DOI QR코드

DOI QR Code

스테레오비전을 이용한 실물 얼굴과 사진의 구분

Distinction of Real Face and Photo using Stereo Vision

  • 신진섭 (대전보건대학교 바이오정보과) ;
  • 김현정 (건국대학교 컴퓨터공학과) ;
  • 원일용 (서울호서직업전문학교 사이버해킹보안과)
  • Shin, Jin-Seob (Dept. of Bioinforamtion, Daejeon Health Sciences College) ;
  • Kim, Hyun-Jung (Dept. of Computer Science and Engineering, Konkuk University) ;
  • Won, Il-Yong (Dept. of Cyber Hacking Security, Seoul Hoseo Technical College)
  • 투고 : 2014.05.31
  • 심사 : 2014.06.24
  • 발행 : 2014.07.31

초록

영상 기록을 남기는 장치들에서 신원을 파악할 수 있는 이미지를 확보할 때 입력 영상이 실물인지 사진인지를 구분하는 것은 중요한 문제이다. 단일 영상과 센서 등을 이용하여 단순하게 대상까지 거리만의 측정으로 구분하는 방법은 많은 약점을 가지고 있다. 따라서 본 논문은 스테레오 영상을 이용하여 관찰대상까지 거리뿐만 아니라, 얼굴영역의 깊이 지도를 만들어 입체감을 체크함으로써 단순 사진과 실물 얼굴을 구별하는 방법에 관한 것을 제안한다. 사진과 실물 얼굴을 촬영하고 여기에서 측정된 깊이지도 값을 이용하여 학습 알고리즘에 적용한다. 반복적인 학습을 통해 정확하게 실물과 사진을 구분하는 패턴을 찾았다. 제안한 알고리즘의 유용성은 실험으로 검증하였다.

In the devices that leave video records, it is an important issue to distinguish whether the input image is a real object or a photo when securing an identifying image. Using a single image and sensor, which is a simple way to distinguish the target from distance measurement has many weaknesses. Thus, this paper proposes a way to distinguish a simple photo and a real object by using stereo images. It is not only measures the distance to the target, but also checks a three-dimensional effect by making the depth map of the face area. They take pictures of the photos and the real faces, and the measured value of the depth map is applied to the learning algorithm. Exactly through iterative learning to distinguish between the real faces and the photos looked for patterns. The usefulness of the proposed algorithm was verified experimentally.

