DOI QR코드

DOI QR Code

ISSR 분석에 의한 전나무 집단의 유전변이

Genetic Variation of Abies holophylla Populations in South Korea Based on ISSR Markers

  • 김영미 (국립산림과학원 산림유전자원과) ;
  • 홍경낙 (국립산림과학원 산림유전자원과) ;
  • 이제완 (국립산림과학원 산림유전자원과) ;
  • 양병훈 (산림청 산림환경보호과)
  • Kim, Young-Mi (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Hong, Kyung Nak (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Lee, Jei Wan (Division of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Yang, Byeong-Hoon (Forest Environment Conservation Division, Korea Forest Service)
  • 투고 : 2013.09.09
  • 심사 : 2014.05.27
  • 발행 : 2014.06.30

초록

ISSR 표지를 이용하여 전나무 6개 집단의 유전다양성과 유전구조를 분석하였다. 6개 ISSR primer로 유전다양성을 추정한 결과, 집단별 다형성 유전자좌의 비율은 평균 85.6%, 이형접합도 기대치($H_e$)는 0.288로 나타났다. AMOVA 결과, 전체 유전변이에서 5.6%는 집단간, 94.4%는 집단내 개체간 차이에 기인하는 것으로 나타났다. 베이즈 추론에 근거한 유전분화는 ${\theta}^{II}$$G_{ST}$가 각각 0.045, 0.038로, 근연교배 정도는 0.509로 추정되었다. Mental 검증에서 집단간 지리적 거리가 멀수록 유전적으로 상이한 것으로 판명되었다(r = 0.74, P < 0.05). UPGMA 방법과 PCA 결과에 따라서 남원, 청도, 문경 집단을 한 군집으로, 인제, 홍천, 평창 집단을 다른 군집으로 나눌 수 있었다. 베이즈 군집분석에서는 유전변이 분포에 따라서 남원, 문경 집단이 한 군집으로 인제, 홍천, 평창, 청도 집단이 다른 한 군집으로 묶여서 2개의 상위 군집으로 나뉘었다. 빈도주의 분석에 따른 '군집'을 반영한 AMOVA 결과에서 전체 유전변이의 3.9%를 군집의 영향으로 설명할 수 있었으며, 전나무 집단의 지리적 분포는 베이즈 분석보다는 UPGMA 방법에 의한 구분과 일치하는 것으로 나타났다.

Genetic diversity and genetic differentiation in six natural populations of Abies holophylla Max were investigated using ISSR marker system. From 6 ISSR primers, the average percentage of polymorphic loci was 85.6%, and the average expected heterozygosity ($H_e$) was 0.288. From the result of AMOVA, 94.4% of total genetic variation came from the differences among individuals within populations, and 5.6% was caused by those of among-populations. On the basis of Bayesian inference, genetic differentiation (${\theta}^{II}$ and $G_{ST}$) and inbreeding coefficient for all populations were 0.045, 0.038, and 0.509, respectively. The correlation between genetic distance and geographical distance was highly significant at the Mental's test (r = 0.74, P < 0.05). Six populations divided into two groups according to the results of UPGMA and PCA. One group included Namwon, Cheongdo and Mungyeong population. The other was Inje, Hongcheon and Pyeongchang population. Also, in Bayesian clustering analysis, 6 populations were divided into two clusters. But Cheongdo population was assigned into the other cluster unlike those of UPGMA or PCA. Taking the regions based on the results of the cluster analysis into consideration of AMOVA, 3.9% of genetic variation came from the regional difference. The dendrogram from UPGMA could provide the most genetically reasonable explanation for the distribution of Abies holophylla populations in South Korea.

