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CRITERIA FOR A SYMMETRIZED MONOMIAL IN B(3)

TO BE NON-HIT

Ali S. Janfada

Dedicated to Reg M. W. Wood on the occasion of his 75th birthday

Abstract. We find criteria for symmetrized monomials to be non-hit in
the A2-algebra of symmetric polynomials in three variables, where A2 is
the mod 2 Steenrod algebra.

1. Introduction

Consider the polynomial algebra P(n) = F2[x1, . . . , xn] =
⊕

d≥0 P
d(n)

viewed as a graded left module over the Steenrod algebra A2. Denote by
B(n) = P(n)Σn the A2-submodule of P(n) consisting of the symmetric polyno-
mials, where Σn denotes the symmetric group on n letters acting on the right
of P(n) by matrix substitution [9].

The algebra P(n) and its subalgebra B(n) realize, respectively, the coho-
mology of the product of n copies of infinite real projective space and the
cohomology of the classifying space BO(n) of the orthogonal group O(n). The
ideal L(n) in P(n) generated by σn = x1 · · ·xn can be identified with the coho-
mology of the n-fold smash product of infinite real projective space in positive
dimensions.

A homogeneous element f of grading d in a graded left A-module M is hit

if there is a finite sum f =
∑

i>0 Sq
i(hi), called a hit equation, where the pre-

images hi ∈ M have grading strictly less than d. We define f and g to be
equivalent, write f ∼= g, whenever f − g is hit. The hit problem is to discover
criteria for elements of M to be hit and find minimal generating sets for M as
an A-module.

We call the hit problem for B(n) the symmetric hit problem. In particular,
a hit equation in B(n), called a symmetric hit equation, is the finite sum f =
∑

i>0 Sq
i(hi), where now f and the pre-images hi are symmetric polynomials.

In this case we say that f is symmetrically hit. The symmetric hit problem at
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the prime 2 has been studied by the author and Reg M. W. Wood [2, 5, 6] and
quotients had earlier been studied by Frank Peterson [8].

We shall adopt the notation and terminology of [2, 3]. In particular, we
use the convenient binary block [1] as a geometric device for keeping track of

the action of Steenrod squares on monomials. A monomial f = xd1
1 · · ·xdn

n

has an associated matrix whose row entries are the digits, in reversed binary
expansion, of the exponents di. We shall adopt the convention of denoting
a monomial by a lower case letter and its binary block by the corresponding
upper case letter. For more details about blocks see [2, 6].

Many results and processes concerning the action of the Steenrod squares
are easier to understand when expressed in the language of blocks and we shall
regard a monomial f and its block F as interchangeable. An example is the
ω-vector ω(f) of a monomial f , which is the vector ω(F ) of column sums of F
[5]. The row sums of F , which is the ω-vector of the transpose of F , form the
α-vector of F , denoted by α(F ). The components of the α-vector are arranged
in increasing order to form the α∗-vector.

By ordering vectors lexicographically, we obtain the partial orders on the set
of monomials in P(n), the ω-order, the α-order, and the α∗-order. The ω-order
will be dominant throughout this work and when, say, we write f is lower than
g, we mean lower in the ω-order.

By a spike we mean a monomial xd1
1 · · ·xdn

n , where all exponents di are in
the form 2λi − 1 for some non-negative integer λi. A minimal spike is a spike
of the same degree with least ω-vector. Throughout this paper we will denote
minimal spikes by the symbol m.

The symmetrization of a monomial f is the “smallest” symmetric polynomial
σ(f) ∈ B(n) containing f as a term. To be precise, σ(f) =

∑t

i=1 fπi, where
π1, . . . , πt run through a set of left coset representatives for the stabilizer of the
monomial f in Σn.

A basic part of the hit problem is to detect all the hit elements. In [3]
the author exhibited a criterion for a monomial in P(3) to be hit. A similar
tool in the symmetric hit problem is given in the present paper. In the 1-
variable case, the solution to the symmetric hit problem is the same as the hit
problem since B(1) = P(1) and the only non-hit monomials in P(1) are the
spikes x2s−1. The situation for n = 2 is similar as the only non-hit elements
are the symmetrizations of spikes [6].

The main criteria in the 3-variable case are the following theorems, for the
first two of which we have µ(d) = 2, while Theorem 1.3 is in the case µ(d) = 1.
Here µ(d), for a positive integer d, stands for the smallest value of k for which

it is possible to write d =
∑k

i=1(2
λi − 1), where λi > 0. In Section 2 it is

explained that why we do not need to µ ≥ 3 cases.

Theorem 1.1. Let d = 2t+s + 2t − 2, where t > 0, s = 0, 1. Assume F is a

block in Ld(3). Then σ(F ) is hit in B(3).
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In the following main theorem we use the standard splitting F = FuF tF s

of a block F which will be defined in Section 2.

