DOI QR코드

DOI QR Code

Preform Design of a Forged Punch by Approximate Optimization

근사 최적화 기법을 이용한 펀치 단조품의 예비성형체 설계

  • Park, Sangkun (Dept. of Mechanical Engineering, Korea National University of Transportation)
  • 박상근 (한국교통대학교 기계공학과)
  • Received : 2014.03.06
  • Accepted : 2014.07.10
  • Published : 2014.07.31

Abstract

In this paper, attempts were made to design a preform for a final punch inexpensively using the proposed approximate optimization method or metamodel-based simulation optimization. The design objective of this work is to achieve a uniform distribution of effective strains, the angle dimension of the preformed punch is chosen as a design variable, and maximum underfill ratio is used as a constraint. For this optimization, a computer simulation of a practical punch forging process is run using DEFORM software, in which a preformed punch(workpiece), a master punch(upper die), and a bottom die are dealt with. A validation method is introduced to determine if the simulation results match the actual forging process. In addition, this work presents the detailed design optimization procedure consisting of (i) generation of an initial metamodel, (ii) metamodel optimization, (iii) validation of metamodel-predicted optimum, and (iv) metamodel improvement.

본 연구는 본 연구에서 제안하는 근사 최적화 방법(메타모델 기반의 시뮬레이션 최적화)을 사용하여 저렴한 해석 비용으로 펀치 단조품의 예비성형체(preform)를 설계한다. 본 연구에서 사용한 설계목표는 유효변형률의 균일한 분포이고 설계변수는 예비성형체 치수이며, 구속조건으로 최대 미충진 비율을 사용한다. 이를 위해 먼저 예비성형펀치(반재), 마스터펀치(상부다이) 및 하부다이로 구성되는 단조성형 공정을 DEFORM 시뮬레이션에 의해 모사하고, 이 시뮬레이션 결과가 실제 단조 공정을 모사하고 있는지 확인하는 검증 방법에 관해 소개한다. 또한 본 연구에서 수행한 설계 최적화 과정, 즉 (i) 초기 메타모델의 생성, (ii) 메타모델의 최적화 수행, (iii) 메타모델 최적해의 검증, (iv) 메타모델의 개선에 관하여 상세히 기술한다.

Keywords

References

  1. C. S. Han, R. V. Grandhi, and R. Srinivasan, "Optimum design of forging die shapes using nonlinear finite element analysis", AIAA Journal, Vol. 31, pp.774-784, 1993. DOI: http://dx.doi.org/10.2514/3.49021
  2. B. S. Kang, N. Kim, and S. Kobayashi, "Computer-aided preform design in forging of an airfoil section blade", International Journal of Machine Tools and Manufacture, Vol. 30, pp.43-52, 1990. DOI: http://dx.doi.org/10.1016/0890-6955(90)90040-P
  3. D. Y. Li, Y. H. Peng, and J.L. Yin, "Optimization of metal-forming process via a hybrid intelligent optimization technique", Structural and Multidisciplinary Optimization, Vol. 34, pp.229-241, 2007. DOI: http://dx.doi.org/10.1007/s00158-006-0075-1
  4. T. Simpson, J. Peplinski, P. Koch, J. Allen, "Metamodels for computerbased engineering design: Survey and recommendations", Engineering with Computers, Vol. 17, pp.129-150, 2001. DOI: http://dx.doi.org/10.1007/PL00007198
  5. J. P. C. Kleijnen, "Response surface methodology for constrained simulation optimization: an overview", Simulation Modelling Practice and Theory, Vol. 16, pp.50-64, 2008. DOI: http://dx.doi.org/10.1016/j.simpat.2007.10.001
  6. J. R. Koehler and A. B. Owen, "Computer Experiments", Design and Analysis of Experiments, edited by S. Ghosh and C. R. Rao, Vol. 13 of Handbook of Statistics, North- Holland, New York, pp. 261-308, 1996.
  7. N. M. Alexandrov, "Approximation and model management in aerodynamic optimization with variable-fidelity models", Journal of Aircraft, Vol. 38, No. 6, 2001. DOI: http://dx.doi.org/10.2514/2.2877
  8. A. Booker, J. Dennis, P. Frank, D. Serafini, V. Torczon, and M.A Trosset, "Rigorous framework for optimization of expensive functions by surrogates", Structural Optimization, Vol. 17, pp.1-13, 1999. DOI: http://dx.doi.org/10.1007/BF01197708
  9. C. deBoor, and A. Ron, "Computational aspects of polynomial interpolation in several variable", Mathematics of Computation, Vol. 58, pp.705-727, 1992. DOI: http://dx.doi.org/10.2307/2153210
  10. A. I. J. Forrester and A. J. Keane, "Recent advances in surrogate-based optimization", Progressin Aerospace Sciences, Vol. 45, pp.50-79, 2009. DOI: http://dx.doi.org/10.1016/j.paerosci.2008.11.001
  11. H. Fang, and M. F. Horstemeyer, "Global response approximation with radial basis functions", Journal of Engineering Optimization, Vol. 38, No. 4, pp.407-424, 2006. DOI: http://dx.doi.org/10.1080/03052150500422294
  12. K. Ye, "Orthogonal column latin hypercubes and their application in computer experiments", Journal of the American Statistical Association, Vol. 93, pp.1430-1439, 1998. DOI: http://dx.doi.org/10.1080/01621459.1998.10473803