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Abstract
We derive a test statistic for the general linear test in the ridge regression model. The exact distribution for

the test statistic is too difficult to derive; therefore, we suggest an approximate reference distribution. We use
numerical studies to verify that the suggested distribution for the test statistic is appropriate. A asymptotic result
for the test statistic also is considered.
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1. Introduction

In regression analysis, the ridge regression model (Hoerl and Kennard, 1970) is a good alternative to
the classical linear model when covariates are highly correlated. The ridge regression model has been
studied by many researchers and indicates many good properties. Among them, there exists a ridge
transformation parameter with which ridge regression estimator has a smaller mean squared error than
the classical linear regression model, and the ridge regression estimator is a Bayes estimator when the
prior for the regression coefficients are Gaussian under the squared error loss function. For other
properties of the ridge regression estimator, see Seber and Lee (2003) and Kim and Kang (2010).
However, relatively few studies are done in the testing problem for the ridge regression coefficients.

The general linear test in the classical linear model is often used. One example is the Cobb-
Douglas production function (Chipman and Rao, 1964) in the field of econometrics; however, the
general linear test problem in the ridge regression has not been studied. Obenchain (1977) studied
interval estimation of the general linear combination of regression coefficients in the ridge regression
using the singular values decomposition of the design matrix, and Hoerl and Kennard (1990) proposed
a degrees of freedom in the analysis of variance model using the ridge regression. We study the general
linear test problem in the ridge regression model and derive a test statistic for the general linear test
that suggests an approximate reference distribution. As far as we know, this study was not considered
so far since the test statistic under the general linear restriction is quite tedious and the corresponding
degrees of freedom for the test statistic is quite different from the classical linear model. Note that the
hat matrix in the ridge regression is not idempotent so that the degrees of freedom are not any more
an integer but a real number; therefore, a traditional F-distribution in the classical linear model is not
exactly suitable.

This paper is organized as follows. In Section 2, the ridge regression is defined and reviews
on the general linear test in the classical linear model are given. Derivation of test statistic in the
ridge regression model and an appropriate definition for the degrees of freedom is suggested, and an
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approximate reference distribution is suggested in Section 3. Numerical studies for the proposed test
statistic are given in Section 4, and concluding remarks and further studies are also given in Section
5.

2. Past Works

2.1. The general linear test in the linear model

Consider a multiple linear regression model

y = Xβ + ε,

where y is an n-vector of responses, X is an n × p design matrix of known covariates with 1’s in the
first column, β is a p-vector of unknown coefficients, and ε is an error term, which is a normally dis-
tributed n-vector with mean 0 and covariance σ2I. The general linear test is specified as the following
hypotheses

H0 : Cβ = m vs. H1 : Cβ , m,

where C is a q × p matrix with the rank of q and m is a q-vector of given constants. Then, it can be
easily shown that

β̂H = β̂ − (Xt X)−1Ct
[
C(Xt X)−1Ct

]−1 (
Cβ̂ − m

)
,

where β̂H is least squares estimator of β under H0, and β̂ is least squares estimator of β. The test
statistic in the linear model is generally given by the form

F =
(SSE(R) − SSE(F))/(d fR − d fF)

SSE(F)/d fF
,

where SSE(R) and SSE(F) denote error sum of squares under the reduced model and under the full
model, respectively, and d fR and d fF denote the degrees of freedom under the reduced model and
under the full model, respectively. It can be easily shown that F ∼ F(p − r, n − p) under H0. If we
apply this fact to the general linear test case, it can be easily shown that

SSE(R) − SSE(F) =
(
β̂ − β̂H

)
Xt X

(
β̂ − β̂H

)
=

(
Cβ̂ − m

)t [
C(Xt X)−1Ct

]−1 (
Cβ̂ − m

)
,

and

SSE(F) = yt(I − H)y,

where H = X(Xt X)−1Xt. Now, since, SSE(R) − SSE(F) and SSE(R) are independent and d fR =
n − (p − q) and d fF = n − p,

SSE(R) − SSE(F)
σ2 ∼ χ2(q)

under H0 and

SSE(F)
σ2 ∼ χ2(n − p).
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As a result, the test statistic is

F =
(SSE(R) − SSE(F))/q

SSE(F)/(n − p)
∼ F(q, n − p),

under H0 and we reject it if F > Fα with significance level α. Note that when Xt X is singular, the
distribution of test statistics is also known as F. In the case, a generalized inverse of Xt X is used.