Theorem 1.2. Let d = 2t+s + 2t − 2, where t > 0, s > 1. Assume F is a

non-spike block in Ld(3). Then σ(F ) is non-hit in B(3) if and only if F satisfies

either of the following two conditions.

(1) ω(F ) = ω(M) and F s has exactly one zero row;
(2) F has one of the following forms up to permutation of rows.

G′
1 =

0 − 0 1 − 1
1 − 1
1 − 1

G′
2 =

1 − 1 1 1 − 1
1 − 1 1 1 − 1
0 − 0 1

Theorem 1.3. Let d = 2s − 1, s > 2 and let F be a non-spike block in Ld(3).
Then σ(F ) is non-hit in B(3) if and only if either of the following two conditions

is satisfied.

(1) At least two rows of F are equal;
(2) F has three distinct rows and ω(F ) = (3, 2, . . . , 2).

Theorems 1.1, 1.2, and 1.3 are unpublished results from the author’s thesis
[2] stated in different point of views, without proof, in [6] as Theorems 3.6, 3.8,
and 3.5, respectively. The aim of the present paper is to concentrate on the
strategy of the proof, in particular, digital engineering Lemmas 3.1, 3.4, 3.6,
and 3.7. The techniques used in these lemmas may be generalized for higher
variables.

2. Preliminary results

Let f be a monomial in P(n) and let π1, . . . , πt be left coset representatives

for a subgroup of the stabilizer of f in
∑

n. Then
∑t

j=1 fπj is symmetric but

the expression may be zero. For example, the transfer τ(f) =
∑

π∈
∑

n

fπ of a

monomial f with two equal exponents is zero. Note that for any monomial f ,
τ(f) = σ(f) whenever f has distinct exponents.

The general plan of action in tackling the hit problem in P(n) is to use the
ω-order as a potential function and try to manipulate monomials into equiv-
alent polynomials of lower potential with the ultimate aim of achieving some
kind of canonical forms. The idea is then to transfer these to B(n) by sym-
metrization. However, this is not always straightforward business [4, Example
1]. The following result [4, Thm. 3, Props. 3, 4] is an example of this strategy.
Recall from group theory that an odd (resp. even) permutation is a product of
an odd (resp. even) number of transpositions.

Proposition 2.1. Let f be a monomial in P(n) with distinct exponents.

(1) An equivalence f ∼= g in Pd(n), for any polynomial g, symmetrizes to

a symmetric equivalence σ(f) ∼= τ(g) in B(n);
(2) If f is hit, then σ(f) is symmetrically hit;
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(3) If f ∼= fπ′ in P(n) for some odd permutation π′ in Σn, then σ(f) is

symmetrically hit.

The next result is a useful corollary of Proposition 2.1 in the 3-variable case.
We denote by π(i,j) the element of Σn switches xi and xj and leaves the other
variables fixed.

Corollary 2.2. Let f, g be monomials in P(3) such that f has exactly two

equal rows i, j and g has distinct rows. Suppose that f ∼= g + gπ(i,j) in P(3).
Then σ(f) ∼= σ(g) in B(3).

The symmetric version of the Peterson conjecture [8] reduces the symmetric
hit problem to the case where µ(d) ≤ n.

Theorem 2.3. dim(Qd(B(n))) = 0 if and only if µ(d) > n.

The next result [5, Thm. 2.3], analogous to Kameko’s theorem [7, Thm.
4.2], reduces the symmetric hit problem to a study of symmetric polynomials
in degrees d where µ(d) < n.

Theorem 2.4. Let d and n satisfy µ(d) = n. Let m be a minimal spike in

Pd(n) and u be the largest integer for which b = (x1 · · ·xn)
2u−1 divides m. Let

also d′ = (d − n(2u − 1))/2u. Then the linear transformation of vector spaces

Bd′

(n) → Bd(n), given by f 7→ bf2u for f ∈ Bd′

(n), induces a vector space

isomorphism

φ : Qd′

(B(n)) → Qd(B(n)).

The symmetric hit problem can be even more reduced to a study of mono-
mials not lower than a minimal spike [5, Thm. 2.2].

Theorem 2.5. Let f be a monomial in Pd(n) where µ(d) ≤ n. If f is lower

in the ω-order than a minimal spike in Pd(n), then σ(f) is hit in B(n).

