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FIBONACCI NUMBERS AND SEMISIMPLE
CONTINUED FRACTION

Eunmi CHo1

ABSTRACT. The ratios of any two Fibonacci numbers are expressed by
means of semisimple continued fraction.

1. Introduction

The Fibonacci sequence {F,},>1 is a series of numbers that begins with
F1 = F> =1 and each next is the sum of the previous two terms. The Lucas
sequence {Ly},>1 is a modified Fibonacci sequence starting from L; = 1 and
Ly = 3. A number of properties of these sequences were studied by many
researchers. Among them, the ratios FI: = and Lii - of two successive terms

of each sequence were investigated by means of simple continued fraction ([2],
3], [4] and [6]).

This work is devoted to studying the ratio ?—: for any n and k. For the
purpose, a semisimple continued fraction will be defined and compared to a
simple continued fractions. We shall show that I;—Z is expressed by a semisimple
continued fraction more efficiently than by a simple continued fraction. And it
will be seen that semisimple continued fraction may yield any large Fibonacci
numbers, like Fig5 a 22 digit number.

2. Semisimple continued fractions
We begin with a lemma that provides a motivation of this work.

Lemma 2.1 ([5]). Let k, t and r be positive integers. Ift > 2 and r < k, then
we have the following relations.
(1) Lityr = Lt Ly—1)4r + (=1)" ' Ly—2)4r, 50 L (n = kt +7) is
expressed by only three Lucas numbers Ly, L, and Ly,.
(2) Frtrr = L Fog—1y4r + (=D 1 Fy2)tr, s0 Fy (n =kt +7) is ea-
pressed by Ly, F, and Fi4,.
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Note that » may be considered as the remainder of n when divided by k,
but we assume 1 < r < k because the sequences start from F} = Ly = 1.
If k=5, then L1y = LsL1o + Ly and Lis = LsLy + Lo, so

Li7  LsLia+ Ly 1 1 1
it A et B —Led— =L ——
Lo Lo 5+LL_172 EHLLSLZ:FL2 5+L5+ﬁ
La
and again
Lo Lslaitle _, L _, 1
L L TS T Ly T T
17 17 T1o 5 L5+ﬁ
L

2

These fractions yield a motivation to define a sort of continued fraction
composed of only Lucas numbers. Let n > 2. For real numbers ag, by > 0 and

a; >0,b; >1 (i=1,...,n), the fractions
1 1
ag + 1 and bo — 1
ay + —1 bl — —1
Cn—2F a, g S bn—2=7p, 4
(7% bn
are called (minus) semisimple continued fractions denote by {((ag;ai,...,a,))
the former and [[bg; b1, ..., by]] the latter respectively. We also define
a
{(ao; @) = [lags a1]] = —=.
ai

When every a; are Lucas [resp. Fibonacci] numbers, the semisimple continued
fraction is called Lucas [resp. Fibonacci] continued fraction. For instance, f—i’i
equals the Lucas continued fraction ((Ls; Ls, L5, L7, L2)). This provides a good
reason to define the semisimple continued fraction.

We may compare these fractions to the (minus) simple continued fractions

1 1
T and by — T ,

a o — R

a0+

an71+a7n bnflf bn

where ag,bp > 0 and a; > 0, b; > 1 (i =1,...,n), denoted by (ag;ai,...,an)
and [bg; b1, ..., by, respectively (refer to [1]).

Theorem 2.2. Let n > 2. For the (minus) semisimple continued fractions,
(1)

{{ag; ... an)) = ag+ {((0;a1,...,a,))
1
=aot ({ay;...,an))
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_ 1
~ {(0;a0,. ., an))
= <<a0; cee s Op—3,0p_20p_1 + Ay, an71>>
Gp—20n—1
= <<a07 ey Qp—9, @ —ptn_1 + an> .
(2)
[[ao; ... an]] = a0+ [[0;a1,...,a,]]
1
=qy— ——
[[al; DRI an]]
_ 1
[0 ao, - - -, an]]
Qp—1 QAp—1
= {{ag;...,an—2,| . |, an, an-1—| o lan)).
Proof. Since
1
<<a0;-'-7an72;an71,an>> =ag + 1
CGn_s +
’ an—2 + =
. g
= aO + 1
- n3t Gy a1 T an

Apn—1

= ap 4+ — T
“ap—3+Tq,
x

fn=20n-1_ (1) follows immediately.

with = = ,
Ap—20n—1+an
Now for (2), write a,—1 = qa, +r with 0 < r < a,, and ¢ € Z. Then

