DOI QR코드

DOI QR Code

A Study on the Heat Sink with internal structure using Peltier Module In the Natural and Forced Convection

자연대류와 강제대류에서 펠티에 소자를 이용한 내부터널 구조를 가지는 히트싱크에 관한 연구

  • Lee, Min (Graduate School of Mechanical Engineering, Pukyong National University) ;
  • Kim, Tae-Wan (Dept. of Mechanical Engineering, Pukyong National University)
  • 이민 (부경대학교 대학원 기계공학과) ;
  • 김태완 (부경대학교 기계공학과)
  • Received : 2014.04.08
  • Accepted : 2014.07.10
  • Published : 2014.07.31

Abstract

The Peltier Module has been used to dissipate the heat from electronic devices and electronic components. In this module, a heat sink is used to release the operating heat into the air outside. This study addressed the heat transfer characteristics for a heat sink with an inner tunnel. Under forced and natural convection conditions, the heat transfer characteristics were different. Therefore, the cooling and heating performances were studied for the heat sink, which has an inner tunnel. The heat transfer conditions were also evaluated by performing an experimental test, which investigated the heat transfer characteristics related to the variance in time and temperature distribution. Experiments on the heat transfer characteristics of the heat sink were conducted based on the forced and natural convection and temperature distribution changes. In the cooling experiment, the A- and B-shaped cooling pin heat sinks decreased the temperature of the forced convection than the temperature of natural convection. In the forced and natural convection, the A- and B-shaped decreased to a minimum of $-15^{\circ}C$. Under the forced and natural convection conditions, A- and B-shaped cooling pin heat sinks decreased the temperature when the voltage was increased. In the heating experiment, the A- and B-shaped cooling pin heat sinks increased the temperature of the forced convection than the temperature of natural convection. In forced convection, when the voltage was $15^{\circ}C$, the temperature of the A-shaped cooling pin heat sink increased to $150^{\circ}C$, and the temperature of the B-shaped cooling pin heat sink increased to $145^{\circ}C$. Under forced and natural convection conditions, the A- and B-shaped cooling pin heat sinks showed an increase in temperature with increasing voltage.

펠티에 소자는 전자부품이나 장비에서 발생하는 열을 냉각하기 위한 방법으로 많이 사용되고, 히트싱크는 이러한 열을 외부로 방출하기 위한 방법으로 많이 사용되고 있다. 본 연구에서는 내부터널의 형상을 가지는 히트싱크에 대한 냉각 및 히팅성능을 자연대류와 강제대류 상태에서 열전달 특성에 대하여 고찰하였다. 또한, 시간에 따른 히트싱크의 열전달 특성 및 온도분포의 변화에 따른 실험을 수행하였고, 자연대류와 강제대류에 따른 히트싱크의 열전달 특성, 온도분포의 변화를 실험을 통해 비교 연구 하였다. 냉각 실험에서 A형상 및 B형상 냉각 핀 히트싱크는 자연대류보다는 강제대류에서 온도가 더 감소하는 것을 알 수가 있었고, 강제대류와 자연대류에서 A, B형상 모두 $-15^{\circ}C$까지 떨어지는 것을 알 수 있었다. 전압이 증가 할수록 강제대류와 자연대류 상태에서 A, B형상 냉각 핀 히트싱크 모두 온도가 감소하였다. 히팅실험에서 A형상 및 B형상 냉각 핀 히트싱크는 자연대류보다는 강제대류에서 온도가 더 증가하는 것을 알 수가 있었고, 강제대류와 자연대류에서 전압이 13V일 때, A형상 냉각 핀 히트싱크는 전압이 $150^{\circ}C$, 강제대류에서 B형상 냉각 핀 히트싱크는 $145^{\circ}C$까지 증가하였다. 전압이 증가할수록 강제대류와 자연대류 상태에서 A, B형상 냉각 핀 히트싱크 모두 온도가 증가하였다.