We recall from [2, 6], in the 3-variable case, the standard (vertical) splitting
of blocks into sub-blocks whose length match the lengths of the i-sections,
1 ≤ i ≤ 3, of a minimal spike. Let n = 3 and suppose µ(d) ≤ 3. Then we
can write d = 2u+t+s + 2u+t + 2u − 3, where u, t, s are non-negative integers
determined in the following way. The ω-vector of a minimal spike M in Pd(3)
has the form

ω(M) = (3, . . . , 3, 2, . . . , 2, 1, . . . , 1),

where the 3-section has length u, the 2-section has length t and the 1-section
has length s. If any of u, t, s are zero, then the corresponding section is empty.
Any block B in Pd(3), not below the minimal spike, has a standard splitting

B = BuBtBs, where Bu has u columns, Bt has t columns and Bs has s
columns. For purely numerical reasons we have

ω(Bu) = ω(Mu) = (3, . . . , 3), ω(Bt) = ω(Mt) = (2, . . . , 2).

Furthermore, deg(Bs) = deg(Ms) = 2s − 1 but Bs may be higher than Ms in
the ω-order and its last column may be zero. If B is not hit, then by Theorem
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2.5 B is not lower than the minimal spike M. We may restrict attention to this
situation and the following constraint on ω orders [3, Lem. 3.4].

Lemma 2.6. Let B be a block in P(3) of degree d = 2u+t+s + 2u+t + 2u − 3,
where u, s, t ≥ 0 are as in the standard splitting above. Assume B is not lower

than the minimal spike in degree d. Then the standard splitting B = BuBtBs

satisfies

ω(Bu) = (3, . . . , 3), ω(Bt) = (2, . . . , 2),

and Bs is a juxtaposition of blocks with ω-vectors of types

ω′ = (1, . . . , 1), or ω′′ = (3, 2, . . . , 2, 0),

in any order, where in the case of ω′′, which exist only when s > 1, the initial 3
and final 0 have to be present, except in the last block position, but the 2-section
can be empty. In particular, if B is non-hit, then the standard splitting of B
satisfies the above properties.

The proofs of the main Theorems 1.1, 1.2, and 1.3, hinge entirely on some
digital engineering process [2, 3, 6] on blocks, which leads to dividing them into
hit and non-hit elements. We start with the 2-variable case [3, Lem. 3.3].

Lemma 2.7. Let G be a block in L(2) of degree 2s − 1. Then G is equivalent

to each of the following equivalent blocks Gi, G
′
i.

G1 =
1 − 1
0 − 0 1

G2 =
0 − 0 1
1 − 1

G′
1 =

1
0 1 − 1

G′
2 =

0 1 − 1
1

We now turn our attention to three variables and continue in three cases.

2.1. Case µ(d) = 2, d = 2(2t
− 1)

Under these conditions the ω-vector of a minimal spike is (2, . . . , 2), with
length t. By Lemma 2.6 there is no higher ω-vector and any monomial of lower
ω-order is hit [3, Lem. 4.1].

Lemma 2.8. Let F be a block in Ld(3), where d = 2t+1 − 2, with t > 1. Then

F is non-hit if and only if ω(F ) = (2, . . . , 2). In this case F is equivalent to

one of the following types of block.

F1 =
1 − 1 1
1 − 1
0 − 0 1

F2 =
1 − 1
1 − 1 1
0 − 0 1

F3 =
1 − 1
0 − 0 1
1 − 1 1

F4 =
1 − 1 1
1 − 1 0 1
0 − 0 1 1

More precisely, F is equivalent to Fi, for 1 ≤ i ≤ 3, if the α-count of row i
is equal to t, and F is equivalent to type F4 if the α-count of every row of F
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is less than t. In each case, the hit equation has the form F ∼= Fi + E, where

ω(E) = (2, . . . , 2, 0, 1, . . . , 1) in which the 1-section exists but the 2-section may

be empty. Moreover, the Fi are linearly independent in Qd(P(3)).

2.2. Case µ(d) = 1

In this situation d = 2s − 1 and by Lemma 2.6 the least ω-vector in degree
d is (1, . . . , 1) of length s. We also know that any monomial g of degree d is
non-hit (see [3, Theorem 2.6]). If s = 1, 2, then g ∈ Ld(3) is a spike. The next
lemma [3, Lem. 4.2] gives more detailed information.

Lemma 2.9. Let G be a non-spike block in Ld(3), where d = 2s−1, with s > 2.
Then G is equivalent to a linear combination of the following blocks.

G1 =
1 1 − 1 1
1 1 − 1
1 0 − 0 1

G2 =
1 1 − 1
1 1 − 1 1
1 0 − 0 1

G3 =
1 1 − 1
1 0 − 0 1
1 1 − 1 1

G4 =
1 1 − 1 1
1 1 − 1 0 1
1 0 − 0 1 1

G5 =
1
0 1
0 0 1 − 1

More precisely, if ω(G) 6= (3, 2, . . . , 2), then G ∼= G5 and if ω(G) = (3, 2, . . . , 2),
then, either G is a spike or, G is equivalent to a linear combination of Gi+G5

for 1 ≤ i ≤ 3 if the α-count of row i is equal to s − 1, and G is equivalent to

a linear combination of G4 + G5 if the α-count of every row of G is less than

s− 1. These blocks are linearly independent in Qd(P(3)).