1 1
((a;an-1,an)) =a+ g3 =a+ 7 = ((ai g, an, 1))
an q+Z
(- (U
:<< 7\_ nljaan’an—l_\_ nljan» 0
Theorem 2.3. We further have the following identities.
(1) ({ag;...,an,1)) = {ag;...,an), [[ao;-.-,an,1]] = [ao;...,an] for n >
1.
(2) (ao;--.,an)) = {ag;...,an—2, a2;1> = {ag;...,an_3,an_2 + a:i1> for
n > 3.
"7ak7<<a’k+1;"'7an>>> fOTOS kS?’L*2

(3) ((aosai,...,an)) = (agp;as,.
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Proof. The proof is not hard. (I

Example. ((1;2,3,4,5,6)) = ((1;2,3,26,5)) = ((1;2,83,26)) = ((1;192,83))
= % by Theorems 2.2 and 2.3. On the other hand, ((1;2,3,4,5,6)) is also

equal to ((152,3,4,39)) = ((1;2,3, 2)) = ((1;2, 8)) = ((1; 12)) = 2B,
Similar to the usual notation {(a®,b) = (a;...,a,b), we denote the ¢ times
———

t
repeated semisimple continued fractions ({(a;...,a,b)) and [[a;...,a,b]] by

{{a, b)) and [[a?, b]], respectively.

3. Convergents of a semisimple continued fraction

The section is devoted to investigating successive convergents of a semisim-
ple continued fraction, and to studying relationships with those of a simple
continued fraction.

Given a continued fraction (ag; a1, ..., a,), a numerator ux and a denomi-
nator vy of the kth convergent Cj are given by the recursive formulas

Up = Up—1ak + up—2 and v = vp_1ar +vk—2 (k> 1),
where u_1 =1, ug = ap and v_; = 0, vo = 1. Then (refer to [1])

ug
Cr = (ag;a1,...,a;) = . and upVE_1 — Up—1Vk = (—1)k+1.
k

The next theorem shows a recursion formula involving the semisimple continued
fraction. For every aj > 0, let

Sn = <<a0;a1, .. .,an>>.

Theorem 3.1. Letn > 2. Then for all 2 < k < n, the following are equivalent
for the kth convergent Sy of Sy,.

(1) Sk = <<a0;a1,.. .,ak)) = Z—:

(2) Pk = Uk—2a—1 + Up—3a and gy = Vg—2ax—1 + Vk—30%.
3) ap 1| lar 1| |ag—2 1| |ak—1 g1
1 0|1 O 1 0 Ap  Qk_2 — Qp_2Qk_1
_ |Uk—2 Ur-3| |Qk-1 ak—1 _ |Pk Pk-1
Ug—2 Vg—3| | Gk  Ap—2 — Qp—20k—1 ax  Qr-1]
Proof. If k = 2, then
apai + az D2
52 = (faosan ) = L2 = 2

implies po = agai+as = ugai+u_1as and g2 = a1 = vga;+v_1as. Furthermore

aon 1 a1 ay _ |U U-1 aq aq
1 0 as ag — apaq - Vg V-1 az ag — apail
_ |@oa1 ta2 ao| _ |P2 D1
a1 a1 @2 q)
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On the other hand, Theorem 2.3(2) together with the consideration about the
continued fraction give rise to
ai

Sa = ((ao; a1,a2)) = (ap; —) = —
> = ((ao; a1, az)) <0a2> 0l o

UOZ_; +u_q

ay/az ay 42

We now suppose that (1), (2) and (3) hold for Sy for & < n. Then

_ (apa1 +az)/az _ apar + as _ b2

Sk = {{aos ar, s ap—1, ax)) = {ao; an, ... ap—2, aZ:)
R L e
C Upo1 Vg2 az: + Vg3
_ Ug—20f—1 + Uk —30a% _ ]ﬁ
 Up—ak—1 +Vp—3ar Gk

Moreover it follows inductively that

ap 1| fag—3 1| [ag—2 1| |ak—1 ar—1
1 0 1 0 1 0 ag Ak—9 — Af—20k—1
_ |uk—30k—2 +Uk—4 Ug—3| |Gk—1 ak—1
| Vk—30k—2 + Vk—4 Vg—3 g Gg—2 — Qg—20k—1

