References
- S. Axler, P. Bourdon, and W. Ramey, Harmonic Function Theory, Graduate Texts in Mathematics, Vol. 137, Second Edition, Springer-Verlag, New York, 2001.
- S. R. Bell, P. Ebenfelt, D. Khavinson, and H. S. Shapiro, On the classical Dirichlet problem in the plane with rational data, J. Anal. Math. 100 (2006), 157-190. https://doi.org/10.1007/BF02916759
- S. R. Bell, P. Ebenfelt, D. Khavinson, and H. S. Shapiro, Algebraicity in the Dirichlet problem in the plane with rational data, Complex Var. Elliptic Equ. 52 (2007), no. 2-3, 235-244. https://doi.org/10.1080/17476930601065615
- M. Chamberland and D. Siegel, Polynomial solutions to Dirichlet problems, Proc. Amer. Math. Soc. 129 (2001), no. 1, 211-217. https://doi.org/10.1090/S0002-9939-00-05512-X
- P. Ebenfelt and M. Viscardi, An explicit solution to the Dirichlet problem with rational holomorphic data in terms of a Riemann mapping, Comput. Methods Funct. Theory 7 (2007), no. 1, 127-140. https://doi.org/10.1007/BF03321636
- D. Khavinson and E. Lundberg, A tale of ellipsoids in potential theory, Amer. Math. Soc. 61 (2014), no. 2, 148-156.
- J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, Chapman & Hall/CRC, Boca Raton, FL, 2003.
- T. J. Rivlin, The Chebyshev Polynomials, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1974.