2.3. Case µ(d) = 2, d = 2t+s + 2t
− 2, t, s > 0

The next result here helps us to handle the standard splitting factors [3,
Lem. 4.3].

Lemma 2.10. In the case n = 3, µ(d) = 2, the factors Bt, Bs of the stan-

dard splitting B = BtBs can be manipulated independently in their equivalence

classes without changing the equivalence class of B.

The following result summarizes the situation so far.

Lemma 2.11. Let d = 2t+s + 2t − 2, with t, s > 0, and let B be a block in

Ld(3), not lower than the minimal spike in degree d. Then, B can be taken in

the standard form BtBs where Bt is either a spike in two variables, or Bt ∼= Fi

is one of the canonical forms in Lemma 2.8, and Bs is either a spike in one or

three variables (with ω-vector (3, 2, . . . , 2)) or Bs ∼= G5, or Bs is equivalent to

a linear combination of Gj+G5 for 1 ≤ j ≤ 4, where Gj is one of the canonical

forms exhibited in Lemmas 2.7 or 2.9.

In particular, if B is not hit, then B satisfies the property in Lemma 2.11.
Is the converse of Lemma 2.11 true? That is, if a block B satisfies the property
in Lemma 2.11, is it non-hit? We answer this question in the following lemmas
[3, Lems. 4.5 and 4.6].
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Lemma 2.12. Let d = 2t+s + 2t − 2, with t, s > 0, and let B be a block in

Ld(3), not lower than the minimal spike in degree d. Suppose that B = BtBs,

where Bt is a 2-variable spike. Then B is non-hit.

Lemma 2.13. With the notation as in Lemma 2.11, the block B = F4G with

G in the position of Bs in Lemma 2.11 is hit if and only if every row of G is

nonzero.

3. Proofs

One way of demonstrating that a monomial f in P(n) is not hit is to trans-
form f by a suitable element in the semigroup ring of n × n matrices into an
expression which contains a spike. Since the spikes do not occur in any hit
equation, and the matrix action commutes with the Steenrod action, it follows
that f is non-hit. A simple example of this procedure is to equate variables
to each other, so called specialization in classical algebra. The specialization
devices break down when σ(g) has an even number of monomials in its or-
bit. We have to resort to an examination of all possible relations, which is a
formidable task in general. However, in the 3-variable case the ω-vectors are
sufficiently restricted to allow the analysis to be carried out in terms of the
splicing technique [2, 3, 6].

By Theorems 2.3 and 2.4 we can restrict attention to degrees for which
µ(d) = 1 or 2 and we may work in L(3) since the 1-variable and 2-variable
cases have been settled. As far as linear independence goes, spikes can be
ignored since they cannot enter nontrivial relations.

3.1. Case µ(d) = 2

Let d = 2t+s + 2t − 2 and t > 0. The challenge here is to classify the
symmetrized monomials into hit and non-hit classes.

Lemma 3.1. Let F be a block in Ld(3) of degree d = 2t+1 + 2t − 2, with

t > 0. Then F is non-hit if and only if ω(F ) = (2, . . . , 2, 1). In this case F is

equivalent to one of the following types of blocks, up to permutation of rows.

F ′′
1 =

1 − 1
1 − 1
0 − 0 1

F ′′
2 =

1 − 1 1 1
1 − 1
0 − 0 1

F ′′
3 =

1 − 1 1
1 − 1 0 1
0 − 0 1

F ′′
4 =

1 − 1 1 0 1
1 − 1 0 1
0 − 0 1 1

Proof. The first part of the proof follows the same line of argument as the first
part of the proof of Lemma 2.8 in [3]. The second part follows from Lemma
2.11. �
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An element π in Σn acts on a monomial by permuting the variables. The
notation π(i,j) is used for the element of Σn which switches xi and xj and leaves
the other variables fixed.

Proof of Theorem 1.1. Clearly F is non-spike. By Theorem 2.5, if F is below a
minimal spike, then σ(F ) is symmetrically hit. Otherwise, up to permutation
of rows and up to equivalence, F is equal to F1 or F4 in Lemma 2.8 when s = 0,
or is equivalent to one of F ′′

1 to F ′′
4 in Lemma 3.1 when s = 1. For the block

F ′′
1 , splicing the 0-section in row 3 shows that σ(F ′′

1 ) is symmetrically hit. Now
let F be one of F1, F4, F

′′
2 , F

′′
4 . Then by splicing the 0-section in row 3 of F we

obtain F ∼= Fπ(2,3). Hence by Part 3 of Proposition 2.1, σ(F ) is symmetrically
hit. Finally, one-back splicing the zero in row 2 of F ′′

3 gives F ′′
3
∼= F ′′

3 π(1,2)+F ′′
1 .