_ |Uk—2 Ug—3| |Qk—1 ak—1 _ [Pk Pr—1
|Vk—2  Uk—3 Qg Af—2 — Qp—20k—1 dk  qk-1
if and only if py = ug—sar—1 + ux—sar and qp = vg_2ak—1 + Vk—3kn. O

Example. Consider 2 = ((1;2,3,4,5,6)). Since (1;2,3) = % = % and

g5 v2

<1;2’354> = g_g =2 [gg] = [%8 170] [g] = [%g] S0 <<1;2’3a4’556>> = ng

vz’

From now on, we denote the semisimple continued fraction ({ag;a1,...,a,))
by S, and the continued fraction (ag;a1,...,a,) by C, where 0 < a; € Z.
Then for every k < n, S = % and Cy = :j—: are the kth convergents of 5,, and
C,, respectively, where ug, vk, pr and g are in Theorem 3.1.

Lemma 3.2. Cy — Co1 = S and Gy — Croo = S0 0y for k> 1.

Vi —1Vk V-2V
Proof. It is clear to see that

k1
Uk Ug—1  UpUk—1 — Up—1Vk  (—1)
Ck - Ck_l = — — = =

Vk Vk—1 Vg—1Vk Ve—-1Vk

Furthermore, since vy = vg_1ar + vp_o we have

S oV L oV S TP o

Cr —Cr_o = .
Vk—1Vk Vk—1Vk—2 Vp—2Vk—1Vk Vg—2Vk O
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It shows Cp < Cy < Cy < -+ < C5 < C5 < Cy and {C}} converges to C,, for
large enough n ([1]). Similarly, we shall investigate the differences Sy, — Sk_1

and Sy, — Sp_o.
Theorem 3.3. Let 6, = ag—1ar — akx—1 + axy1- Then for k> 1,
k
(1) Sk — Seo1 = “ap 16,y

dk—194k

C\k
(2) Sk — Sk—2 = q(k;)qk (ak—10k—1 — @p—20k—2 — Ok—20k—1).

Proof. By Theorem 3.1, we have

Ug—2 Uk—3| [Qk—1 ak—1 _ |PE Pr—1
Vg—2 Vk-3 ag Ap—2 — Ak—20k—1 dk  dk—1

Then the determinants of both sides yield
Pri—1 — Pe—1qk = (—1)*ap_1(ap—2ar_1 — ax—2 + ay).
Now by setting dx_1 = ax—_20k—1 — ax—2 + ax, we have

Pk _ Ph—1 _ Pek—1 — P10k _ (=1)"ar—10k1

Sk — Sk—1 =" — =
qk qk—1 qk—19k qr—14k
Again
—1D)*ap_165_ —1)*lap_o6k_
Sk—Sk_QZ( )ak1k1+( ) Ak —20k—2
qr—14k qk—24k—1
(=D*

= ————(ar—10k—1qk—2 — Gk—20k—2qk).
qk—24k—19k

From the identities vy, = vy_1ar+vi—2 and g = Vg—_2ar—1+vi—3ax in Theorem
3.1, we have
Gk = (Vk—3aK—2 + Vp—a)ap_1 + Vk_30%
= Vp_3(ag—2ar—1 + ar) + Vgp—_gap_1

= Vp—g(ap—2ak—1 + ar) + (-1 — Vk—3aK—2)

= vp-3(ar—2ak—1 — ag—2 +ar) + qr—1 = Vk-30k—1 + Qr—1-
Thus
ak—10k—1qr—2 — Ak—20k—2qk
= qr—1(0k—10k—1 — Qk—20k—2) — Ok—20k—1(Vk—3GK—2 + Vp—_gar_1)
= qr—1(0k—10k—1 — Qk—20k—2) — Ok—20k—1qK—1
= qr-1(ak—10k—1 — @20k —2 — Op—20k_1),
SO
(=D*
Sk — Sp—2 = —————qr—1(ak—10k—1 — ax—20k—2 — Ox—20x—1)
qk—29Kk—14k
(=D*
= (ak—10k—1 — Ak—20k—2 — Op—20k—1). 0

qrk—29k
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Theorem 3.4. S5 < S5 < S7 < -+ < S <S4 <52, so{Sk} converges to S,
for large enough n.

Proof. Obviously ¢x > 0 and 6, = ag—1(ar — 1) + axy1 > 0 for every k. Thus

k
Sk — Sk_1 = q();ll)qk ap_10x shows Sp_1 < Sy if k is even, otherwise S, < Si_1.