2.2. The ridge regression model

When multicollinearity exists in the linear regression model, the least squares estimator β̂ = (Xt X)−1

Xt y is very unstable. To overcome this problem, Hoerl and Kennard (1970) suggested the ridge
regression estimator defined as

β̂R = (Xt X + θI)−1Xt y,

where θ is a shrinkage parameter that should be estimated based on the data. To estimate θ, the
generalized cross validation criterion, suggested by Wahba et al. (1979), is often used, and it is given
by

GCVθ =
∑

i

ei,θ
2/

[
1 − 1

n
tr(Hθ)

]2

,

where

ei,θ = yi − ŷi,θ

is a ridge regression residual when θ is given and

Hθ = X(Xt X + θI)−1Xt

is hat matrix in the ridge regression.

3. The General Linear Test in the Ridge Regression

3.1. Problem set-up

Consider the multiple linear regression model

y = Xβ + ε,

and we assume that two or more covariates are highly correlated; therefore, we are required to estimate
β via the ridge regression method. Under this situation, we wish to test the general linear hypotheses

H0 : Cβ = m vs. H1 : Cβ , m.

Recall that the ridge regression estimator can be interpreted as minimizing εtε under the restriction of
βtβ ≤ k2 for some k which is related with the shrinkage parameter θ. Therefore, the estimator of β in
the ridge regression model under the general linear hypothesis H0 : Cβ = m reduces to minimizing
εtε under two restrictions;

βtβ ≤ k2

and

Cβ = m.
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3.2. Estimation of regression coefficients

Based on the previous arguments, the problem reduces to minimizing

Q = εtε + θ
(
βtβ − k2

)
+ λ(Cβ − m)

= (y − Xβ)t(y − Xβ) + θ
(
βtβ − k2

)
+ λ(Cβ − m)

= yt y − 2βt Xt y + βt Xt Xβ + θ
(
βtβ − k2

)
+ λ(Cβ − m),

where θ and λ are Lagrangian multipliers. By the partial differentiating Q with respect to by unknown
parameters β, θ and λ, we have

0 =
∂Q
∂β
= −2Xt y + 2Xt Xβ + 2θβ + Ctλ, (3.1)

0 =
∂Q
∂θ
= βtβ − k2, (3.2)

0 =
∂Q
∂λ
= Cβ − m. (3.3)

From (3.1), we have (
Xt X + θI

)
β = Xt y − 1

2
Ctλ .

Therefore,

β̂L =
(
Xt X + θI

)−1
(
Xt y − 1

2
Ctλ

)
= β̂R −

1
2

(
Xt X + θI

)−1
Ctλ ,

where β̂R is ridge estimator and β̂L is the estimator of β of unknown coefficients under H0. Also, from
(3.3), Cβ̂L = m. Since, we know that

1
2

C
(
XT X + θI

)−1
CTλ = Cβ̂R − m

and

λ =

[
1
2

C
(
Xt X + θI

)−1
Ct

]−1 (
Cβ̂R − m

)
,

we can finally get the estimator of coefficients

β̂L = β̂R −
1
2

(
Xt X + θI

)−1
Ct

[
1
2

C
(
Xt X + θI

)−1
Ct

]−1 (
Cβ̂R − m

)
= β̂R −

(
Xt X + θI

)−1
Ct

[
C

(
Xt X + θI

)−1
Ct

]−1 (
Cβ̂R − m

)
= β̂R − KCt

[
CKCt

]−1 (
Cβ̂R − m

)
, (3.4)

where

K =
(
Xt X + θI

)−1
.