키워드

참고문헌

  1. Ahn, J.K. 1997. Needle characteristics and genetic variation of Abies holophylla populations in South Korea based on Isozyme, pp. 40, 47, 58. Ph. D. Dissertation. Kyungpook National University. Daegu, Korea (in Korean).
  2. Cho, M.H. 1989. Coloured wood plants of Korea, p. 198. ACADEMY Publishers. Seoul, Korea. (in Korean)
  3. Coart, E., Glabeke, S.V., Petit, R.J., Bockstaele, E.V., and Roldan-Ruiz, I. 2005. Range wide versus local patterns of genetic diversity in hornbeam (Carpinus betulus L.). Conservation Genetics 6: 259-273. https://doi.org/10.1007/s10592-004-7833-7
  4. Ettl, G. and Peterson, D. 2001. Genetic variation of subalpine fir (Abies lasiocarpa) in the Olympic Mountains, WA, USA. Silvae Genetica 50: 145-153.
  5. Evanno, G., Regnaut, S., and Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
  6. Fady, B. and Conkle, M. 1993. Allozyme variation and possible phylogenetic implications in Abies cephalonica Loudon and some related eastern Mediterranean firs. Silvae Genetica 42: 351-359.
  7. Falk, D.A. 1991. Joining biological and economic models for conserving plant genetic diversity, p. 209-223. In: D.A. Falk, and K.E. Holsinger, ed. Genetics and Conservation of Rare Plants. Oxford University Press. London, U.K.
  8. Finkeldey, R. and Gregorius, H.R. 1994. Genetic resources: Selection criteria and design, p. 322-347. In: Z.S. KIM, H.H. Hattemer, ed. Conservation and Manipulation of Genetic Resources in Forestry. Kwang Moon Kag. Seoul, Korea.
  9. Foll, M., Beaumont, M.A., and Gaggiotti, O. 2008. An approximate Bayesian computation approach to overcome biases that arise when using amplified fragment length polymorphism markers to study population structure. Genetics 179: 927-939. https://doi.org/10.1534/genetics.107.084541
  10. Hamrick, J., Godt, M., and Schierwater, S. 1992. Factors influencing levels of genetic diversity in woody plant species. pp. 95-124. In: W. Adams et al., ed. Population Genetics of Forest Trees. Kluwer Academic Publichers. New York, U.S.A.
  11. Holsinger, K.E., Lewis, P.O., and Dey, D.K. 2002. A Bayesian approach to inferring population structure from dominant markers. Molecular Ecology 11: 1157-1164. https://doi.org/10.1046/j.1365-294X.2002.01512.x
  12. Hong, Y.P., Ahn, J.Y., Kim, Y.M., Yang, B.H., and Song, J.H. 2011. Genetic variation of nSSR markers in natural populations of Abies koreana and Abies nephrolepis in South Korea. Journal of Korean Forest Society 100: 577-584.
  13. Humphries, C.J., Williams, P.H., and Richard, I.V.W. 1995. Measuring biodiversity value for conservation. Annual Review of Ecology and Systematics 26: 93-111. https://doi.org/10.1146/annurev.es.26.110195.000521
  14. Jump, A.S. and Penuelas, J. 2005. Running to stand still: Adaptation and the response of plants to rapid climate change. Ecology Letters 8: 1010-1020. https://doi.org/10.1111/j.1461-0248.2005.00796.x
  15. KFRI(Korea Forest Research Institute). 1992. Dendrology. Korea forest service. Daejeon, Kora. pp. 562 (in Korean).
  16. Kim, I.S. and Hyun, J.O. 1999. Genetic variation in the natural population of Abies holophylla Max. based on RAPD analysis. Journal of Korean Forest Society 88(3): 408-418.
  17. Lee, S.W., Yang, B.H., Han, S.D., Song, J.H., and Lee, J.J. 2008. Genetic variation in natural populations of Abies nephrolepis Max. in South Korea. Annual Forest Science 65(302): 1-7. https://doi.org/10.1051/forest:2008999
  18. Lee, T.B. 1987. Dendrology. Hyangmoon Pub. Co. Seoul. Korea, pp. 331 (in Korean).
  19. Lynch, M. and Milligan, B.G. 1994. Analysis of population genetic structure with RAPD markers. Molecular Ecology 3: 91-99. https://doi.org/10.1111/j.1365-294X.1994.tb00109.x
  20. Lynch, M. 1996. A quantitative-genetic perspective on conservation issues. pp. 471-501, In: J.C., Avise and J.L Hamrick, ed. Conservation Genetics: Case Histories from Nature. Kluwer Academic Publichers. New York, U.S.A.
  21. Matusova, R. 1995. Genetic variation in 5 populations of silver fir (Abies alba Mill.) in Slovakia. Bratislava 50: 53-59.
  22. Mejnartowicz, L. 2004. Genetic analysis of Silver-fir populations in the North Carpathian and Sudeten Mountains. Acta Societatis Botanicorum Poloniae 73(4) : 285-292. https://doi.org/10.5586/asbp.2004.036
  23. National Research Council. 1991. Managing Global Genetic Resources. National Academy Press. Washington. D.C, U.S.A. pp. 228.
  24. Nybom, H. and Bartish, I.V. 2000. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspectives in Plant Ecology, Evolution and Systematics 3: 99-114.
  25. Nybom, H. 2004. Comparison of different nuclear DNA markers for estimation intraspecific genetic diversity in plants. Molecular Ecology 13: 1143-1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x
  26. Peakall, R. and Smouse, P.E. 2006. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Note 6: 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  27. Pimm, S.L. 2008. Climate change or large habitat loss-which will kill more species. Current Biology 18: 117-119. https://doi.org/10.1016/j.cub.2007.11.055
  28. Palsboll, P.J., Berube, M., and Allendorf, F.W. 2006. Identification of management units using population genetic data. TRENDS in Ecology and Evolution 22(1): 11-16.
  29. Pritchard, J.K., Stephens, M., and Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959.
  30. Rossetto, M. 2006. Impact of habitat fragmentation of plant populations. pp. 117-129. In: J. Henry, ed. Plant Conservation Genetics. Haworth Press. New York, USA.
  31. Shea, K.L. and Furnier, G.R. 2002. Genetic variation and population structure in central and isolated populations of balsam fir, Abies balsamea (Pinaceae). American of Journal Botany 89: 783-791. https://doi.org/10.3732/ajb.89.5.783
  32. Wolfe A.D. and Liston, A. 1998. Contributions of the polymerase chain reaction to plant systematics, pp. 203-236. In: E.D. Soltis, P.S. Soltis, J.J. Doyle, ed. Molecular Systematics of Plants. II. DNA Sequencing. Kluwer Academic Publishers, New York, U.S.A.
  33. Wu, J., Krutovskii, K.V., and Strauss, S.H. 2000. Nuclear DNA diversity, population differentiation, and phylogenetic relationships in the California closed-cone pines based on RAPD and allozyme markers. Genome 42: 893-908.
  34. Yoo, Y.H. 2002. Distribution of evergreen coniferous trees and environmental factor, pp. 35-36. M. S. Thesis. Kyunghee University. Seoul, Korea (in Korean with English abstract).
  35. Zhang, Q., Maroof, M.A., and Kleinhofs, A. 1993. Comparative diversity analysis of RFLPs and isozymes within and among populations of Hordeum vulgare ssp. spontaneum. Genetics 34(3): 909-16.

피인용 문헌

  1. 제주도 개가시나무의 유전구조와 유전적 다양성 vol.107, pp.2, 2014, https://doi.org/10.14578/jkfs.2018.107.2.151