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FIBONACCI NUMBERS AND SEMISIMPLE

CONTINUED FRACTION

Eunmi Choi

Abstract. The ratios of any two Fibonacci numbers are expressed by
means of semisimple continued fraction.

1. Introduction

The Fibonacci sequence {Fn}n≥1 is a series of numbers that begins with
F1 = F2 = 1 and each next is the sum of the previous two terms. The Lucas
sequence {Ln}n≥1 is a modified Fibonacci sequence starting from L1 = 1 and
L2 = 3. A number of properties of these sequences were studied by many
researchers. Among them, the ratios Fn

Fn−1
and Ln

Ln−1
of two successive terms

of each sequence were investigated by means of simple continued fraction ([2],
[3], [4] and [6]).

This work is devoted to studying the ratio Fn

Fk

for any n and k. For the
purpose, a semisimple continued fraction will be defined and compared to a
simple continued fractions. We shall show that Fn

Fk

is expressed by a semisimple

continued fraction more efficiently than by a simple continued fraction. And it
will be seen that semisimple continued fraction may yield any large Fibonacci
numbers, like F105 a 22 digit number.

2. Semisimple continued fractions

We begin with a lemma that provides a motivation of this work.

Lemma 2.1 ([5]). Let k, t and r be positive integers. If t ≥ 2 and r ≤ k, then
we have the following relations.

(1) Lkt+r = Lk Lk(t−1)+r + (−1)k−1Lk(t−2)+r, so Ln (n = kt + r) is

expressed by only three Lucas numbers Lk, Lr and Lk+r.

(2) Fkt+r = Lk Fk(t−1)+r + (−1)k−1Fk(t−2)+r, so Fn (n = kt + r) is ex-

pressed by Lk, Fr and Fk+r.
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Note that r may be considered as the remainder of n when divided by k,
but we assume 1 ≤ r ≤ k because the sequences start from F1 = L1 = 1.

If k = 5, then L17 = L5L12 + L7 and L12 = L5L7 + L2, so

L17

L12
=

L5L12 + L7

L12
= L5 +

1
L12

L7

= L5 +
1

L5L7+L2

L7

= L5 +
1

L5 +
1
L7
L2

and again

L22

L17
=

L5L17 + L12

L17
= L5 +

1
L17

L12

= L5 +
1

L5 +
1

L5+
1

L7
L2

.

These fractions yield a motivation to define a sort of continued fraction
composed of only Lucas numbers. Let n ≥ 2. For real numbers a0, b0 ≥ 0 and
ai > 0, bi > 1 (i = 1, . . . , n), the fractions

a0 +
1

a1 +
1

.. . an−2+
1

an−1

an

and b0 −
1

b1 −
1

. . . bn−2−
1

bn−1

bn

are called (minus) semisimple continued fractions denote by 〈〈a0; a1, . . . , an〉〉
the former and [[b0; b1, . . . , bn]] the latter respectively. We also define

〈〈a0; a1〉〉 = [[a0; a1]] =
a0
a1

.

When every ai are Lucas [resp. Fibonacci] numbers, the semisimple continued
fraction is called Lucas [resp. Fibonacci] continued fraction. For instance, L22

L17

equals the Lucas continued fraction 〈〈L5;L5, L5, L7, L2〉〉. This provides a good
reason to define the semisimple continued fraction.

We may compare these fractions to the (minus) simple continued fractions

a0 +
1

a1 +
1

. . .
1

an−1+
1
an

and b0 −
1

b1−
1

. . .
1

bn−1−
1
bn

,

where a0, b0 ≥ 0 and ai > 0, bi > 1 (i = 1, . . . , n), denoted by 〈a0; a1, . . . , an〉
and [b0; b1, . . . , bn], respectively (refer to [1]).

Theorem 2.2. Let n ≥ 2. For the (minus) semisimple continued fractions,

(1)

〈〈a0; . . . , an〉〉 = a0 + 〈〈0; a1, . . . , an〉〉

= a0 +
1

〈〈a1; . . . , an〉〉
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=
1

〈〈0; a0, . . . , an〉〉

= 〈〈a0; . . . , an−3, an−2an−1 + an, an−1〉〉

= 〈〈a0; . . . , an−2,
an−2an−1

an−2an−1 + an
〉〉.

