DOI QR코드

DOI QR Code

Performance Improvement of Computing Time of 2 Dimensional Finite Volume Model using MPI

MPI를 이용한 2차원 유한체적모형의 계산 성능 개선

  • Kim, Tae Hyung (School of Architectural, Civil, Environmental and Energy Engineering, Kyungpook National Univ.) ;
  • Han, Kun Yeun (School of Architectural, Civil, Environmental and Energy Engineering, Kyungpook National Univ.) ;
  • Kim, Byung Hyun (Dept. of Civil & Environmental Engineering, University of California, Irvine and UC Center for Hydrologic Modeling)
  • 김태형 (경북대학교 건설.환경.에너지공학부) ;
  • 한건연 (경북대학교 건설.환경.에너지공학부) ;
  • 김병현 (캘리포니아 주립대학교 얼바인, 토목, 환경공학과 및 UC 수문모델링 센터)
  • Received : 2014.01.29
  • Accepted : 2014.06.12
  • Published : 2014.07.31

Abstract

In this study, two dimensional finite volume model was parallelized to improve computing time, which has been developed to be able to apply for the mixed meshes of triangle and quadrilateral. MPI scheme which is free from limitation of the number of cores was applied, and non-blocking point-to-point communication was used for fluxes and time steps calculation domain. The developed model is applied to analyze dam break in a L-shaped experimental channel with $90^{\circ}$ bend and Malpasset dam breach event to calibrate the consistency between parallelized model and existing model and examine the speed-up and efficiency of computing time. Computational speed-up about the size of the input data was considered by simulating 4 cases classified by the number of meshes, Consequently, the simulation results reached a satisfactory accuracy compared to measured data and the results from existing model, and achieved more than 3 times benefit of computational speed-up against computing time of existing model. Simulation results of 3 cases classified by the size of input data lead us to the conclusion that it is important to use proper size of input data and the number of process in order to minimize the communication overhead.

본 연구에서는 삼각형 및 사각형 혼합격자의 적용이 가능하도록 기 개발된 2차원 유한체적모형의 계산속도를 개선하기 위해 모형의 병렬화를 수행하였다. 모형의 병렬화를 위해 코어 수의 제약에 자유로운 MPI 기법을 이용하였고, 프로그램 내의 흐름률 및 계산시간간격의 계산영역에 대해 논블록킹 점대점통신을 이용하였다. 병렬화 된 개발모형의 기존모형에 대한 계산결과의 일치성을 검증하고, 계산시간에 대한 성능향상도와 효율성을 검토하기 위해, $90^{\circ}$의 만곡이 존재하는 L자형 실험하도에 대한 댐 붕괴해석과 자연하천인 Malpasset 댐의 붕괴사상에 대해 모형을 적용하였다. 또한 격자수에 따라 4개의 Case로 구분하여 각각 모의함으로써, 입력규모의 크기에 따른 계산시간의 성능향상도를 함께 검토하였다. 분석결과 병렬화 모형에 의한 모의 결과는 기존모형 및 실측치와 비교하여 만족할 만한 정확도를 확보하였고, 기존모형에 대비해 약 3배 정도의 계산시간에 대한 성능이득을 얻을 수 있었다. 또한 입력자료 규모에 대한 Case별 모의 결과를 통해 적절한 입력자료의 규모와 프로세스 개수를 사용하는 것이 통신부하를 최소화할 수 있는 방안임을 확인할 수 있었다.

