References
- Aronson, E.L. and McNulty, S.G. 2009. Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agricultural and Forest Meteorology 149(11): 1791-1799. https://doi.org/10.1016/j.agrformet.2009.06.007
- Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., Butterfield, J., Buse, A., Coulson, J.C., Farrar, J., Good, J.E.G., Harrington, R., Hartley, S., Jones, T.H., Lindroth, R.L., Press, M.C., Symrnioudis, I., Watt, A.D., and Whittaker, J.B. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology 8(1): 1-16. https://doi.org/10.1046/j.1365-2486.2002.00451.x
- Barber, V.A., Juday, G.P., and Finney, B.P. 2000. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405: 668-673. https://doi.org/10.1038/35015049
- Bonner, F.T., Karrfalt, R.P. and Nisley, R.G. 2008. The Woody plant seed manual. USDA Forest Service. Washington. pp. 1223.
- Castro, J., Zamora, R., Hodar, J.A., and Gomez, J.M. 2005. Alleviation of summer drought boosts establishment success of Pinus sylvestris in a Mediterranean mountain: an experimental approach. Plant Ecology 181: 191-202. https://doi.org/10.1007/s11258-005-6626-5
- Chen, J., Franklin, J.F., and Spies, T.A. 1995. Growing season microclimatic gradients from clearcut edges into oldgrowth Douglas-fir forests. Ecological Applications 5: 74-86. https://doi.org/10.2307/1942053
- Cho, M.S., Lee, S.W., Hwang, J., and Kim, J.W. 2012. Growth performance and photosynthesis of two deciduous hardwood species under different irrigation period treatments in a container nursery system. Korean Journal of Agricultural and Forest Meteorology 14(1): 28-38 (in Korean with English abstract). https://doi.org/10.5532/KJAFM.2012.14.1.028
- Chung, H., Muraoka, H., Nakamura, M., Han, S., Muller, O., and Son, Y. 2013. Experimental warming studies on tree species and forest ecosystems: a literature review. Journal of Plant Research 126: 447-460. https://doi.org/10.1007/s10265-013-0565-3
- Climate Change Information Center. 2014. IPCC SRES A1B scenario. https://www.climate.go.kr:8005/index.html (2014. 2. 24).
- Danby, R.K. and Hik, D.S. 2007. Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine treeline. Global Change Biology 13(2): 437-451. https://doi.org/10.1111/j.1365-2486.2006.01302.x
- Escudero, A., Perez-Garcia, F., and Luzuriaga, A.L. 2002. Effects of light, temperature and population variability on the germination of seven Spanish pines. Seed Science Research 12(4): 261-271. https://doi.org/10.1079/SSR2002116
- Farnsworth, E.J., Nunez-Farfan, J., Careaga, S.A., and Bazzaz, F.A. 1995. Phenology and growth of three temperate forest life forms in response to artificial soil warming. Journal of Ecology 83: 967-977. https://doi.org/10.2307/2261178
- Galiano, L., Martinez-Vilalta, J., and Lloret, F. 2010. Droughtinduced multifactor decline of Scots pine in the Pyrenees and potential vegetation change by the expansion of cooccurring oak species. Ecosystems 13: 978-991. https://doi.org/10.1007/s10021-010-9368-8
- Germino, M.J., Smith, W.K., and Resor, A.C. 2002. Conifer seedling distribution and survival in an alpine-treeline ecotone. Plant Ecology 162: 157-168. https://doi.org/10.1023/A:1020385320738
- Gunderson, C.A., Edwards, N.T., Walker, A.V., O'Hara, K.H., Campion, C.M., and Hanson, P.J. 2012. Forest phenology and a warmer climate-growing season extension in relation to climatic provenance. Global Change Biology 18(6): 2008-2025. https://doi.org/10.1111/j.1365-2486.2011.02632.x