Furthermore we have
ak—10k—1 — Qk—20k—2 — Op—20k—1

2
= —Qgp—2Qk—1 — Q—30}_90k—1 + Ax—30k—20k—1 — Qk—30k—20k + Gf—_30%

—ap—2arp—1(1 + ap—_z(ax—2 — 1)) — ax—sar(ar—2 — 1)
= — (ak-3(ak—2 — 1)(ag—2ak—1 + ar) + ar—20k-1) < 0.

Thus from
(_ 1 k+1

Sk — Sk—2 = (ak—s(ak—2 — 1)(ak—2ak—1 + ar) + ax—20ak_1),

qrkqr—2
we have S < Si_s for even k, otherwise Si_o < Si. Therefore

S3 <S5 <87 <+ <5 <5y <8,
so Sy converges when k gets larger. O

For example, from 7 = (ag;ai,as,...) = (3;7,15,1,292,1,1,1,2,1,3,1, 14,
...}, the first few convergents of continued fraction are

ug 22 U1
Co=3)=3=—, C1=3;7N=—=—.
0 <> ’U(), 1 <7> 7 0
Moreover
22-15+3 333
Cy = (3;7,15) = ez 0 _ 3 _ 333 _uz

viag + Vg 7-15+1 71_067’()27
and similarly

355 Uus 103993 104348
C3=(3:7,151)=—=—", Oy=———, C5 = ———,....
3= 151) =133 vy’ T 331027 0T 33215
Let us consider S = ({(ap;a1,...)) = ((3;7,15,1,292,1,1,1,2,...)). Then
3 P1 36 P2
S1={3;7)===— d S ={(3:7,15)) = — = —=.
1 << ) >> 7 T an 2 << y by >> 7 S

And Theorem 3.1 shows that
Sz ={((3;7,15,1)) = b3 _ U102 + ugas _ + _ 333
a3 v1a2 + voas 7. 154+1-1 106

and
o _333.1422.202 6757 3552024333 103993
YT106-147-292 21507 70 113-292+106 331027
Now the differences of convergents of C, are, for instance
-1 1 292

3= C5—Cy=———— and C4y—Ch=— .
Ca=Cs (113)(33102)’0"’ Ca (33102)(33215) Ca=Ch (106)(33102)
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Moreover Theorem 3.3 shows

o g —2920292+1-1) —292?
TP T 915033102 71169300
and
1 85555
S =51 = 5750 33215((292 +1)(202-1)+292) = 71412250

Corollary 3.5. Let S, = ({(ag; a1, ..., an)) = £=. Assume ap =1 for k < n.

. _ (=1)Fay, _ _ (=1)*ay,
Then Sy+1 — Sy = Qe qr+1 and Sk+2 — Sk = etz

Proof. From Theorem 3.3, we have

_1)k+1 -1 k+1ak
Sk+1 = Sk = CD™ (ak(ap-1(ar — 1) + ap41)) = D arn L

qrqk+1 qrqk+1

Similarly,
(_1)k+1

Sky2 — Sp = ———(ap—1(ar — 1)(arar41 + art2) + ararp41)
qrqk+2
(—1)k+1ak+1
Wiz O

From S = ((3;7,15,1,292,1,1,...)) in the above example, since a3 = 1 and

as = 292, we have Sy — S3 = % and S5 — S3 = (]239(125.

4. Ratios of Fibonacci numbers in semisimple continued fraction

It is well known that the ratio F;;—:l is equal to (1™) = (1;1,...,1). This
section is devoted to study 1;—: for any n and k. The fractions (---), [---],

((---)) or [[- - -]] will be put together to express the ratios effectively.

Lemma 4.1. Let n > 3. Then Fpi1 = 2F, — F_o2 = 2F,_1 + F,,_2 and
Fn+2 =3F, —Fh_2 = LyF,, — F,_».
Proof. Obviously Fny1 = F, + Foo1 = F, + (F — Fr2) = 2F, — F_o,
while Fn+1 =F +F_ = (anl + Fn72) + Fho1 = 2,1 + Fho. And
Foyo=Fo1+F,=2F,—F,2)+ F,=3F, — F,_o.

Moreover due to Lemma 2.1, F, 4, = LiF, + (—1)k_1Fn_k, so we have
Foyo=LoF, —F, o ifk=2. O

Theorem 4.2. Let n >3 and write n =2t +r with 1 <r < 2.
F, 3L 1)) =3t ifr=2
(1) +2 _ <2’ 1n71> _ [[ ) ]] [ ] Zf?" )
F, [[3,2,1]] = [3%, 2] if r=1.