Summing over cyclic permutations of 1, 2, 3 and using the fact that σ(F ′′
1 ) is

symmetrically hit, shows that σ(F ′′
3 ) is symmetrically hit. �

In [6, Thm. 1.2] we proved that the symmetrized spikes together with the

symmetrizations of canonical monomials c = xd1
1 xd2

2 xd3
3 of three types

c1 : d1 = 2u + 2u+t+s−1 − 1, d2 = 2u+t+s−1 − 1, d3=2u+t − 1 s > 1, t > 0
c2 : d1 = 2u+2 − 1, d2 = d3 = 2u+s−1 − 2u − 1 s > 3
c3 : d1 = 2u+s−1 − 1, d2 = d3 = 2u + 2u+s−2 − 1 s > 2,

where u ≥ 0 in all cases, generate B(3) over the Steenrod algebra.

Proof of Theorem 1.2. Since µ(d) = 2, in the (u, t, s)-convention we have u = 0
and the standard splitting M = MtMs. Therefore, any block G splits G =
GtGs and the canonical monomial c1 splits

C1 =
0 − 0 0 − 0 1
1 − 1 1 − 1
1 − 1

The next definition partitions the set of blocks in Ld(3) into two subsets
which will ultimately describe the symmetrically hit and non-hit symmetrized
blocks.

Definition 3.2. Let d = 2t+s + 2t − 2, with t > 0. Let V denote the set of
blocks V ∈ Ld(3) satisfying either of the following two conditions.

(a) ω(V ) = ω(M) and, in addition, in the standard splitting V = V tV s,
the block V s has exactly one zero row.

(b) V has one of the following forms up to permutation of rows.

G′
1 =

0 − 0 1 − 1
1 − 1
1 − 1

G′
2 =

1 − 1 1 1 − 1
1 − 1 1 1 − 1
0 − 0 1

Let H be the complementary set of blocks of Ld(3).
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To simplify the wording of the next statement and proof we shall use V ,
with possible adornments, for a typical element of V and similarly H for an
element of H.

Proposition 3.3. Let d = 2t+s + 2t − 2 with t > 0 and s > 1 and let F ∈

Pd−2k(3). If the expansion of Sq2
k

(σ(F )) contains an element σ(V ) as a term,

then modulo elements σ(H), Sq2
k

(σ(F )) contains exactly one other element

σ(V ′), where V ′ is not any permutation of V .

Proof. First we note that F is a splicing of V . If V is G′
1 or G′

2, it is easily
proved that, modulo elements σ(H),

(1) Sq2
k

(σ(F )) ∼= σ(V ) + σ(V ′),

where V ′ satisfies the condition (a) in Definition 3.2. So, we assume V is of
type (a) in Definition 3.2 and consider its splicing from the start position i to
the end position j in two cases.

If t < i or j < t, we have a hit equation as (1), where V ′ is of type (a)
in Definition 3.2, different from any permutation of V . Assume, therefore,
i ≤ t ≤ j. In this case we obtain the same hit equation (1) but, this time, V ′ is
either one of G′

1, G
′
2 or an element of type (a) in Definition 3.2, different from

any permutation of V . This completes the proof. �

The next result partitions the symmetrization of the monomials in the case
µ(d) = 2 into hit and non-hit classes.

Lemma 3.4. (1) If V ∈ V, then σ(V ) ∼= σ(C1);
(2) If H ∈ H, then σ(H) is symmetrically hit;
(3) For any block G ∈ Ld(3), σ(G) is not symmetrically hit if and only if

G ∈ V.

Proof. The proof goes through a number of intermediate steps, starting with
some specific equivalence relations involving the blocks G′

1, G
′
2 in Definition 3.2

and the following blocks.

G′′
1 =

1 − 1 1
1 − 1 0 1 − 1
0 − 0 1

G′′
2 =

1 − 1
1 − 1 0 1 − 1
0 − 0 1

Splicing the 0-section of G′
2 and applying Corollary 2.2 gives σ(G′

2)
∼= σ(C1).

By Lemma 2.10, σ(G′′
2 )

∼= σ(C1). Now, splicing the 0-section of G′′
2 leads to

σ(G′
1)

∼= σ(C1). Finally, one-back splicing the zero at position (2, t) of G′′
1

shows by Part 1 of Proposition 2.1 that σ(G′′
1 )

∼= 0.
We now assume that V satisfies the condition (a) of Definition 3.2. By

Lemma 2.10 we may also assume, up to equivalence, that V s has one of the 2-
variable canonical forms exhibited in Lemma 2.7, up to row-permutation. Any
such equivalence of V symmetrizes by Part 1 of Proposition 2.1 since the rows
of V are distinct. Then, either V has the form G′′

2 , up to row-permutation, or
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the rows of V t are all nonzero. Another application of Lemma 2.10 reduces the
problem to the case where V is one of the following types of blocks.

