/344205
  5. H. Liu, Y. Liu and D. Zhu, Journal of Materials Chemistry 21, 3335-3345 (2011). https://doi.org/10.1039/c0jm02922j
  6. J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams and M. Ishigami, Nat Phys 4, 377-381 (2008). https://doi.org/10.1038/nphys935
  7. S. Adam, E. H. Hwang, V. M. Galitski and S. Das Sarma, Proceedings of the National Academy of Sciences 104, 18392-18397 (2007). https://doi.org/10.1073/pnas.0704772104
  8. S. Park, Y. Hu, J. O. Hwang, E.-S. Lee, L. B. Casabianca, W. Cai, J. R. Potts, H.-W. Ha, S. Chen, J. Oh, S. O. Kim, Y.-H. Kim, Y. Ishii and R. S. Ruoff, Nat Commun 3, 638 (2012). https://doi.org/10.1038/ncomms1643
  9. I.-Y. Lee, H.-Y. Park, J.-H. Park, J. Lee, W.-S. Jung, H.-Y. Yu, S.-W. Kim, G.-H. Kim and J.-H. Park, Organic Electronics 14, 1586-1590 (2013). https://doi.org/10.1016/j.orgel.2013.03.022
  10. Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga and P.-W. Chiu, Nano Letters 12, 414-419 (2011).
  11. DasA, PisanaS, ChakrabortyB, PiscanecS, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari and A. K. Sood, Nat Nano 3, 210-215 (2008). https://doi.org/10.1038/nnano.2008.67
  12. J. Kang, D. Shin, S. Bae and B. H. Hong, Nanoscale 4, 5527-5537 (2012). https://doi.org/10.1039/c2nr31317k
  13. Y. W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer and P. Kim, Physical Review Letters 99, 246803 (2007). https://doi.org/10.1103/PhysRevLett.99.246803
  14. Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong and J.-H. Ahn, Nano Letters 10, 490-493 (2010). https://doi.org/10.1021/nl903272n
  15. D. B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y.-M. Lin, G. S. Tulevski, J. C. Tsang and P. Avouris, Nano Letters 9, 388-392 (2008).
  16. W. R. Hannes, M. Jonson and M. Titov, Physical Review B 84, 045414 (2011). https://doi.org/10.1103/PhysRevB.84.045414
  17. B. Huard, N. Stander, J. A. Sulpizio and D. Goldhaber-Gordon, Physical Review B 78, 121402 (2008). https://doi.org/10.1103/PhysRevB.78.121402
  18. R. Nouchi, M. Shiraishi and Y. Suzuki, Applied Physics Letters 93, 152104 (2008). https://doi.org/10.1063/1.2998396
  19. H. Pinto, R. Jones, J. P. Goss and P. R. Briddon, physica status solidi (a) 207, 2131-2136 (2010). https://doi.org/10.1002/pssa.201000009
  20. M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. v. Klitzing and J. H. Smet, Nano Letters 10, 1149-1153 (2010). https://doi.org/10.1021/nl903162a