Keywords

References

  1. Champier D, Bedecarrats JP, Rivaletto M, Strub F, "Thermoelectric power generation from biomass cook stoves", Energy, Vol. 35, pp. 935-942, 2010. DOI: http://dx.doi.org/10.1016/j.energy.2009.07.015
  2. E.F. Thacher, B.T. Helenbrook, M.A. Karri, C.J.Richter, "Testing an automobile thermoelectric exhaust based thermoelectric generator in a light truck", Proc. IMechE. D: J. Automob. Eng. Vol. 221, pp. 95-107, 2007. https://doi.org/10.1243/09544070JAUTO51
  3. Pan Y, Lin B, Chen J., "Performance analysis and parametric optimal design of an irreversible multi-couple thermoelectric refrigerator under various operating conditions", Appl. Energy, Vol. 84, pp. 882-892, 2007. DOI: http://dx.doi.org/10.1016/j.apenergy.2007.02.008
  4. Gurevich YG, Logvinov GN, "Physics of thermoelectric cooling", Semicond Sci Technol, Vol. 20, pp. 57-64, 2005. DOI: http://dx.doi.org/10.1088/0268-1242/20/12/R01
  5. Min Chen, Lasse A. Rosendahl, Thomas Condra, "A three-dimensional numerical model of thermoelectric generators in fluid power systems", International Journal of Heat and Mass Transfer, Vol. 54, pp. 345-355, 2011. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.08.024
  6. Wei-Hsin Chen, Chen-Yeh Liao, Chen-I Hung, "A numerical study on the performance of miniature thermoelectric cooler affected by Thomson effect", Applied Energy, Vol. 89, pp. 464-473, 2012. DOI: http://dx.doi.org/10.1016/j.apenergy.2011.08.022
  7. Lee KH, Kim OJ, "Analysis on the performance of the thermoelectric microcooler", Int J Heat Mass Transfer, Vol. 50, pp. 1982-1992, 2007. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.09.037
  8. Luo J, Chen L, Sun F, Wu C, "Optimum allocation of heat transfer surface area for cooling load and COP optimization of a thermoelectric refrigerator", Energy Convers Manage, Vol. 44, (2003) pp. 3197-3206, 2003. DOI: http://dx.doi.org/10.1016/S0196-8904(03)00107-9
  9. Lee DR, "Investigation of Optimal Cooling Performance Using Peltier Module and Heat Sink", Journal of the Korea society for power system engineering, Vol. 10, No. 4, pp. 65-70
  10. Seung-Hwan Yu, Kwan-Soo Lee, Se-Jin Yook, "Natural convection around a radial heat sink", International Journal of Heat and Mass Transfer, Vol. 53, pp. 2935-2938, 2010. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.02.032
  11. R. Arularasan & R. Velraj, "Modeling and simulation of a parallel plate heat sink using computational fluid dynamics", Int J Adv Manuf Technol, Vol. 51, pp. 415-419, 2010. DOI: http://dx.doi.org/10.1007/s00170-008-1867-9
  12. Bum-Sik Seo, Ki-Joung Lee, Jong-Kyung Yang, Young Seek Cho, and Dae-Hee Park, "Development and Characterization of Optimum Heat Sink for 30 W Chip on Board LED Down-Light", Transactions on Electrical and Electronic Materlals, Vol. 13, No. 6, pp. 292-296, 2012. DOI: http://dx.doi.org/10.4313/TEEM.2012.13.6.292
  13. Yue-Tzu Yang, Huan-Sen Peng, "Numerical study of pin-fin heat sink with un-uniform fin height design", International Journal of Heat and Mass Transfer, Vol. 51, pp. 4788-4796, 2008. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.02.017
  14. Mehdi Mehrtash, Ilker Tari, "A correlation for natural convection heat transfer from inclined plate-finned heat sinks", Applied Thermal Engineering, Vol. 51, pp. 1067-1075, 2013. DOI: http://dx.doi.org/10.1016/j.applthermaleng.2012.10.043
  15. Ilker Tari, Mehdi Mehrtash, "Natural convection heat transfer from inclined plate-fin heat sinks", International Journal of Heat and Mass Transfer, Vol. 56, pp. 574-593, 2013. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.08.050
  16. P. Teertstra, M.M. Yovanovich, J. R. Culham, "Analytical forced convection modeling plate fin heat sinks", J. Electronics Manufacturing, Vol. 10, No. 4, pp. 253-261, 2000. DOI: http://dx.doi.org/10.1142/S0960313100000320
  17. C.T. Chen, H.I. Chen, "Multi-objective optimization design of plate-fin heat sinks using a direction-based genetic algorithm", Journal of the Taiwan Institute of Chemical Engineers, Vol. 44, pp. 257-265, 2013. DOI: http://dx.doi.org/10.1016/j.jtice.2012.11.012
  18. K.T. Chiang, C.C. Chou, N.M. Liu, "Application of response surface methodology in describing the thermal performances of pin-fin heat sinks", International Journal of Thermal Sciences, Vol. 48, pp. 1196-1205, 2009. DOI: http://dx.doi.org/10.1016/j.ijthermalsci.2008.10.009
  19. S.F. Hosseinizadeh, F.L. Tan , S.M. Moosania, "Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fin", Applied Thermal Engineering, Vol. 31, pp. 3827-3838, 2011. DOI: http://dx.doi.org/10.1016/j.applthermaleng.2011.07.031
  20. Y.A. Cengel, "Heat Transfer A Practical Approach 2nd edition", McGraw-Hill, Boston, 2003.
  21. B.S. Seo, K. J. Lee, J.K. Yang, Y. S. Cho, D.H. Park, "Development and characterization of optimum heat sink for 30W chip on board LED down-light", Transactions on electrical and electronic materials, Vol. 13, No. 6 pp. 292-296, 2012.
  22. Huang, B. J. and Chin, C. J. and Duang, C. L., "A design method of thermoelectric cooler", Int. J. of Refrigeration, Vol. 16, No. 1, pp. 208-218, 2000. DOI: http://dx.doi.org/10.1016/S0140-7007(99)00046-8

Cited by

  1. A Study on the Warpage of Injection Molded Parts for the rapid Cooling and Heating Device vol.16, pp.8, 2015, https://doi.org/10.5762/KAIS.2015.16.8.5074
  2. An Experimental Study on Cooling Characteristic according to Fin Array of Aluminum Heat Sink vol.17, pp.1, 2018, https://doi.org/10.14775/ksmpe.2018.17.1.138