G′′′
1 =

1 − 1 1 0 1
1 − 1 0 1 0 1 − 1
0 − 0 1 1

G′′′
2 =

1 − 1 1
1 − 1 0 1
0 − 0 1 0 1 − 1

G′′′
3 =

1 − 1 1 1 − 1
1 − 1 0 0 − 0 1
0 − 0 1

One-back splicing at position (1, t) in G′′′
1 and appealing to Lemma 2.9 gives

σ(G′′′
1 ) ∼= σ(G′′′

2 ). By one-back splicing at position (2, t) in G′′′
2 and using Corol-

lary 2.2 we get σ(G′′′
2 ) ∼= σ(G′

1). Finally, by splicing the 0-section in row 2 of
G′′′

3 we have σ(G′′′
3 ) ∼= σ(G′

2). Hence in all cases σ(V ) ∼= σ(C1) for V ∈ V , as
required in Part 1.

For Part 2, we may assume that H is not lower than the minimal spike M in
which case ω(Ht) = ω(Mt) and deg(Hs) = 2s − 1. There are two preliminary
cases to deal with.

If Hs has exactly one nonzero row, then by Lemmas 2.8 and 2.10, the prob-
lem reduces to an examination of the following types of blocks.

B =
1 − 1 1 1 − 1
1 − 1
0 − 0 1

C =
1 − 1 1 0 1 − 1
1 − 1 0 1
0 − 0 1 1

By splicing the 0-section in row 3 of each block B,C and applying Part 3 of
Proposition 2.1 we see that both blocks are symmetrically hit.

It remains to verify the case where Hs has three nonzero rows. By Lemma
2.11,Ht is either a 2-row spike or, up to row-permutation and up to equivalence,
is one of the canonical forms F1, F4 in Lemma 2.8. If Ht = F4, then Lemma
2.13 says that H is hit and hence σ(H) is symmetrically hit. We now continue
the argument in two subcases.

If ω(Hs) 6= (3, 2, . . . , 2), then by Lemma 2.9 we may assume Hs = G5, the
canonical form in that lemma. Therefore, up to permutation of rows, H is
equivalent to one of the following blocks.

H1 =
1 − 1 0 0 1 − 1
1 − 1 0 1
0 − 0 1

H2 =
1 − 1 1 0 0 1 − 1
0 − 0 1 0 1
1 − 1 0 1

An application of Part 1 of Proposition 2.1 for one-back splicing at position
(3, t) in each block gives σ(H1) ∼= 0 ∼= σ(H2).

On the other hand, if ω(Hs) = (3, 2, . . . , 2), then we may assume Hs is
one of the canonical forms Gi in Lemma 2.9 for 1 ≤ i ≤ 4. Now, one-back
splicing of the single zero in column t of H produces the sum of two blocks
with ω-vectors satisfying the previous subcase. This settles Part 2.
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We now prove Part 3. Proposition 3.3 says that for V ∈ V in any relation
involving σ(V ), there must always be an even number of terms of this kind. It
follows that σ(V ) is not symmetrically hit. This proves Part 3 and completes
the proof of Lemma 3.4. �

The proof of Theorem 1.2 is now completed as it follows immediately from
Lemma 3.4. �

3.2. Case µ(d) = 1

Proof of Theorem 1.3. The procedure of the proof follows the same lines of
development as in Definition 3.2 and Lemma 3.4. To achieve this, we need
some preliminary results.

Recalling the α, α∗-vectors in the introductory section, we partition non-
spike blocks in Ld(3), having at least two equal rows into two sets

Y = {Y ∈ Ld(3) : α∗(Y ) = (2, s− 2, s− 2)},

Z = {Z ∈ Ld(3) : α∗(Z) = (i, i, s− i), 0 < i < s− 2}.

The other non-spike blocks, which have distinct rows, are partitioned into
two sets

V = {V ∈ Ld(3) : ω(V ) = (3, 2, . . . , 2)},

H = {H ∈ Ld(3) : ω(H) 6= (3, 2, . . . , 2)}.

For convenience, letters Y, Z, V,H , possibly with embellishments, will denote
elements in the sets Y, Z, V,H , respectively. The analogue of Proposition 3.3
and Lemma 3.4 goes as follows.