For a relevant discussion, see Seber and Lee (2003), for example.
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3.3. A suggested test statistic

Motivated by the general test statistic in the linear model

F =
(SSE(R) − SSE(F))/q

SSE(F)/(n − p)
∼ F(q, n − p),

under H0 : Cβ = m, we wish to compute SSE(R) − SSE(F) and SSE(F). First, by noting that

SSE(R) = eL
teL =

(
y − Xβ̂L

)t (
y − Xβ̂L

)
,

we have

SSE(R) =
(
y − Xβ̂R + Xβ̂R − Xβ̂L

)t (
y − Xβ̂R + Xβ̂R − Xβ̂L

)
=

[
eR + X

(
β̂R − β̂L

)]t [
eR + X

(
β̂R − β̂L

)]
,

where

eR = y − Xβ̂R,

and therefore,

SSE(R) = eR
teR + 2

(
β̂R − β̂L

)t
XteR +

(
β̂R − β̂L

)t
Xt X

(
β̂R − β̂L

)
= eR

teR + 2
(
β̂R − β̂L

)t
Xt

(
y − Xβ̂R

)
+

(
β̂R − β̂L

)t
Xt X

(
β̂R − β̂L

)
= eR

teR +
(
β̂R − β̂L

)t
Xt

[(
y − Xβ̂R

)
+

(
y − Xβ̂L

)]
.

Hence, we get

SSE(R) = SSE(F) +
(
β̂R − β̂L

)t
Xt

[(
y − Xβ̂R

)
+

(
y − Xβ̂L

)]
.

Now, we can express SSE(R) − SSE(F) as a function of βR by using (3.4), i.e., since,(
β̂R − β̂L

)t
Xt

[(
y − Xβ̂R

)
+

(
y − Xβ̂L

)]
=

(
β̂R − β̂L

)t
Xt

(
eR + y − Xβ̂L

)
=

(
β̂R − β̂L

)t
Xt

[
eR + y − X

[
β̂R − KCt{CKCt}−1

(
Cβ̂R − m

)]]
= 2

(
β̂R − β̂L

)t
XteR +

(
β̂R − β̂L

)t
Xt XKCt

[
CKCt

]−1 (
Cβ̂R − m

)
,

and therefore,

SSE(R) − SSE(F)

= 2
[
KCt

{
CKCt

}−1 (
Cβ̂R − m

)]t
XteR +

[
KCt

{
CKCt

}−1 (
Cβ̂R − m

)]t
Xt XKCt

{
CKCt

}−1 (
Cβ̂R − m

)
.

Further, let

T = XKCt
(
CKCt

)−1 (
Cβ̂R − m

)
,
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then

SSE(R) − SSE(F)
= 2TteR + TtT

= 2
[
XKCt

(
CKCt

)−1 (
Cβ̂R − m

)]t
eR +

[
XKCt

(
CKCt

)−1 (
Cβ̂R − m

)]t
XKCt

(
CKCt

)−1 (
Cβ̂R − m

)
.

Based on the result in the classical linear model, we may consider a test statistic for testing H0 : Cβ =
m in the ridge regression as

G =
(SSE(R) − SSE(F))/(d fR − d fF)

SSE(F)/d fF
, (3.5)

where

SSE(R) − SSE(F)

= 2
[
XKCt

(
CKCt

)−1 (
Cβ̂R − m

)]t
eR +

[
XKCt

(
CKCt

)−1 (
Cβ̂R − m

)]t
XKCt

(
CKCt

)−1 (
Cβ̂R − m

)
,

and

SSE(F) = eR
teR.

Remark 1. SSE(R)−SSE(F) is sum of two terms; one is linear in T, and the other is quadratic in T.
Note that the linear term will be close to zero because it is a linear combination of T and the residual
vector eR, and the quadratic term will be large compared to the linear term. The quadratic term will
be small under H0 and will be large under H1 since T is a function of Cβ̂R − m.

Remark 2. Recall that d fF in the classical linear model is n − p which is, in fact, n − tr(H), where
H = X(Xt X)−1Xt is the hat matrix. Therefore, it is quite reasonable to define the degree of freedom
under full model as n− tr(Hθ), where Hθ = X(Xt X + θI)−1Xt is the hat matrix in the ridge regression.

By using arguments in Remark 1 and Remark 2, we may also consider an approximate version of
test statistic

G̃ =
TtT/(d fR − d fF)

eR
teR/d fF

=

(
Cβ̂R − m

)t (
CKCt

)−1
CKXt XKCt

(
CKCt

)−1 (
Cβ̂R − m

)
/q

eR
teR/(n − tr(Hθ))

. (3.6)