(2)

[[a0; . . . , an]] = a0 + [[0; a1, . . . , an]]

= a0 −
1

[[a1; . . . , an]]

= −
1

[[0; a0, . . . , an]]

= 〈〈a0; . . . , an−2, ⌊
an−1

an
⌋, an, an−1 − ⌊

an−1

an
⌋an〉〉.

Proof. Since

〈〈a0; . . . , an−2, an−1, an〉〉 = a0 +
1

. . . an−3 +
1

an−2 +
1

an−1
an

= a0 +
1

. . . an−3+
1

an−2an−1 + an
an−1

= a0 +
1

. . . an−3+
1

an−2

x

with x = an−2an−1

an−2an−1+an

, (1) follows immediately.

Now for (2), write an−1 = qan + r with 0 ≤ r < an and q ∈ Z. Then

〈〈a; an−1, an〉〉 = a+
1

an−1

an

= a+
1

q+
1
an

r

= 〈〈a; q, an, r〉〉

= 〈〈a; ⌊
an−1

an
⌋, an, an−1 − ⌊

an−1

an
⌋an〉〉.

�

Theorem 2.3. We further have the following identities.

(1) 〈〈a0; . . . , an, 1〉〉 = 〈a0; . . . , an〉, [[a0; . . . , an, 1]] = [a0; . . . , an] for n ≥
1.

(2) 〈〈a0; . . . , an〉〉 = 〈a0; . . . , an−2,
an−1

an

〉 = 〈a0; . . . , an−3, an−2 +
an

an−1
〉 for

n ≥ 3.
(3) 〈〈a0; a1, . . . , an〉〉 =

〈
a0; a1, . . . , ak, 〈〈ak+1; . . . , an〉〉

〉
for 0 ≤ k ≤ n− 2.
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Proof. The proof is not hard. �

Example. 〈〈1; 2, 3, 4, 5, 6〉〉 = 〈〈1; 2, 3, 26, 5〉〉 = 〈〈1; 2, 83, 26〉〉 = 〈〈1; 192, 83〉〉
= 275

192 by Theorems 2.2 and 2.3. On the other hand, 〈〈1; 2, 3, 4, 5, 6〉〉 is also

equal to 〈〈1; 2, 3, 4, 1013 〉〉 = 〈〈1; 2, 3, 7883 〉〉 = 〈〈1; 2, 83
96 〉〉 = 〈〈1; 192

275 〉〉 =
275
192 .

Similar to the usual notation 〈at, b〉 = 〈a; . . . , a
︸ ︷︷ ︸

t

, b〉, we denote the t times

repeated semisimple continued fractions 〈〈a; . . . , a, b〉〉 and [[a; . . . , a, b]] by
〈〈at, b〉〉 and [[at, b]], respectively.

3. Convergents of a semisimple continued fraction

The section is devoted to investigating successive convergents of a semisim-
ple continued fraction, and to studying relationships with those of a simple
continued fraction.

Given a continued fraction 〈a0; a1, . . . , an〉, a numerator uk and a denomi-
nator vk of the kth convergent Ck are given by the recursive formulas

uk = uk−1ak + uk−2 and vk = vk−1ak + vk−2 (k ≥ 1),

where u−1 = 1, u0 = a0 and v−1 = 0, v0 = 1. Then (refer to [1])

Ck = 〈a0; a1, . . . , ak〉 =
uk

vk
and ukvk−1 − uk−1vk = (−1)k+1.

The next theorem shows a recursion formula involving the semisimple continued
fraction. For every ak > 0, let

Sn = 〈〈a0; a1, . . . , an〉〉.

Theorem 3.1. Let n ≥ 2. Then for all 2 ≤ k ≤ n, the following are equivalent

for the kth convergent Sk of Sn.

(1) Sk = 〈〈a0; a1, . . . , ak〉〉 =
pk

qk
.

(2) pk = uk−2ak−1 + uk−3ak and qk = vk−2ak−1 + vk−3ak.

(3)

[
a0 1
1 0

] [
a1 1
1 0

]

· · ·

[
ak−2 1
1 0

] [
ak−1 ak−1

an ak−2 − ak−2ak−1

]

=

[
uk−2 uk−3

vk−2 vk−3

] [
ak−1 ak−1

ak ak−2 − ak−2ak−1

]

=

[
pk pk−1

qk qk−1

]

.