Proposition 3.5. Let B denote one of the sets Y, Z, or V and B ∈ B. Let

P ∈ Pd−2k(3), where d = 2s − 1 with s > 3 and assume that the expansion of

Sq2
k

(σ(P )) contains σ(B) as a term. Then, only one of the following relations

holds modulo elements σ(H).

Sq2
k

(σ(P )) ∼= σ(B) + σ(B′),(2)

Sq2
k

(σ(P )) ∼= σ(Y ) + σ(Z) + σ(V ),(3)

where in (2) B′ is not any permutation of B and both B,B′ belong to exactly

one of Y, Z, or V, and in (3) one of Y , Z, or V is B.

Proof. It is clear that P is a splicing of B. We consider all possible splicings.

The expansion of Sq2
k

(P ) contains an element of each of the sets Y,Z,V if
and only if, up to row-permutation, P has the form

(4) P =
1 0 − 0 0 1 − 1 1
1 1 − 1 1 1 − 1 0 1 − 1
1 1 − 1 1 1 − 1 0 1 − 1
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where the middle section with ω-vector (3, . . . , 3) is started from position k+1.
Each of the sections with ω-vectors (2, . . . , 2) may be empty. More precisely,

Sq2
k

(P ) = Y + Z + V + V π(2,3) + E,

where all blocks in the error term E are in H. Symmetrizing the above hit
equation gives the relation (3).

Suppose that the splicing P of B has a form different from the sample (4).
Assume first that P has distinct rows. Then we have

(5) Sq2
k

(P ) = B +B′ +
∑

i

Hi,

where B,B′ is indeed in V . We see that B′ is not any permutation of B since P
is supposed to have distinct rows. Symmetrizing (5) now leads to the relation
(2).

The problem is now reduced to the case where P is not of the form (4) with
at least two equal rows, say, 2, 3. If the α-counts of rows 2, 3 of P are s − 2,
then P must have the form

P =
1 0 − 0 1
1 1 − 1 0 1 − 1
1 1 − 1 0 1 − 1

where the last digit 1 in the first row is situated at position k + 1. The hit
equation in this case is also of the form (5) where, here, B,B′ are two different

elements of Y since the action of Sq2
k

preserves the α-counts.
On the other hand, if the α-counts of rows 2, 3 of P is less than s− 2, then

the same happens for B,B′. Therefore, B,B′ are now two different elements
of Z. This completes the proof of Proposition 3.5. �

The next result shows that the only hit class in the case µ(d) = 1 is the class
of symmetrizations of the monomilas in H.

Lemma 3.6. (1) If H ∈ H, then σ(H) is symmetrically hit;
(2) If Y ∈ Y, then σ(Y ) ∼= σ(C2);
(3) If Z ∈ Z, then σ(Z) ∼= σ(C3);
(4) If V ∈ V, then σ(V ) ∼= σ(C2) + σ(C3).

Proof. Given H ∈ H, by Lemma 2.9, we have H ∼= G5, one of the canonical
forms in that lemma. One-back splicing in row 2 of G5 gives the equivalence
G5

∼= G5π(1,2) which shows that σ(G5) is symmetrically hit. This proves Part
1.

To prove Part 2, we observe that every block of Y is a row-permutations of
one of the blocks

C2 = Y0 =
1 1
0 1 1 − 1
0 1 1 − 1

, . . . , Yi =
1 0 − 0 0 1
1 1 − 1 0 1 1 − 1
1 1 − 1 0 1 1 − 1

, . . . ,
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Ys−2 =
1 0 − 0 0 1
1 1 − 1
1 1 − 1

Simultaneous one-back splicing the zeros in the second and third rows of Yi

gives the relation Yi
∼= Yi+1 and establishes Part 2.

For Part 3, we may assume the second and third rows as equal rows in the
blocks with at least two equal rows. Let 0 < i < s − 2 and denote by Zi the
subset of Z containing all blocks with α-vectors (s− i, i, i). Then

Z =

s−3⋃

i=1

Zi.

Notice that C3 ∈ Z1. Figure 1, in the case s = 6, illustrates all blocks in three
sets Z1, Z2, Z3, separated by dots.

For 1 ≤ i ≤ s−3 in any Zi, there is only one block Z
′
i, up to row-permutation,

in which the first row has no 0 followed by any 1. In Figure 1, these blocks
are displayed in bold fonts. Take an arbitrary block Zi ∈ Zi, different from Z ′

i.
Then by iterative one-back splicing in the first rows, we obtain a finite chain
of equivalences modulo H which shows Zi

∼= Z ′
i. This implies σ(Zi) ∼= σ(Z ′

i).
In Figure 1, the direction of the achievement of the above argument is denoted
by single arrows.