To use G or G̃ as a test statistic we need to verify the distribution of SSE(R)−SSE(F) and SSE(F)
under H0, however, it is a very difficult task. Independence between SSE(R) − SSE(F) and SSE(F)
is required. Here, we conjecture that the proposed test statistic follows F(q, (n − tr(Hθ)))-distribution
under H0, because, if θ = 0, then the proposed test statistic reduces to the test statistic in the classical
linear model. In general, tr(Hθ) is not an integer, so that we may use the closest integer to tr(Hθ).
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Table 1: The average of TteR, TtT, G, G̃ based on 100 replications, and θ.
m TteR TtT G G̃ θ

0 0.044 0.010 1.029 1.023 0.013
1 0.032 0.407 42.621 42.604
2 0.052 1.580 165.459 165.430
3 0.072 3.529 369.541 369.501
4 0.092 6.254 654.869 654.818
5 0.112 9.756 1021.441 1021.380

3.4. Joint confidence region

For the interval estimation of the general linear combination of regression coefficients Cβ in the ridge
regression, Obenchain (1977) proposed a method using a singular values decomposition of the design
matrix. But, the suggested interval by Obenchain (1977) is for the orthogonal transformation of
regression coefficients.

Based on the arguments in Section 3.3, we suggest an approximate joint confidence region for
general linear function Cβ. First, we note that

E
(
Cβ̂R

)
= C(I − θK)β

and

Cov
(
Cβ̂R

)
= KXT XKσ2.

Therefore, an approximate 100 × (1 − α)% joint confidence region for the general linear function Cβ,
based on the arguments in Section 3.3, is β satisfying the following inequality;(

β̂R − (I − θK)β
)T

CT
(
CKXT XKCT

)−1
C

(
β̂R − (I − θK)β

)
≤ qs2Fα (q, (n − tr(Hθ))) .

4. Numerical Study

4.1. Independence set-up

First, we generate Xi1, Xi2 and Xi3 from Uniform(0, 1) independently, and also generate ϵi from
N(0, 0.1). By supposing β0 = β1 = β2 = β3 = 1, we can obtain yi’s. Next, we estimate θ using
GCV method and compute the values of TteR and TtT under H0 : Cβ = m where C = (0, 1,−2, 1)
and m = 0. Lastly, compute the proposed test statistic G in (3.5) and the approximate version of test
statistic G̃ in (3.6) to check TteR is negligible compared to TtT. By Remark 2, we can define the
degree of freedom as

d fF = n − tr(Hθ) and d fR = n − tr(Hθ) + q.

We repeat this procedure for 100 times when m = 0, (i.e., under H0), and m = 1, 2, 3, 4, 5 under H1.
Table 1 shows the average values of TteR, TtT, G, and G̃ when m = 0, 1, . . . , 5 after 100 replications.
We see that TteR is very close to zero as expected, so that G̃ statistic is a reliable substitute for G
statistic. Also, we see that G statistic increases as m increases. In this case, the mean of tr(Hθ) is
3.977, which is close to p = 4, because θ is close to 0. Since, we get F0.05(1, 26) = 4.225 by rounding
the degree of freedom, and reject H0 when m ≥ 1.
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Table 2: The average of TteR, TtT, G, G̃ based on 100 replications, and θ.
m TteR TtT G G̃ θ

0 0.000 0.011 1.266 1.225 0.024
1 0.001 0.148 16.486 16.375
2 0.002 0.562 61.830 61.648
3 0.002 1.253 137.297 137.044
4 0.003 2.220 242.887 242.564
5 0.004 3.464 378.601 378.208
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Figure 1: G(solid) and G̃(dotted) for m = 0.0(0.1)2.0 under independent set-up.

4.2. Multicollinearity set-up

Note that ridge regression is useful when covariates are correlated. Again, we consider a multiple lin-
ear regression model in (4.1). In this case, we generate Xi2 and Xi3 from Uniform(0, 1) independently,
however, let Xi1 = Xi2 + δi, where δi is generated from N(0, 0.5). Finally, generate εi from N(0, 0.1).
By supposing β0 = β1 = β2 = β3 = 1, we can obtain yi’s. Based on these random numbers, we
make the same analysis as in Section 4.1. In this case, the correlation between covariates X1 and X2
is 0.7538, and the average of tr(Hθ) is 3.942. Since F0.05(1, 26) = 4.225 and F0.10(1, 26) = 2.909 by
rounding the degree of freedom, we observe that G and G̃ are larger than F0.05 when m ≥ 1. Therefore,
we reject H0 when m ≥ 1 with significance level α = 0.05.

