DOI QR코드

DOI QR Code

아까시나무 임분의 임목수확량 및 탄소저장량 추정

Estimation of Stand Yield and Carbon Stock for Robinia pseudoacacia Stands in Korea

  • 손영모 (국립산림과학원 기후변화연구센터) ;
  • 김소원 (국립산림과학원 기후변화연구센터) ;
  • 이선정 (국립산림과학원 기후변화연구센터) ;
  • 김정수 (국립산림과학원 기후변화연구센터)
  • Son, Yeong Mo (Center for Forest & Climate Change, Korea Forest Research Institute) ;
  • Kim, So Won (Center for Forest & Climate Change, Korea Forest Research Institute) ;
  • Lee, Sun Jeoung (Center for Forest & Climate Change, Korea Forest Research Institute) ;
  • Kim, Jeong Soo (Center for Forest & Climate Change, Korea Forest Research Institute)
  • 투고 : 2014.03.05
  • 심사 : 2014.05.15
  • 발행 : 2014.06.30

초록

본 연구는 아까시나무 군락에 대한 현재 생육지 분포면적의 파악과 임분수확량 및 탄소저장량을 구명하기 위하여 수행되었다. 아까시나무에 대한 분포면적은 1:5,000 임상도를 이용하여 추출하였으며, 임분수확량은 Weibull 직경분포모델을 이용하였고, 탄소저장량 및 흡수량은 임분수확량에 탄소배출계수를 적용하여 산출하였다. 임분수확량을 산출하기 위하여 임분 평균직경, 임분 흉고단면적, 최소 및 최대 직경 등 임분 생장인자에 대한 추정식을 산출하고 정확성을 검증하였다. 이 결과 모든 생장인자의 추정식이 분석에 이용할 수 있는 유의성을 가지고 있는 것으로 나타났다. 또한 임지의 생산력을 판정할 수 있는 지위지수를 도출한 바, 지위지수는 16~22 범위에 있는 것으로 나타났으며, 이들을 종합하여 임분수확표를 만들었다. 우리나라 아까시나무는 경상, 충청 및 경기도의 내륙에 주로 분포하는 것으로 나타났으며, 총 면적은 26,770 ha에 달하는 것으로 나타났다. 이를 탄소저장량으로 전환한 결과 2,517,598 tC 였으며, 연간 3.76 tC/ha를 흡수하는 것으로 계산되었다. 이는 탄소흡수량이 높은 수종으로 알려져 있는 참나무류와 유사하여, 추후 아까시나무가 기후변화 시대에 온실가스를 저장하는 수종으로서의 역할도 충분히 가능할 것이라 판단된다. 또한 본 연구에서 만든 임분수확표는 아까시나무 경영 및 관리정책에 도움을 줄 수 있을 것으로 사료된다.

The aim of this study was to determine the current distribution area of Robinia pseudoacacia habitat and to estimate its stand yield as well as its carbon stocks. In order to do so, the area of R. pseudoacacia distribution is obtained based on the large-scaled forest type map (1:5,000). Also, Weibull diameter distribution model is used to predict the yield of R. pseudoacacia stands. In addition, carbon emission factor is applied to calculate carbon stocks and removals. To obtain the stand yield of R. pseudoacacia, we developed estimation equation considering growth factors of the stand, e.g. mean diameter, the basal area, maximum and minimun diameter and etc. and tested it to ensure accuracy. Consequently, estimation equation derived from all growth factors have shown significance that could also be used for analysis. Site index was also established to determine the productivity of the forestland that later turned out to be ranging from 16 to 22. Based on these results, stand yield tables were drawn up. R. pseudoacacia is widely distributed in inland areas of Gyeongsang, Chungcheong and Gyeonggi provinces which covers total area of 26,770 ha. And when it is converted into carbon stocks, it amounts to 2,517,598tC with annual carbon uptake of 3.76tC/ha which is comparable to Querqus species that is known to storer large amounts of carbon. Therefore, R. pseudoacacia is also expected to serve as a viable carbon pool that would contribute to the mitigation of climate change. Furthermore, stand yield tables, an outcome of this survey would assist not only in proper management but also in sustainable management policy of R. pseudoacacia.