To join the equivalence classes of the σ(Z ′
i) together and achieve a one-piece

equivalence class, let 1 < i ≤ s− 3 and consider the greatest, in ω-order, block

1 0 − 0 0 1 − 1
1 1 − 1
1 1 − 1

in Zi. Splicing the 0-section of the above block produces, modulo H, a block
with α-vector (s − 1, 1, 1) in Z1. This proves Part 3. In Figure 1, the symbol
∼=
=⇒ stands for these connections.

To prove the final part of the lemma, define V1 to be the set of all blocks
of V having a row with α-count equal to s − 1, and V2 the set of all blocks
of V whose rows have α-count less than s − 1. Then, by Lemma 2.9, up to
permutation of rows and modulo H, each element of V1 is equivalent to G1

and each element of V2 is equivalent to G4, the canonical forms in that lemma.
Splicing the 0-sections in row 3 of each of G1, G4 we get

σ(G1) ∼= σ(C2) + σ(C3) ∼= σ(G4).

This proves Part 4 and completes the proof of Lemma 3.6. �

We need the linear independence of σ(C2) and σ(C3).

Lemma 3.7. σ(C2), σ(C3) are linearly independent.

Proof. By specialization of the variables to a single variable it is easily proved
that σ(C2), σ(C3) are not symmetrically hit, since each orbit has three ele-
ments. On the other hand, from Propositions 3.5 and 3.6 it follows that any
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Z1 ...

1111

00011

00011

... Z2 ↑ ∼=

101111
1
1

...

...

111001
0011
0011

∼=
−→

11101
00101
00101

↓ ∼=

... ↑ ∼= ↑ ∼=

110111
01
01

...

...

110011
011
011

∼=
−→

110101
0101
0101

∼=
−→

11011
01001
01001

↓ ∼=

... ↑ ∼= ↑ ∼= ↑ ∼=

111011
001
001

∼=
=⇒

...

...

100111
11
11

∼=
−→

101011
101
101

∼=
−→

101101
1001
1001

∼=
−→

10111
10001
10001

↓ ∼=

... · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

111101
0001
0001

∼=
=⇒

...

...

100011
111
111

∼=
−→

100101
1101
1101

∼=
−→

10011
11001
11001

↓ ∼=

... ↓ ∼= ↓ ∼=

11111

00001

00001

...

...

101001
1011
1011

∼=
−→

10101
10101
10101

∼=
−→

1011
10011
10011

... ↓ ∼= ↓ ∼= ↓ ∼=

...

...

110001
0111
0111

∼=
−→

11001
01101
01101

∼=
−→

1101
01011
01011

... Z3 ↓ ∼=

...
111

00111

00111

Figure 1. Subsets Zi (i = 1, 2, 3) of Z containing blocks with
α-vector (s− i, i, i), for s = 6

hit equation contains an even number of elements of the form σ(Y ) and an even
number of elements of the form σ(Z), where Y ∈ Y, Z ∈ Z. This completes
the proof. �

The proof of Theorem 1.3, now, follows from Lemmas 3.6 and 3.7. �
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4. Remarks

In this section we state some open problems. Two basic aspects of the hit
problem are to find a minimal generating set for familiar A2-modules and then
to find criteria for their elements to be hit. In [4] we exhibited an important
conjecture on the symmetric hit problem, posed in [5, 6].

Conjecture 4.1. For any monomial f ∈ P(n), n > 0, if f is hit, then σ(f) is
symmetrically hit.

In Proposition 8.3 of [6] we proved Conjecture 4.1 for n ≤ 3 . On the other
hand, Part 2 of Proposition 2.1 shows that Conjecture 4.1 is true for any n in
the case of distinct exponents. The converse of Conjecture 4.1, however, is not
true as the following counterexample shows.

Example 1. Let F be the following block.

1
0 1
0 0 1 − 1

Then it can be easily checked that all permutations of F are equivalent to each
other and hence σ(F ) is symmetrically hit, while it is clear from [3, Lemma
2.6] that F is non-hit.

For a graded left A2-module M, we denote by Q(M) the quotient of the
module M by the hit elements. Then Q(M) is a graded vector space over F2

and a basis for Q(M) lifts to a minimal generating set for M as a module over
A2. Kameko [7] computed dim(Qd(P(n))) for n = 1, 2, 3 and conjectured a
best upper bound

∏n

k=1(2
k − 1) for general n. Nguyen Sum [10] showed that

this conjecture is true for n = 4. However, in a recent paper [11] he proved that
this conjecture turns out to be wrong for any n > 4. Therefore, a challenging
problem is to find the best upper bound for dim(Qd(P(n))).

On the other hand, we showed [6] that the best upper bound for the dimen-
sion of Qd(B(n)) in cases n = 1, 2, 3 are respectively 1, 1, 4. Therefore, finding
the best upper bound for dim(Qd(B(n))) is also of importance.
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