- Harte, J. and Shaw, R. 1995. Shifting dominance within a montane vegetation community: results of a climate-warming experiment. Science 267: 876-880. https://doi.org/10.1126/science.267.5199.876
- Hernandez, J., Olmos, A.E., Corpas, F.J., Sevilla, F., and Rio, A. 1995. Salt-induced oxidative stress in chloroplasts of pea plant. Plant Science 105(2): 151-167. https://doi.org/10.1016/0168-9452(94)04047-8
- Hillier, S.H., Sutton, F., and Grime, J.P. 1994. A new technique for the experimental manipulation of temperature in plant communities. Functional Ecology 8: 755-762. https://doi.org/10.2307/2390235
- Hogenbirk, J.C. and Wein, R.W. 1992. Temperature effects on seedling emergence from boreal wetland soils: implications for climate change. Aquatic Botany 42: 361-373. https://doi.org/10.1016/0304-3770(92)90055-N
- Houle, G. 1994. Spatiotemporal patterns in the components of regeneration of four sympatric tree species-Acer rubrum, A. saccharum, Betula alleghaniensis and Fagus grandifolia. Journal of Ecology 82: 39-53. https://doi.org/10.2307/2261384
- Hoyle, G.L., Venn, S.E., Steadman, K.J., Good, R.B., McAuliffe, E.J., Williams, E.R., and Nicotra1, A.B. 2013. Soil warming increases plant species richness but decreases germination from the alpine soil seed bank. Global Change Biology 19(5): 1549-1561. https://doi.org/10.1111/gcb.12135
-
Ineson, P., Coward, P.A., and Hartwig, U.A. 1998. Soil gas fluxes of
$N_2O$ ,$CH_4$ and$CO_2$ beneath Lolium perenne under elevated$CO_2$ : The Swiss free air carbon dioxide enrichment experiment. Plant and Soil 198: 89-95. https://doi.org/10.1023/A:1004298309606 - IPCC. 2007. Climate change (2007): The physical science basis. Working Group I Contribution to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge.
- Jo, W., Son, Y., Chung, H., Noh, N.J., Yoon, T.K., Han, S., Lee, S.J., Lee, S.K., Yi, K., and Jin, L. 2011. Effect of artificial warming on chlorophyll contents and net photosynthetic rate of Quercus variabilis seedlings in an open-field experiment. Journal of Korean Forest Society 100(4): 733-737 (in Korean with English abstract).
- Kimball, B.A., Conley, M.M., Wang, S., Lin, X., Lou, C., Morgan, J., and Smith, D. 2008. Infrared heater arrays for warming ecosystem field plots. Global Change Biology 14(2): 309-320.
- Klady, R.A., Henry, G.H.R., and Lemay, V. 2011. Changes in high arctic tundra plant reproduction in response to long term experimental warming. Global Change Biology 17: 1611-1624. https://doi.org/10.1111/j.1365-2486.2010.02319.x
- Knapp, A.K. and Smith, W.K. 1982. Factors influencing understory seedling establishment of Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) in southeast Wyoming. Canadian Journal of Botany 60(12): 2753-2761. https://doi.org/10.1139/b82-337
- Korea Forest Service. 2012. The guidelines for seed and nursery practices. KFS. p. 58 (in Korean).
- Kozlowski, T.T., Kramer, P.J., and Pallardy, S.G. 1991. The physiology of woody plants. A.P. New York. pp. 811.
- Kullman, L. 2007. Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973-2005: implications for tree line theory and climate change ecology. Journal of Ecology 95(1): 41-52. https://doi.org/10.1111/j.1365-2745.2006.01190.x
- Lee, S.J., Han, S., Yoon, T.K., Chung, H., Noh, N.J., Jo, W., Park, C. Ko, S., Han, S.H., and Son, Y. 2012. Effects of experimental warming on growth of Quercus variabilis seedlings. Journal of Korean Forest Society 101(4): 722-728 (in Korean with English abstract).