Fust _ (yny _ {[[2;32 1] ifr=2,

(2)

F, [[2;3071,2,1]]  ifr=1.
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Proof. Due to Lemma 4.1, it is obvious that

Fn+2 2Fn+Fn71 1 1 —1
F, . tE, ey — &)
anl
and
F, 3F, — F,_ 1 1 1
2 _ 2 _3_ —3_ —3_
F, F, 28 3F, 2 — F, 4 T
Fn—2 Fn—2 3 - ?n—:j
1
::3_37 1 :[[3;---aSaFn72(v71)aFn—2v]]
sl Fr_o(w—1) v

Frn—2v

for v < t. Therefore, for n = 2t +r (1 < r < 2), Theorem 2.3 yields

Fn+2 t
— =[[3", Foy,, F
22 = (3, Fasr, B

B Fu, Bl = [[8%,3,1]] = [37F1]  ifr =2,
3% Fs, F1)) = [[3%,2,1]] = [3,2] ifr=1.
On the other hand, since 2F,, — F,,_9 = Fy, 1, it follows from (1) that

Fn+1 2Fn — Fn72 1
F, F, =2- Fo
n n s
_ )% —[[33,1%1 = [[2:3",1]] 1 ifr =2,
2— @i = 1237521 ifr=1 .

It shows that if n = 2t + 7 (r = 1,2), then % = (2;1"71) equals either

(13541, 1]) or [[3%,2,1]], and £ = (17) equals either [[2; 3%, 1]] or [[2; 3!, 2, 1]].
This means that while n repenated computations are needed in the simple con-
tinued fraction, only about ¢t = | ] repeated computations are required in the
semisimple continued fractions. For example, if n = 6, then [[2;3,3]] = 5—2 =
(1;1,1,1,1,1). Hence if n is large, a semisimple continued fraction is more
convenient than a simple continued fraction.

Theorem 4.3. Let n >4 and write n =3t +r with 1 <r < 3. Then F;;—:S =
(LY, F34r, F)), which is equal to one of (4',3), (4*,5) or (4*,4) according to
r=1,2,3.

Proof. Lemma 2.1 with k = 3 implies F,,+3 = LsF;, + F,,—3, thus

Foys 1 1 1
—:L3+F—:4+71:4+ 1
F, FniS 4+ II;Z:Z 4+ 71
4t Fn_3—1)

Fn 3¢t
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= <<Lga Fn—3(t—1)a Fn*3t>> = <<4ta F3ir, FT>>
Hence by making use of Theorem 2.3, it follows that
((41,3,1)) = (4%,3) ifr =1,
((41,5,1)) = (4t,5) ifr =2,
((41,8,2)) = (4%, 4) if r =3. O

Now we generalize Theorem 4.3 as follows.

Fn+3 o

n

Theorem 4.4. Let k> 3. Letn>k+1 and writen =kt +r with 1 <r <k.

F
Then ij equals (L, Fyir, F,)) if k is odd, and [[L, Fytr, F}]] if k is even.
So !

(LY, Frya) or [Ly, Fra] if r =1,
= <L§€,Fk+2> or [L};,Fk_,_g] Zf?‘ = 2,
(Lgh) or (L] ifr=rk.
Proof. Let k be odd. Since Fj, 4, = LiF,, + F,,—; in Lemma 2.1, we have
F, 1
2= L+ = (L}, Figr, F)).

F, 1
L+ 1

L+ Frir
F,

Fn—i—k
Fy

F,
If 7 = 1 or 2, then F—““ equals (L%, Fiy1,1)) = (L, Frp1) or ((LE, Fiyo,1))

= (L}, Fyy2). If r = k, then since Fy, = Fy Ly, it follows from Theorem 2.3
that

F,
F—Jrk = (L}, Fag, Fi)) = (L}, FiLg, Fr)) = (L}, L) = (L),
On the other hand, if k is even, then F,, 4+ = LiF,, — F,,—j thus
Fn+k 1 1

Fn :Lk_ Fn :Lk_L 1 :"':[[LZaFk-i-’l‘aF’!‘]]a

ank ke ank
Fn—2k
and the rest follows similarly. O

In particular, in case of n = kt +r with r = 3 < k, the next theorem follows.