키워드

참고문헌

  1. A.Al-Habaibeh, F. Shi, N.Brown, D.Kerr, M.Jackson, and R.M. Parkin, "A novel approach for quality control system using sensor fusion of infrared and visual image processing for laser sealing of food containers, " MEASUREMENT SCIENCE AND TECHNOLOGY, Vol.15, pp.1995-2000, 2004. https://doi.org/10.1088/0957-0233/15/10/008
  2. jun-yang Kim, Ki-Sung Lee, Sun-tae Jung, seung-hyun Park, and Seong-won Cho, "Fake face detection using the pupil reflex in the infrared camera image, " Proceedings of KIIS Fall Conference, Vol. 21, No.2, 2011.
  3. Sang-ho, Lee, "Development of Decision Tree building and navigation Component using C4.5 Algorithm", ulsan university master thesis, 2008.2.
  4. Soucy, P. And Mineau, G. W., "A simple KNN Algorithm for Text Categorization, ", In Proceeding of the first IEEE International Control and Automation, Vol. 1, pp.321-325, 2002.
  5. Han, E.H., Karypis, G. And Kumar, V. "Text categorization using weight adjusted k-nearest neighbor classification, "In Proceeding of the fifth Pacific-Aisa Conference on Adcvances in Knowledge Discovery and Data Mining(PAKDD), pp.53-65, 1999.
  6. Seon-Hwa Lee, Eui-Young Cha, "Face Detection and Facial Feature Extraction for Person Identification", KIISE, Vol. 28. No.1, 2001
  7. Kang Ryoung Park, "The Face Verification System in Automatic Teller Machine", J. Computer Software & Media Tech., Vol. 1, No 2. 2003
  8. Won-yong Chae, Kyoung-Jun Lee, Hee-Je kim, "Distance Measurement System using the Infrared sensor for Mobile Robots", KISS, Spring Conference, Vol 20, No 1, p376-379, 2010.4
  9. Incheol Kim, Sooyong Lee, "3D Range Measurement using Infrared Light and a Camera, International Journal of control Automation and Systems", Vol. 14, No. 10, p1005-1013, 2008.10 https://doi.org/10.5302/J.ICROS.2008.14.10.1005
  10. Jaeho Lee, Chagick Kim, "Stereoscopic Image Generation with Optimal Disparity using Depth Map Preprocessing and Depth Information Analysis", KOSBE Journal, Vol.14, No. 2, p164-177, 2009.3, https://doi.org/10.5909/JBE.2009.14.2.164
  11. Dongil Han, Dongjin Shin, Byoungmoo Lee, Minsoo Choi, "An Improvement of Disparity Map and Real-Time Object Segmentation of the Stereo Matching Image", ITC-CSCC : 2006 Proceedings volume 2, p489-492, 2006.7
  12. http://vision.middlebury.edu/stereo/.
  13. Ja-Myung Koo, Young-Ho Seo, Hyun-Jun Choi, Ji-Sang Yoo, and Dong-Wook Kim, "Intermediate Depth Image Generation using Disparity Increment of Stereo Depth Images", Journal of Broadcast Engineering, Volume 17, Issue, 2, pp.363-373, 2012 https://doi.org/10.5909/JEB.2012.17.2.363
  14. D. Scharstein and R. Szeliski, "A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms", IJCV, 2002
  15. keunWha Yang, ByungJoo Oh, "Face Recognition by Combining Classifiers: Multi-layer Neural Networks vs. Radial Basis Function Networks", KIIT Journal, Vol.5, No.1, p94-101, 2007.3
  16. hong-Bok Song, Ji-Hwan Seol, "A Study on Face Awareness with Free size using Multi-layer Neural Network", Journal of fuzzy logic and intelligent systems, Vol.15, No.2, 149-162, 2005.4 https://doi.org/10.5391/JKIIS.2005.15.2.149
  17. Yu-sik Hong, gwang-deok Han, cheon-sik Kim, "Forecasting of Real Time Traffic Situation by C4.5 and Neural Network", KSII Spring Conference, Vol.8, No.1, 525-530, 2007.6
  18. Young-Si Jun, "Complement authentication based on face recognition using real-time eye tracking", Konkuk university, Master Thesis, 2011.2
  19. SR4000Data Sheet, http://www.mesa-imaging.ch/ prodview4k.php, MESA Imaging, Oct. 2010
  20. J. L. Wilson, "Microsoft kinect for Xbox 360", PC Mag. Com, Nov. 10, 2010.
  21. E. K. Lee, et al., "High-Resolution Depth Map Generation by Applying Stereo Matching based on Initial Depth Information, " IEEE 3DTV-CON, pp. 201-204, 2008.
  22. S. Y. Kim, et al., "Generation of ROI Enhanced Depth Maps using Stereoscopic Cameras and a Depth Camera, " IEEE Trans. on Broadcasting, Vol. 54, No. 4, pp. 732-739, Dec. 2008. https://doi.org/10.1109/TBC.2008.2002338
  23. J. Frieddman, J. Bentley, and R. Finkel, "An algorithm for finding best matches in logarithmic", ACM Trans, on Mathematical Software, Vol3, No.3, pp.209-226, 1997
  24. J. L. Mcclelland and D.E. Rumelhart, "Learning Internal Representation by Error Propagation, " Parallel Distributed Processing, Vol.1, 1986.