Proof. If k = 2, then

S2 = 〈〈a0; a1, a2〉〉 =
a0a1 + a2

a1
=

p2
q2

implies p2 = a0a1+a2 = u0a1+u−1a2 and q2 = a1 = v0a1+v−1a2. Furthermore
[
a0 1
1 0

] [
a1 a1
a2 a0 − a0a1

]

=

[
u0 u−1

v0 v−1

] [
a1 a1
a2 a0 − a0a1

]

=

[
a0a1 + a2 a0

a1 a1

]

=

[
p2 p1
q2 q1

]

.
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On the other hand, Theorem 2.3(2) together with the consideration about the
continued fraction give rise to

S2 = 〈〈a0; a1, a2〉〉 = 〈a0;
a1
a2

〉 =
u0

a1

a2
+ u−1

v0
a1

a2
+ v−1

=
(a0a1 + a2)/a2

a1/a2
=

a0a1 + a2
a1

=
p2
q2

.

We now suppose that (1), (2) and (3) hold for Sk for k < n. Then

Sk = 〈〈a0; a1, . . . , ak−1, ak〉〉 = 〈a0; a1, . . . , ak−2,
ak−1

ak
〉

=
uk−1

vk−1
=

uk−2
ak−1

ak

+ uk−3

vk−2
ak−1

ak

+ vk−3

=
uk−2ak−1 + uk−3ak
vk−2ak−1 + vk−3ak

=
pk
qk

.

Moreover it follows inductively that
[
a0 1
1 0

]

· · ·

[
ak−3 1
1 0

] [
ak−2 1
1 0

] [
ak−1 ak−1

ak ak−2 − ak−2ak−1

]

=

[
uk−3ak−2 + uk−4 uk−3

vk−3ak−2 + vk−4 vk−3

] [
ak−1 ak−1

ak ak−2 − ak−2ak−1

]

=

[
uk−2 uk−3

vk−2 vk−3

] [
ak−1 ak−1

ak ak−2 − ak−2ak−1

]

=

[
pk pk−1

qk qk−1

]

if and only if pk = uk−2ak−1 + uk−3ak and qk = vk−2ak−1 + vk−3kn. �

Example. Consider p5

q5
= 〈〈1; 2, 3, 4, 5, 6〉〉. Since 〈1; 2, 3〉 = 10

7 = u2

v2
and

〈1; 2, 3, 4〉 = 43
30 = u3

v3
, [ p5

q5 ] = [ 40 10
30 7 ] [ 56 ] = [ 275192 ] so 〈〈1; 2, 3, 4, 5, 6〉〉 = 275

192 .

From now on, we denote the semisimple continued fraction 〈〈a0; a1, . . . , an〉〉
by Sn and the continued fraction 〈a0; a1, . . . , an〉 by Cn where 0 < ai ∈ Z.
Then for every k < n, Sk = pk

qk
and Ck = uk

vk
are the kth convergents of Sn and

Cn respectively, where uk, vk, pk and qk are in Theorem 3.1.

Lemma 3.2. Ck − Ck−1 = (−1)k+1

vk−1vk
and Ck − Ck−2 = (−1)k+1

vk−2vk
ak for k ≥ 1.

Proof. It is clear to see that

Ck − Ck−1 =
uk

vk
−

uk−1

vk−1
=

ukvk−1 − uk−1vk
vk−1vk

=
(−1)k+1

vk−1vk
.

Furthermore, since vk = vk−1ak + vk−2 we have

Ck − Ck−2 =
(−1)k+1

vk−1vk
+

(−1)k

vk−1vk−2
=

(−1)kvk−1ak
vk−2vk−1vk

=
(−1)kak
vk−2vk

.
�
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It shows C0 < C2 < C4 < · · · < C5 < C3 < C1 and {Ck} converges to Cn for
large enough n ([1]). Similarly, we shall investigate the differences Sk − Sk−1

and Sk − Sk−2.

Theorem 3.3. Let δk = ak−1ak − ak−1 + ak+1. Then for k ≥ 1,

(1) Sk − Sk−1 = (−1)k

qk−1qk
ak−1δk−1.