Theorem 4.5. With the same notations as in Theorem 4.4, let r = 3 and
write k =3u+v with 1 <v <3. Set Py=1 and P, =4P, 1+ Py, 2. If k is
odd, then

(L4, ((3Py;2))) with Py = (4;3), if v=1,
Lt ((5Py;2))) with P = (4;5), ifv=2,

Fn+k <
(Lt ((4Py;2))) with Py = (4;4), if v =3.

F,
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If k is even, then F}:k is either [Lt, ((3P,; 2))], [LL, ({(5Py;2))] or [LL, ((4Py;2))].

Proof. Assume k is odd. Theorem 4.4 together with Theorem 2.3 yields
FnJrk

7= ((Lys Frtr, Fr)) = (Liy, ((Frs; F3)))-
Since 3 < k, if we write k = 3u 4+ v with 1 < v < 3, then we have

Frys  Fausn)to u u u
= R = (LY, Foa, F)) = (4 Foa, o)) = (4%,
k 3utv
where A = 3,5 or 4 according to v = 1,2 or 3 by Theorem 4.3.

Let Po =1 and P; = (4; \). Then we see that

1 4P, +1 P
420\ =4+ vl }f :FQ’ where P> = 4P, + P,
) 1 1
1 AP, +P, P
(43 \) =4+ v 2P+ L= 33, where P3 = 4P, + P,
) 2 2
1 APy +P, P
44\ =4+ eV 3P+ Eap F4’ where Py = 4P + P;.
) 3 3

Thus we have, for any 0 < i < u,

F3(it1)+v ; P;
SBUHDTY _ gi Ay = = where P, = 4P,_, + Pi_s
F3i+u ]Difl

with Py =1 and P; = (4; A). It then follows that

F3 u+1)+v
(Figa; F)) = =0t
3
_ F3(u+1)+v F3u+v . F3-2+7J F3+v
F3U+U FB(ufl)Jrv F3+U F3

(@) (410 (@20 e () (Fusss F))
— e p T (P B
= Py ((Fy+3; F3)).

Thvs
k
(Fiorss F3)) = Pul(Fas F3)) = Pu((3;2)) = ((3Pu;2)),

If v=1, then A =3 and = (4%,3) so

with P, = (4;3) and P; = 4P,_; + P;_». Thus"—:’“ (L, ((3P,;2))).

If v = 2, then A = 5 and &2 = (4%,5) so it = (Lf, ((5P,;2))) with
Py = (4;5). Similarly if v = 3 then A =4so0 ”—j (L%, ((4P,;2))) with
Py = (4;4).

On the other hand, assume that k is even. Then Theorem 4.4 implies

FnJrk
F,

= [[L);caFk+T’FT]]a
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which is equal to [LE, [[Fits; F5]]] = [LL, ((Fits; F5))]. Hence for k = 3u + v
with v = 1,2, 3, the above calculations yield

((3P,;2)) with P, = (4;3), ifv=1,
(Fri3, F3)) = Pu{(Fypi3, F3)) = { ((5P,;2)) with P; = (4;5), if v =2,
((4P,;2)) with P, = (4;4), ifv=3. [

Example. In order to find Fig5 and Fgg, let n =88 and k£ = 17. Then
= ((L37, Fao, F3)) = (L37, ((Fa0; F3))).
Fgg  Firs43

Now for ((Fyg; F3)), since 17 = 3u + v with u = 5, v = 2,

Fios  Fi7643

F Fs.
ﬁ = 3:6+2 = <<Lg’F5’F2>> - <45,5>

Fi7 F3540

Thus by letting Py = 1, P, = (4;5) = 2—51 and P, =4P,_1 + Pi_5 (i <5), we

get Py = 89 , P3 = 377 , Py = LW and P; = 6765 . Hence

(Foo; Fa)) = (PP Fy)) = ((6765:2)) = 222

Therefore
Fios
Fys

6765 1
L3, = 3571 :
= (L17 2 = +3571+ —

3571+ 357t

307”%

3,928,413,764,606,871,165,730
1,100,087,778,366,101,931
inator is Fgg, which are 22 digit and 19 digit numbers respectively.

which is . Here the numerator is Fig5 and the denom-

Corollary 4.6. Let n > 6 and write n = 5t +r with 1 < r < 5. Then we have

((LE,8,1)) = (11%,8) ifr=1,
s ((LL,13,1)) = (111,13)  if r =2,
P (L P ) = § (24,21,2)) = (115,10,2) ifr =3,
" ((L%,34,3)) = (111+1.3)  ifr = 4,
((L%,55,5)) = (11t1) ifr=>5.
Proof. This is mainly due to Theorem 4.4. O
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