DOI QR코드

DOI QR Code

Application of electro-coagulation for the pretreatment of membrane separation of anaerobic digestion effluents

혐기성 소화액의 막분리를 위한 전기응집 전처리 연구

  • Received : 2014.03.07
  • Accepted : 2014.07.10
  • Published : 2014.07.31

Abstract

The aim of this study was to confirm the feasibility of the electro-coagulation process as a pre-treatment for the membrane separation of anaerobic digestion effluents to minimize membrane fouling. The reduction of membrane fouling was evaluated according to the number of electrodes (immersed surface area of electrodes), current density and contact time. In the case of the small surface area of electrodes, the increased electric field strength resulted in a soluble COD increase due to the destruction of the microbial flocs and/or cells, whereas large changes in the soluble COD were not observed in the case of the high surface area of electrodes. On the other hand, the T-P concentration decreased as a result of the precipitation of aluminum ions and phosphates. The membrane permeation flux increased and the fouling resistance (Rc+Rf) decreased with increasing electric current density. Although the particle size of the anaerobic digestion effluent increased slightly, it was not related directly to the reduced fouling phenomena. The main mechanism for the enhanced flux was attributed to the inorganic particulate produced during electrocoagulation, such as $AlPO_4$, which acted as a dynamic membrane deposited on the membrane surface.

본 연구에서는 분리막을 이용하여 혐기성소화액을 분리막으로 고/액 분리할 때 발생하는 막오염을 방지하기 위하여 전기응집을 전처리 공정으로 적용 가능한지 여부를 평가하였다. 전기응집 공정의 전극면적, 전류밀도 및 접촉시간에 따른 막오염 저감 효과를 분석하였다. 전극 침지 면적이 작은 경우 전계의 세기가 높아져 미생물 플록 및 셀의 파괴 현상으로 인한 용존 COD의 증가 현상이 관찰되었으나, 전극 침지 면적이 큰 경우에 용존 COD는 큰 변화를 보이지 않았다. 그러나 T-P는 전극에서 용출된 알루미늄 이온과 침전하여 전기응집 후 크게 감소하였다. 전류밀도가 증가함에 따라 막 투과 플럭스가 증가하여 결과적으로 막오염 저항값 (Rc+Rf)은 감소하였다. 혐기성 소화액의 입자 크기는 전기응집 후에 약간 증가하였으나 입자크기 증가가 막오염 저감의 직접적인 원인은 아닌 것으로 나타났다. 전기응집으로 발생한 $AlPO_4$와 같은 무기성 부유 물질이 분리막 표면에서 dynamic membrane으로 작용하여 막오염을 저감시킨 것으로 나타났다.

Keywords

References

  1. Jeong-Min Baek, "Liquid fertilizer production of sludge from anaerobic digested of livestock wastewater and food waste", M. s. Dissertation, Kyung-Sung University, Korea, 2008
  2. Sou-Ik Kim, "(A) study on the sewage sludge pretreatment by ultrasound", M. s. Dissertation, Korea University, Korea, 2010
  3. Ronald L. Droste, "Theory and practice of water and wastewater treatment"
  4. Chul-Hwi Park, Jung-Won Seo, Jong-Woon Park, Jong-Hwan Park, "sewage treatment planning process and operation management"
  5. Reza Katal, Hassan Pahlavanzadeh, "Influence of different combinations of aluminum and iron electrode on electrocoagulation efficiency: Application to the treatment of paper mill wastewater", Desalination, 265, pp.199-205, 2011 DOI: http://dx.doi.org/10.1016/j.desal.2010.07.052
  6. Patrick Drogui, Melanie Asselin, Satinder K. Brar, Hamel Benmoussa, Jean-Francois Blais, "Electrochemical removal of pollutants from agro-industry wastewaters", Separation and Purification Technology, 61, pp.301-310, 2008 DOI: http://dx.doi.org/10.1016/j.seppur.2007.10.013
  7. Amel Benhadji, Mourad Taleb Ahmed, Rachida Maachi, "Electrocoagulation and effect of cathode materials on the removal of pollutants from taneery wastewater of Rouiba", Desalination, 277, pp.128-134, 2011 DOI: http://dx.doi.org/10.1016/j.desal.2011.04.014
  8. Idil Arslan-Alaton, Isik Kabdasli, Deniz Hanbaba, Elif Kuybu, "Electrocoagulation of a real reactive dyebath effluent using aluminum and stainless steel electroeds", Journal of Hazardous Materials, 150, pp. 166-173, 2008 DOI: http://dx.doi.org/10.1016/j.jhazmat.2007.09.032
  9. Ivonne Linares-Hernandez, Carlos Barrera-Diaz, Gabriela Roa-Morales, Bryan Bilyeu, Fernando Urena-Nunez, "Influence of the anodic material on electrocoagulation performance", Chemical Engineering Journal, 148, pp. 97-105, 2009 DOI: http://dx.doi.org/10.1016/j.cej.2008.08.007
  10. J-Y. Kim, J-H Lee, I-S Chang, J-H. Lee, C-W. Yi, High voltage impulse electric fields: Disinfection kinetics and its effect on membrane bio-fouling, Desalination (2011) 283, 111-116. DOI: http://dx.doi.org/10.1016/j.desal.2011.03.039
  11. K. Aronsson, U. Ronner, E. Borch, Inactivation of Escherichia coli, Listeriainnocua and Saccharomyces cerevisiae in relation to membrane permeabilization and subsequent leakage of intracellular compounds due to pulsed electric field processing, Int. J. Food Microb. 99(2005) 19-32. DOI: http://dx.doi.org/10.1016/j.ijfoodmicro.2004.07.012
  12. In-Soung Chang, Robert Field, Zhanfeng Cui, "Limitations of resistance in series model for fouling analysis in membrane bioreactors: A cahtionary note", Desalination and Water Treatment, 8, pp.31-36, 2009 DOI: http://dx.doi.org/10.5004/dwt.2009.687
  13. Jong-Oh Kim, Jong-Tae Jung, Ick-Tae Yeom, Gyung-Hae Aoh, "Electric fields treatment for the reduction of membrane fouling, the inactivation of bacteria and the enhancement of particle coagulation", Desalination, 202, pp.31-37, 2007 DOI: http://dx.doi.org/10.1016/j.desal.2005.12.035
  14. Marc Altman, Raphael Semiat, David Hasson, "Removal of organic foulants from feed waters by dynamic membranes", Desalination, 125, pp.65-75, 1999 DOI: http://dx.doi.org/10.1016/S0011-9164(99)00124-1