- Lee, S.J., Han, S., Yoon, T.K., Han, S.H., Jung, Y., Yun, S.J., and Son, Y. 2013. Growth and physiological characteristics of Pinus densiflora seedlings in response to openfield experimental warming using the infrared lamp. Journal of Korea Forest Society 102(4): 522-529 (in Korean with English abstract). https://doi.org/10.14578/jkfs.2013.102.4.522
- Legras, E.C., Vander Wall, S.B., and Board, D.I. 2010. The role of germination microsite in the establishment of sugar pine and Jeffrey pine seedlings. Forest Ecology and Management 260: 806-813. https://doi.org/10.1016/j.foreco.2010.05.039
-
Lewis, J.D., Lucash, M., Olszyk, D., and Tingey, D.T. 2001. Seasonal patterns of photosynthesis in Douglas fir seedlings during the third and fourth year of exposure to elevated
$CO_2$ and temperature. Plant Cell & Environment 24: 539-548. https://doi.org/10.1046/j.1365-3040.2001.00700.x - Little, R.L., Peterson, D.L., and Conquest, L.L. 1994. Regeneration of subalpine fir (Abies lasiocarpa) following fireeffects of climate and other factors. Canadian Journal of Forest Science 24: 934-944. https://doi.org/10.1139/x94-123
- Lloret, F., Penuelas, J., Prieto, P., Llorens, L., and Estiarte, M. 2009. Plant community changes induced by experimental climate change: Seedling and adult species composition. Perspectives in Plant Ecology, Evolution and Systematics 11(1): 53-63. https://doi.org/10.1016/j.ppees.2008.09.001
-
Luomala, E.M., Laitinen, K., Kellomaki, S., and Vapaavuori, E. 2003. Variable photosynthetic acclimation in consecutive cohorts of Scots pine needles during 3 years of growth at elevated
$CO_2$ and elevated temperature. Plant Cell & Environment 26: 645-660. https://doi.org/10.1046/j.1365-3040.2003.01000.x - Matias, L. and Jump, A.S. 2014. Impacts of predicted climate change on recruitment at the geographical limits of Scots pine. Journal of Experimental Botany 65(1): 299-310. https://doi.org/10.1093/jxb/ert376
- Matias, L., Zamora, R., and Castro, J. 2012. Rare rainy events are more critical than drought intensification for woody recruitment in Mediterranean mountains: a field experiment simulating climate change. Oecologia 169: 833-844. https://doi.org/10.1007/s00442-011-2234-3
- Milbau, A., Graae, B.J., Shevtsova, A., and Nijs, I. 2009. Effects of a warmer climate on seed germination in the subarctic. Annals of Botany 104(2): 287-296. https://doi.org/10.1093/aob/mcp117
- Morin, X., Roy, J., Sonie, L., and Chuine, I. 2010. Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytologist 186(4): 900-910. https://doi.org/10.1111/j.1469-8137.2010.03252.x
-
Morison, J.I.L. and Lawlor, D.W. 1999. Interactions between increasing
$CO_2$ concentration and temperature on plant growth. Plant Cell & Environment 22: 659-682. https://doi.org/10.1046/j.1365-3040.1999.00443.x - Nakamura, M., Muller, O., Tayanagi, S., Nakaji, T., and Hiura, T. 2010. Experimental branch warming alters tall tree leaf phenology and acorn production. Agricultural and Forest Meteorology 150(7-8): 1026-1029. https://doi.org/10.1016/j.agrformet.2010.04.001
- Perez-Garcia, F., Gonzalez-Benito, M.E., and Gomez-Campo, C. 2008. Germination of fourteen endemic species from the Iberian Peninsula, Canary and Balearic Islands after 32-34 years of storage at low temperature and very low water content. Seed Science and Technology 36(2): 407-422. https://doi.org/10.15258/sst.2008.36.2.14
- Peterjohn, W.T., Melillo, J.M., Steudler, P.A., Newkirk, K.M., Bowles, F.B., and Aber, J.D. 1994. Responses of trace gas fluxes and N availability to experimentally elevated temperatures. Ecological Applications 4(3): 617-625. https://doi.org/10.2307/1941962
- Rustad, L.E., Campbell, J.L., Marion, G.M., Norby, R.J., Mitchell, M.J., Hartley, A.E., Cornelissen, J.H.C., Gurevitch, J., and GCTE-NEWS. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126(4): 543-562. https://doi.org/10.1007/s004420000544
- SAS Institute Inc. 2000. SAS/STAT TM guide for personal computer. Version 8 edition. SAS Institute Inc., N.C. pp. 1026.