(2) Sk − Sk−2 = (−1)k

qk−2qk
(ak−1δk−1 − ak−2δk−2 − δk−2δk−1).

Proof. By Theorem 3.1, we have
[
uk−2 uk−3

vk−2 vk−3

] [
ak−1 ak−1

ak ak−2 − ak−2ak−1

]

=

[
pk pk−1

qk qk−1

]

.

Then the determinants of both sides yield

pkqk−1 − pk−1qk = (−1)kak−1(ak−2ak−1 − ak−2 + ak).

Now by setting δk−1 = ak−2ak−1 − ak−2 + ak, we have

Sk − Sk−1 =
pk
qk

−
pk−1

qk−1
=

pkqk−1 − pk−1qk
qk−1qk

=
(−1)kak−1δk−1

qk−1qk
.

Again

Sk − Sk−2 =
(−1)kak−1δk−1

qk−1qk
+

(−1)k−1ak−2δk−2

qk−2qk−1

=
(−1)k

qk−2qk−1qk
(ak−1δk−1qk−2 − ak−2δk−2qk).

From the identities vk = vk−1ak+vk−2 and qk = vk−2ak−1+vk−3ak in Theorem
3.1, we have

qk = (vk−3ak−2 + vk−4)ak−1 + vk−3ak

= vk−3(ak−2ak−1 + ak) + vk−4ak−1

= vk−3(ak−2ak−1 + ak) + (qk−1 − vk−3ak−2)

= vk−3(ak−2ak−1 − ak−2 + ak) + qk−1 = vk−3δk−1 + qk−1.

Thus

ak−1δk−1qk−2 − ak−2δk−2qk

= qk−1(ak−1δk−1 − ak−2δk−2)− δk−2δk−1(vk−3ak−2 + vk−4ak−1)

= qk−1(ak−1δk−1 − ak−2δk−2)− δk−2δk−1qk−1

= qk−1(ak−1δk−1 − ak−2δk−2 − δk−2δk−1),

so

Sk − Sk−2 =
(−1)k

qk−2qk−1qk
qk−1(ak−1δk−1 − ak−2δk−2 − δk−2δk−1)

=
(−1)k

qk−2qk
(ak−1δk−1 − ak−2δk−2 − δk−2δk−1).

�
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Theorem 3.4. S3 < S5 < S7 < · · · < S6 < S4 < S2, so {Sk} converges to Sn

for large enough n.

Proof. Obviously qk > 0 and δk = ak−1(ak − 1) + ak+1 > 0 for every k. Thus

Sk − Sk−1 = (−1)k

qk−1qk
ak−1δk shows Sk−1 < Sk if k is even, otherwise Sk < Sk−1.

Furthermore we have

ak−1δk−1 − ak−2δk−2 − δk−2δk−1

= − ak−2ak−1 − ak−3a
2
k−2ak−1 + ak−3ak−2ak−1 − ak−3ak−2ak + ak−3ak

= − ak−2ak−1(1 + ak−3(ak−2 − 1))− ak−3ak(ak−2 − 1)

= − (ak−3(ak−2 − 1)(ak−2ak−1 + ak) + ak−2ak−1) < 0.

Thus from

Sk − Sk−2 =
(−1)k+1

qkqk−2
(ak−3(ak−2 − 1)(ak−2ak−1 + ak) + ak−2ak−1),

we have Sk < Sk−2 for even k, otherwise Sk−2 < Sk. Therefore

S3 < S5 < S7 < · · · < S6 < S4 < S2,

so Sk converges when k gets larger. �

For example, from π = 〈a0; a1, a2, . . .〉 = 〈3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14,
. . .〉, the first few convergents of continued fraction are

C0 = 〈3〉 = 3 =
u0

v0
, C1 = 〈3; 7〉 =

22

7
=

u1

v1
.

Moreover

C2 = 〈3; 7, 15〉 =
u1a2 + u0

v1a2 + v0
=

22 · 15 + 3

7 · 15 + 1
=

333

106
=

u2

v2
,

and similarly

C3 = 〈3; 7, 15, 1〉 =
355

113
=

u3

v3
, C4 =

103993

33102
, C5 =

104348

33215
, . . . .