키워드

참고문헌

  1. Clutter, J.L., Fortson, J.C., Pienaar, L.V., Brister, G.H., and Bailey, R.L. 1983. Timber management - A quantitative approach-. John Wiley & Sons. pp. 333.
  2. Garcia, O. 1981. Simplified method-of-moments estimation for the Weibull distribution. New Zealand Journal of Forestry Science 11(3): 304-306.
  3. IPCC. 2003. Good practice guidance for land use, land-use change and forestry. Institute for Global Environmental Strategies. Hayama, Japan. pp. 3.24.
  4. IPCC. 2006. 2006 IPCC guidelines for national greenhouse gas inventories, volume 4 Agriculture, forestry and other land use. Institute for Global Environmental Strategies. Hayama, Japan. pp. 2.12-2.13.
  5. Jeon, Y.W. 2012. Wrong common sense for forest. http://blog.daum.net/hamgge11/42.
  6. Korea Forest Research Institute. 2011. Cartography manual for Forest type map. pp. 10.
  7. Korea Forest Research Institute. 2012. Standard carbon removal of major forest species. Korea Forest Research Institute, briefing memo. pp. 18.
  8. Korea Forest Research Institute. 2013. Distribution of major species based on digital forest type map (1:5,000) in Korea. pp. 15.
  9. Lim, K.B. 1994. A study on the development of new demand for utilization and silviculture in Robinia pseudoacacia. Korea Forest Service. pp. 211.
  10. Ministry of Agriculture, Food and Rural Affairs. 2010. Cultivating countermeasures of apiculture. pp. 39.
  11. Park, J.H. 1997. Utilization and trend of Robinia pseudoacacia. Korea Research Society of Robinia pseudoacacia. pp. 56-78 (in Korean).
  12. Park, Y.G. 2008. Robinia pseudoacacia. Yoo Han Co. pp. 326.
  13. Ryu, S.Y. 1992. Robinia pseudoacacia and Korea's apiculture. Korea Forest Research Institute, Research Note 65. pp. 53-79 (in Korean).
  14. Son, Y.M., Jeon, J.H., Pyo, J.K., Kim, G.N., Kim, S.W., and Lee, K.H. 2012. Development of Stem Volume Table for Robinia Pseudoacacia Using Kozak's Stem Profile Model. Gyeongsang National University, Journal of Agriculture & Life Sciences 46(6):43-49.
  15. Son, Y.M., Kang, J.T., Chung, Y.G., Lee, K.S., and Yoo, B.O. 2013. Development of statistics infrastructure for forest greenhouse gas. Korea Forest Research Institute Report. pp. 477-515.
  16. The Forest Experiment Station. 1925. Robinia Pseudoacacia in Korea (question and answer). Bulletin of the forest experiment station, No. 1. pp. 17-19.

피인용 문헌

  1. Assessment and Prediction of Stand Yield in Cryptomeria japonica Stands vol.104, pp.3, 2015, https://doi.org/10.14578/jkfs.2015.104.3.421
  2. 탄소 저장량을 이용한 국내 주요 생태계 기후 조절 서비스 지표 산정 vol.34, pp.1, 2014, https://doi.org/10.11626/kjeb.2016.34.1.008
  3. 중부지방소나무의 생장특성 및 경험적 임분수확모델 개발 vol.106, pp.2, 2017, https://doi.org/10.14578/jkfs.2017.106.2.267
  4. 현실임분 생장특성에 의한 편백 임분수확표 개발 vol.109, pp.4, 2014, https://doi.org/10.14578/jkfs.2020.109.4.477