-
Saxe, H., Ellsworth, D.S., and Heath, J. 1998. Tree and forest functioning in an enriched
$CO_2$ atmosphere. New Phytologist 139: 395-436. https://doi.org/10.1046/j.1469-8137.1998.00221.x - Scott, S.J., Jones, R.A., and Williams, W.A. 1984. Review of data analysis methods for seed germination. Crop Science 24: 1192-1199. https://doi.org/10.2135/cropsci1984.0011183X002400060043x
- Skordilis, A. and Thanos, C.A. 1995. Seed stratification and germination strategy in the Mediterranean pines Pinus brutia and P. halepensis. Seed Science Research 5(3): 151-160.
- Takemura, T., Hanagata, N., Sugihara, K., Baba, S., Karube, I., and Dubinsky, Z. 2000. Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquatic Botany 68(1): 15-28. https://doi.org/10.1016/S0304-3770(00)00106-6
-
Teskey, R.O. 1997. Combined effects of elevated
$CO_2$ and air temperature on carbon assimilation of Pinus taeda trees. Plant Cell & Environment 20: 373-380. https://doi.org/10.1046/j.1365-3040.1997.d01-75.x - Thompson, L.J. and Naeem, S. 1996. The effects of soil warming on plant recruitment. Plant and Soil 182: 339-343.
- Thuiller, W., Albert, C., Araujo, M.B., Berry, P.M., Guisan, A., Hickler, T., Midgley, G.F., Paterson, J., Schurr, F.M., Sykes, M.T., and Zimmermann, N.E. 2008. Predicting global change impacts on plant species' distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics 9: 137-152. https://doi.org/10.1016/j.ppees.2007.09.004
- Tilki, F. and Dirik, H. 2007. Seed germination of three provenances of Pinus brutia (Ten.) as influenced by stratification, temperature and water stress. Journal of Environmental Biology 28(1): 133-136.
- Walck, J.L., Hidayati, S.N., Dixon, K.W., Thompson, K., and Poschilod, P. 2011. Climate change and plant regeneration from seed. Global Change Biology 17(6): 2145-2161. https://doi.org/10.1111/j.1365-2486.2010.02368.x
- Zhu, J., Kang, H., Tan, H., and Xu, M. 2006. Effects of drought stresses induced by polyethylene glycol on germination of Pinus sylvestris var. mongolica seeds from natural and plantation forests on sandy land. Journal of Forest Research 11(5): 319-328. https://doi.org/10.1007/s10310-006-0214-y
Cited by
- 온난화 처리가 신갈나무(Quercus mongolica)와 졸참나무(Q. serrate)의 종자발아와 생장에 미치는 영향 vol.52, pp.3, 2014, https://doi.org/10.11614/ksl.2019.52.3.210
- 실외 실험적 온난화 및 강수 처리에 따른 소나무와 낙엽송 유묘의 초기 생장 특성 vol.109, pp.1, 2020, https://doi.org/10.14578/jkfs.2020.109.1.31
- Early Growth Responses of Larix kaempferi (Lamb.) Carr. Seedling to Short-Term Extreme Climate Events in Summer vol.12, pp.11, 2014, https://doi.org/10.3390/f12111595