Keywords

References

  1. Alcrudo, F., and Garcia-Navarro, P. (1993). "A high-resolution Godunov-type scheme in finite volumes for the 2D shallow-water equations." International Journal for Numerical Methods in Fluids, John Wiley & Sons, Inc., Vol. 16, No. 6, pp. 489-505. https://doi.org/10.1002/fld.1650160604
  2. Andrews, G.R. (2000). Foundations of multithreaded, parallel, and distributed programming. Addison Wesley, United States, pp. 1-9.
  3. Begnudelli, L., Sanders, B., and Bradford, S. (2008). "Adaptive Godunov-based model for flood simulation." Journal of Hydraulic Engineering, Vol. 134, No. 6, pp. 714-725. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:6(714)
  4. Brufau, P., Garcia-Navarro, P., and Vazquez-Cendon, M.E. (2004). "Zero mass error using unsteady wetting drying conditions in shallow flows over dry irregular topography." International Journal for Numerical Methods in Fluids, John Wiley & Sons, Inc., Vol. 45, No. 10, pp. 1047-1082. https://doi.org/10.1002/fld.729
  5. Caleffi, V., Valiani, A., and Zanni, A. (2003). "Finite volume method for simulating extreme flood events in natural channels." Journal of Hyraulic Research, Talor & Francis, Vol. 41, No. 2, pp. 167-177. https://doi.org/10.1080/00221680309499959
  6. Chippada, S., Dawson, C.N., Martinez, M.L., and Wheeler, M.F. (1998). "A Godunov-type finite volume method for the system of shallow water equations." Computer Methods in Applied Mechanics and Engineering, Elsevier Science, Vol. 151, No. 1-2, pp. 105-129. https://doi.org/10.1016/S0045-7825(97)00108-4
  7. Goutal N. (1999). "The Malpasset dam failure. An overview and test case definition." The Proceeding of the 4th CADAM Meeting, Zaragoza, Spain, pp. 1-7.
  8. Jung, S.Y., Park, J.H., Hur, Y.T., and Jung, K.S. (2010). "Application of MPI technique for distributed rainfall-runoff model" Journal of Korea Water Resources Association, KWRA, Vol. 43, No. 8, pp. 747-755. https://doi.org/10.3741/JKWRA.2010.43.8.747
  9. Kim, B.H., Han, K.Y., and Kim, J.S. (2009). "Handling method for flux and source terms using unsplit scheme" Journal of Korea Water Resources Association, KWRA, Vol. 42, No. 12, pp. 1079-1089. https://doi.org/10.3741/JKWRA.2009.42.12.1079
  10. Kim, B.H., Han, K.Y., and Son, A.L. (2011). "Development of two-dimensional finite volume model applicable to mixed meshes." Journal of Korea Water Resources Association, KWRA, Vol. 44, No. 2, pp. 109-123. https://doi.org/10.3741/JKWRA.2011.44.2.109
  11. Lee, H.S., Kim. J.H., Lee, S.W., and Lee, S. (2010). A time for multi-core parallel programming. Adbooks, pp. 40-41.
  12. Liang, D., Lin, B., and Falconer, R.A. (2007). "An boundary-fitted numerical model for flood routing with shock-capturing capability." Journal of Hydrology, Elsevier Science, Vol. 332, No. 3-4, pp. 477-486. https://doi.org/10.1016/j.jhydrol.2006.08.002
  13. Neal, J., Fewtrell, T., and Trigg, M. (2009). "Parallelisation of storage cell flood models using OpenMP" Environmental Modelling & Software, Elsevier Science, Vol. 24, No. 7, pp. 872-877. https://doi.org/10.1016/j.envsoft.2008.12.004
  14. Neal, J.C., Fewtrell, T.J., Bates, P.D., and Wright, N.G. (2010). "A comparison of three parallelisation methods for 2D flood inundation models." Environmental Modelling & Software, Elsevier Science, Vol. 25. No. 4, pp. 398-411. https://doi.org/10.1016/j.envsoft.2009.11.007
  15. Pacheco, P.S. (1997). Parallel programming with MPI, Morgan Kaufmann, San Francisco, C.A., pp. 11-39, 249-250
  16. Park. N.S., Hong, S.H., and Shim, M.G. (2003). "Development of optimal pumping model for coastal region using genetic algorithms and parallel processing." Journal of Korea Society of Civil Engineers, KSCE, Vol. 23, No. 5B, pp. 397-403.
  17. Pau, J.C., and Sanders, B.F. (2006). "Performance of parallel implementations of an explicit finite-volume shallow-water model." Journal of Computing in Civil Engineering, ASCE, Vol. 20, No. 2, pp. 99-110. https://doi.org/10.1061/(ASCE)0887-3801(2006)20:2(99)
  18. Paz, A.R., Collischonn, W., Tucci, C.E.M., and Padovani, C.R.P. (2011). "Large-scale modelling of channel flow and floodplain inundation dynamics and its application to the Pantanal (Brazil)." Hydrological Processes, Wiley-Blackwell, Vol. 25, No. 9, pp. 1498-1516. https://doi.org/10.1002/hyp.7926
  19. Petaccia, G. (2003). Propagazione di onde a fronte ripido per rottura di sbarramenti in alvei naturali. Ph.D. dissertation, University of Pavia, Italy.
  20. Sanders, B.F., Schubert, J.E., and Detwiler, R.L. (2010). "ParBreZo: A parallel, unstructured grid, Godunovtype, shallow-water code for high-resolution flood inundation modeling at the regional scale." Advances in Water Resources, Elsevier Science, Vol. 33, No. 12, pp. 1456-1467. https://doi.org/10.1016/j.advwatres.2010.07.007
  21. Soares-Frazao, S., and Zech, Y. (1999). Effects of a sharp bend on dam-break flow. Proceedings 28th Congress of IAHR, Graz, Austria.
  22. Valiani, A., Caleffi, V., and Zanni, A. (2002). "Case study: malpasset dam-break simulation using a two-dimensional finite volume method." Journal of Hydraulic Engineering, ASCE, Vol. 128, No. 5, pp. 460-472. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(460)
  23. Wang, Y., Wang, H., Lei, X., Jiang Y., and Song X. (2011). "Flood simulation using parallel genetic algorithm integrated wavelet neural networks" Neurocomputing, Elsevier Science, Vol. 74, No. 17, pp. 2734-2744. https://doi.org/10.1016/j.neucom.2011.03.018
  24. Wikipedia the Free Encyclopedia. (2014). Multi-core processor. Wikipedia Foundation, Inc., Web, 26 May 2014.
  25. Yoon, T.H., and Kang, S.K. (2004). "Finite volume model for two-dimensional shallow water flows on unstructured grids." Journal of Hydraulic Engineering, ASCE, Vol. 130, No. 7, pp. 678-688. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:7(678)
  26. Yu, D. (2010). "Parallelization of a two-dimensional flood inundation model based on domain decomposition" Environmental Modelling & Software, Elsevier Science, Vol. 25, No. 8, pp. 935-945. https://doi.org/10.1016/j.envsoft.2010.03.003

Cited by

  1. A Study on Prediction of Inundation Area considering Road Network in Urban Area vol.35, pp.2, 2015, https://doi.org/10.12652/Ksce.2015.35.2.0307
  2. Application of Parallel Diffusive Wave Model to Inundation Analysis Using OpenMP vol.16, pp.4, 2016, https://doi.org/10.9798/KOSHAM.2016.16.4.227