DOI QR코드

DOI QR Code

A Study on Adaptive Skin Extraction using a Gradient Map and Saturation Features

경사도 맵과 채도 특징을 이용한 적응적 피부영역 검출에 관한 연구

  • Hwang, Dae-Dong (Dept. of Computer Engineering, Hankyong National University) ;
  • Lee, Keun-Soo (Dept. of Computer Engineering, Hankyong National University)
  • 황대동 (한경대학교 컴퓨터공학과) ;
  • 이근수 (한경대학교 컴퓨터공학과)
  • Received : 2014.06.25
  • Accepted : 2014.07.10
  • Published : 2014.07.31

Abstract

Real-time body detection has been researched actively. On the other hand, the detection rate of color distorted images is low because most existing detection methods use static skin color model. Therefore, this paper proposes a new method for detecting the skin color region using a gradient map and saturation features. The basic procedure of the proposed method sequentially consists of creating a gradient map, extracting a gradient feature of skin regions, noise removal using the saturation features of skin, creating a cluster for extraction regions, detecting skin regions using cluster information, and verifying the results. This method uses features other than the color to strengthen skin detection not affected by light, race, age, individual features, etc. The results of the detection rate showed that the proposed method is 10% or more higher than the traditional methods.

실시간 인체 검출에 대한 관심이 높아짐에 따라 피부색을 통한 인체 검출에 대한 연구가 활발히 진행되고 있다. 하지만 대다수 기존 피부 탐지 방법은 정적인 피부색 모델을 이용하기 때문에 색왜곡이 발생한 영상에서 낮은 탐지율을 보인다. 이에 본 논문에서는 경사도 맵과 채도의 특징, K-평균 클러스터링 알고리즘을 이용하여 피부영역을 탐지하는 기법을 제시한다. 제안하는 방법의 기본적인 절차는 경사도 맵 생성, 피부영역에서 발견되는 경사도 특징의 추출, 피부의 채도 특징을 이용한 잡음 제거, 추출된 영역의 색상정보 군집화 수행, 클러스터 정보를 이용한 피부영역 탐지, 결과 검증 순이다. 이방법은 색상 이외의 특징을 이용하여 조명, 인종, 나이, 개인차 등에 상관없이 강건하게 피부를 탐지하는 것에 중점을 두고 있다. 실험을 통하여 기존의 주요 방법들 보다 탐지 결과가 10% 이상 높게 나타남을 확인할 수 있다.

Keywords

References

  1. J. Satake, J. Miura. "Multiple-Person Tracking for a Mobile Robot using Stereo", MVA2009 IAPR Conference on Machine Vision Applications, May 20-22, 2009, Yokohama, JAPAN.
  2. L, Zhang, Y. Liang "Motion Human Detection Based on Background Subtraction", Education Technology and Computer Science (ETCS), 2010 Second International Workshop on (Volume 1), pp.284-287, 6-7 March 2010
  3. G. Osman, M.S. Hitam, M.N. Ismail, "Enhanced Skin Colour Classifier using RGB Ratio Model", International Journal on Soft Computing (IJSC) Vol.3, No.4, November 2012.
  4. V.S. Bhat, J.D. Pujari, "Face Detection System using HSV Color Model and Morphing Operations", International Journal of Current Engineering and Technology, ISSN 2277-4106, 2013.
  5. R.L. Hsu, M. Abdel-Mottaleb, "Face Detection in Color Images", IEEE Transactions on Pattern Analysis and Machine Intelligence, v.24, n.5, May 2002. DOI: http://dx.doi.org/10.1109/34.1000242
  6. J.B. MacQueen, "Some Methods for classification and Analysis of Multivariate Observations, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability", Berkeley, University of California Press, 1:281-297.
  7. Y.J. Park, S.W. Jang, G.Y. Kim, "A Study on Extraction of Skin Region and Lip Using Skin Color of Eye Zone", Journal of the Korea society of computer and information", VOL.14, NO.4, pp.19-30, 2009.
  8. K. Sandeep, A.N. Rajagopalan, "Human Face Detection in Cluttered Color Images Using Skin Color, Edge Information", ICVGIP 2002.
  9. S.L. Phung, A.Bouzerdoum, D. Chai, "A Novel Skin Color Model in YCbCr Color Space and Its Application to Human Face Detection", Image Processing 2002 International Conference, pp I-289-I-292 vol. 1.
  10. J. Stottinger, A. Hanbury, "Skin Paths for Contextual Flagging Adult Video", Proceedings of the 5th International Symposium on Visual Computing (ISVC), Las Vegas, NV, Nov 30 - Dec 2, 2009.
  11. C.C. Hsieh, D.H. Liou1, W.R. Lai, "Enhanced Face-Based Adaptive Skin Color Model", Journal of Applied Science and Engineering, Vol. 15, No. 2, pp. 167-176 2012.
  12. M. Buvaneswari, T. Aravind, "Virtually Histogram Approach for Efficient Human Skin Detection", International Journal of Futuristic Science Engineering and Technology, Vol 1, Issue 6, June 2013.
  13. R. Khan, A. Hanbury, J. Sotttinger, A. Bais, "Color Based Skin classification" DISI, March 2012. DOI: http://dx.doi.org/10.1016/j.patrec.2011.09.032
  14. A. Jo, J.-S. Park, Y.-H. Seo, G.-J. Jang, "Performance Improvement of Human Detection in Thermal Images using Principal Component Analysis and Blob Clustering", The Journal of The Institute of Internet, Broadcasting and Communication, Vol 13, No 2, pp. 157-163, 2013. https://doi.org/10.7236/JIIBC.2013.13.2.157
  15. H.-C. Shin, Y. Shen, S. Khim, W. Sung, M. U. Ahmed, Y.-H. Hong, P.-K. Rhee, "Performance Improvement of Eye Tracking System using Reinforcement Learning", The Journal of The Institute of Internet, Broadcasting and Communication, Vol 13, No 2, pp. 171-179, 2013. https://doi.org/10.7236/JIIBC.2013.13.2.171
  16. Y.-S. Im, E.-Y. Kang, J.-P. Park, "Improvement of DCT-based Watermarking Scheme using Quantized Coefficients of Image", The Journal of The Institute of Internet, Broadcasting and Communication, Vol. 14, No. 2, pp.17-22, 2014. https://doi.org/10.7236/JIIBC.2014.14.2.17
  17. T.-W. Kim, "Speed-up of Image Matching Using Feature Strength Information", The Journal of The Institute of Internet, Broadcasting and Communication, Vol. 13, No. 6, pp.63-69, 2013. https://doi.org/10.7236/JIIBC.2013.13.6.63
  18. S.-J. Oh, "Design of a Smart Phone App for Measuring Object Size in a Picture Image", The Journal of The Institute of Internet, Broadcasting and Communication, Vol. 13, No. 5, pp.135-142, 2013. https://doi.org/10.7236/JIIBC.2013.13.5.135