Remark 3. To see the performance of the level control and power of the G and G̃ statistics, we
compute G and G̃ when m = 0.0(0.1)2.0 under independent and multicollinearity set-up, respectively.
These are given in Figure 1 and Figure 2, respectively.
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Figure 2: G(solid) and G̃(dotted) for m = 0.0(0.1)2.0 under multicollinearity set-up.

4.3. Asymptotic consideration

There is a well-known theorem (Harville, 2008, for example) for the asymptotics of matrices.

Theorem 1. Let A and B are n×n matrix, B is non-singular, and F = B−1 A, then B−1(I+F+F2 +

· · · ) converges iff

lim
k→∞

Fk = 0

and

(B − A)−1 =

∞∑
k=0

Fk B−1 = B−1(I + F + F2 + · · · ),

where F0 = I.

By Theorem 1, we first note that

K =
(
Xt X + θI

)−1
=

(
Xt X − (−θI)

)−1

and we put B = Xt X and A = −θI, then

K =
(
Xt X

)−1
(
I − θ

(
Xt X

)−1
+ θ2

(
Xt X

)−2 − · · ·
)

=
(
Xt X

)−1 − θ
(
Xt X

)−2
+ θ2

(
Xt X

)−3 − · · · . (4.1)
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Table 3: θ and ||Xt X|| in the independence set-up.
independence case

θ 0.013
||Xt X|| 7.317
||Xt X||−1 0.137

Table 4: θ and ||Xt X|| in the multicollinearity set-up, where δi ∼ N(0, σ2).
σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.5

θ 0.020 0.048 0.056 0.041 0.024
||Xt X|| 7.428 7.358 7.382 7.433 7.424
||Xt X||−1 0.135 0.136 0.135 0.135 0.135

In this case, if we show that the term θXt X is negligibly small compared to (Xt X)−1, then, K can be
well approximated by (Xt X)−1. To compare these two values, we calculate them in the independence
set-up and the multicollinearity set-up, but we replace the value of Xt X by its spectral norm, i.e.,∣∣∣∣∣∣Xt X

∣∣∣∣∣∣ ≡ √
λ1

(
Xt X

)
, (4.2)

where λ1(Xt X) is the largest eigenvalue of Xt X. Table 3 and Table 4 show the average of θ and spectral
norm based on 100 replications.

Since, we don’t need to use ridge regression in the independence set-up, it is reasonable to get θ
that is close to 0. Therefore, from (4.1), we conclude that

K ≈
(
Xt X

)−1
.

4.4. An example

As an illustrative example, we apply the proposed test statistic to the body fat data (Neter et al., 1990).
In this data set, two covariates X1 and X2 are highly correlated (Corr(X1, X2) = 0.92), so that a ridge
regression is used with θ = 0.02 by the GCV criterion. The fitted ridge regression is

ŷ = 3.485 + 0.909X1 + 0.080X2 − 0.376X3.

Here, we like to test H0 : Cβ = m, where C = (0, 1, 1,−1) and m = 0. Two proposed test statistics
are G = 4.48 and G̃ = 3.46, respectively, and these are larger than F·1(1, 17) = 3.03. Therefore, we
reject H0 : Cβ = m. When C = (0, 1, 1,−2) and m = 0, two test statistics are G = 2.36 and G̃ = 1.56,
respectively, and the null hypothesis is not rejected.

We also applied the data set to the confidence region for β when C = (0, 1, 1,−1) and C =
(0, 1, 1,−2), and we obtained the following two inequalities (1.205+ 0.019β0 − β1 − β2 + β3)2 ≤ 0.186
and (1.581 + 0.034β0 − β1 − β2 + 2β3)2 ≤ 0.437.

5. Concluding Remarks

We derived an exact and approximate version of test statistic to test a general linear hypothesis in the
ridge regression model. The exact distribution of the proposed test statistic was not derived, however,
we suggested to use an F-distribution as a reference distribution via numerical studies. The numerical
performance of the proposed test statistic was very good, and we can use the proposed test statistic in
a real data set. The proposed test statistic has very similar form to the classical linear model.
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Future studies are required to derive an exact distribution of the proposed test statistic. If the
derivation of an exact distribution is not possible, then we may use the facts given in Section 4.3 to
derive an approximate distribution, instead.
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