Let us consider S = 〈〈a0; a1, . . .〉〉 = 〈〈3; 7, 15, 1, 292, 1, 1, 1, 2, . . .〉〉. Then

S1 = 〈〈3; 7〉〉 =
3

7
=

p1
q1

and S2 = 〈〈3; 7, 15〉〉 =
36

7
=

p2
q2

.

And Theorem 3.1 shows that

S3 = 〈〈3; 7, 15, 1〉〉 =
p3
q3

=
u1a2 + u0a3
v1a2 + v0a3

=
22 · 15 + 3 · 1

7 · 15 + 1 · 1
=

333

106

and

S4 =
333 · 1 + 22 · 292

106 · 1 + 7 · 292
=

6757

2150
, S5 =

355 · 292 + 333

113 · 292 + 106
=

103993

33102
, . . . .

Now the differences of convergents of Cn are, for instance

C4−C3=
−1

(113)(33102)
, C5−C4=

1

(33102)(33215)
and C4−C2=

292

(106)(33102)
.
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Moreover Theorem 3.3 shows

S5 − S4 =
−292(292+ 1− 1)

2150 · 33102
=

−2922

71169300

and

S6 − S4 =
−1

2150 · 33215
((292 + 1)(292− 1) + 292) =

85555

71412250
.

Corollary 3.5. Let Sn = 〈〈a0; a1, . . . , an〉〉 =
pn

qn
. Assume ak = 1 for k < n.

Then Sk+1 − Sk =
(−1)k+1ak+1

qkqk+1
and Sk+2 − Sk =

(−1)k+1ak+1

qkqk+2
.

Proof. From Theorem 3.3, we have

Sk+1 − Sk =
(−1)k+1

qkqk+1
(ak(ak−1(ak − 1) + ak+1)) =

(−1)k+1ak+1

qkqk+1
.

Similarly,

Sk+2 − Sk =
(−1)k+1

qkqk+2
(ak−1(ak − 1)(akak+1 + ak+2) + akak+1)

=
(−1)k+1ak+1

qkqk+2
.

�

From S = 〈〈3; 7, 15, 1, 292, 1, 1, . . .〉〉 in the above example, since a3 = 1 and
a4 = 292, we have S4 − S3 = 292

q3q4
and S5 − S3 = 292

q3q5
.

4. Ratios of Fibonacci numbers in semisimple continued fraction

It is well known that the ratio Fn+1

Fn
is equal to 〈1n〉 = 〈1; 1, . . . , 1〉. This

section is devoted to study Fn

Fk

for any n and k. The fractions 〈· · · 〉, [· · · ],

〈〈· · · 〉〉 or [[· · · ]] will be put together to express the ratios effectively.

Lemma 4.1. Let n ≥ 3. Then Fn+1 = 2Fn − Fn−2 = 2Fn−1 + Fn−2 and

Fn+2 = 3Fn − Fn−2 = L2Fn − Fn−2.

Proof. Obviously Fn+1 = Fn + Fn−1 = Fn + (Fn − Fn−2) = 2Fn − Fn−2,
while Fn+1 = Fn + Fn−1 = (Fn−1 + Fn−2) + Fn−1 = 2Fn−1 + Fn−2. And
Fn+2 = Fn+1 + Fn = (2Fn − Fn−2) + Fn = 3Fn − Fn−2.

Moreover due to Lemma 2.1, Fn+k = LkFn + (−1)k−1Fn−k, so we have
Fn+2 = L2Fn − Fn−2 if k = 2. �

Theorem 4.2. Let n ≥ 3 and write n = 2t+ r with 1 ≤ r ≤ 2.

(1)
Fn+2

Fn

= 〈2; 1n−1〉 =

{

[[3t+1, 1]] = [3t+1] if r = 2,

[[3t, 2, 1]] = [3t, 2] if r = 1.

(2)
Fn+1

Fn

= 〈1n〉 =

{

[[2; 3t, 1]] if r = 2,

[[2; 3t−1, 2, 1]] if r = 1.
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Proof. Due to Lemma 4.1, it is obvious that

Fn+2

Fn

=
2Fn + Fn−1

Fn

= 2 +
1

Fn

Fn−1

= 2 +
1

〈1n−1〉
= 〈2; 1n−1〉,

and

Fn+2

Fn

=
3Fn − Fn−2

Fn

= 3−
1

Fn

Fn−2

= 3−
1

3Fn−2 − Fn−4

Fn−2

= 3−
1

3−
1

Fn−2

Fn−4

= · · · = 3−
1

3− 1

. . .3−
F
n−2(v−1)
Fn−2v

= [[3; . . . , 3
︸ ︷︷ ︸

v

, Fn−2(v−1), Fn−2v]]

for v ≤ t. Therefore, for n = 2t+ r (1 ≤ r ≤ 2), Theorem 2.3 yields

Fn+2

Fn

= [[3t, F2+r, Fr]]

=

{

[[3t, F4, F2]] = [[3t, 3, 1]] = [3t+1] if r = 2,

[[3t, F3, F1]] = [[3t, 2, 1]] = [3t, 2] if r = 1.

On the other hand, since 2Fn − Fn−2 = Fn+1, it follows from (1) that

Fn+1

Fn

=
2Fn − Fn−2

Fn

= 2−
1
Fn

Fn−2

=

{

2− 1
[[3t,1]] = [[2; 3t, 1]] if r = 2,

2− 1
[[3t−1,2,1]] = [[2; 3t−1, 2, 1]] if r = 1. �

It shows that if n = 2t + r (r = 1, 2), then Fn+2

Fn
= 〈2; 1n−1〉 equals either

[[3t+1, 1]] or [[3t, 2, 1]], and Fn+1

Fn
= 〈1n〉 equals either [[2; 3t, 1]] or [[2; 3t−1, 2, 1]].

This means that while n repeated computations are needed in the simple con-
tinued fraction, only about t = ⌊n

2 ⌋ repeated computations are required in the

semisimple continued fractions. For example, if n = 6, then [[2; 3, 3]] = F7

F6
=

〈1; 1, 1, 1, 1, 1〉. Hence if n is large, a semisimple continued fraction is more
convenient than a simple continued fraction.

Theorem 4.3. Let n ≥ 4 and write n = 3t+ r with 1 ≤ r ≤ 3. Then
Fn+3

Fn
=

〈〈Lt
3, F3+r, Fr〉〉, which is equal to one of 〈4t, 3〉, 〈4t, 5〉 or 〈4t, 4〉 according to

r = 1, 2, 3.

Proof. Lemma 2.1 with k = 3 implies Fn+3 = L3Fn + Fn−3, thus

Fn+3

Fn

= L3 +
1
Fn

Fn−3

= 4 +
1

4 + 1
Fn−3
Fn−6

= 4 +
1

4 + 1

. . .4+ 1
F
n−3(t−1)
Fn−3t
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= 〈〈Lt
3, Fn−3(t−1), Fn−3t〉〉 = 〈〈4t, F3+r, Fr〉〉.

Hence by making use of Theorem 2.3, it follows that

Fn+3

Fn

=







〈〈4t, 3, 1〉〉 = 〈4t, 3〉 if r = 1,

〈〈4t, 5, 1〉〉 = 〈4t, 5〉 if r = 2,

〈〈4t, 8, 2〉〉 = 〈4t, 4〉 if r = 3. �

Now we generalize Theorem 4.3 as follows.

Theorem 4.4. Let k ≥ 3. Let n ≥ k+ 1 and write n = kt+ r with 1 ≤ r ≤ k.

Then
Fn+k

Fn

equals 〈〈Lt
k, Fk+r , Fr〉〉 if k is odd, and [[Lt

k, Fk+r , Fr]] if k is even.

So

Fn+k

Fn

=







〈Lt
k, Fk+1〉 or [Lt

k, Fk+1] if r = 1,

〈Lt
k, Fk+2〉 or [Lt

k, Fk+2] if r = 2,

〈Lt+1
k 〉 or [Lt+1

k ] if r = k.

Proof. Let k be odd. Since Fn+k = LkFn + Fn−k in Lemma 2.1, we have

Fn+k

Fn

= Lk +
1

Lk+
1

.. . Lk+
1

Fk+r

Fr

= 〈〈Lt
k, Fk+r , Fr〉〉.

If r = 1 or 2, then
Fn+k

Fn

equals 〈〈Lt
k, Fk+1, 1〉〉 = 〈Lt

k, Fk+1〉 or 〈〈L
t
k, Fk+2, 1〉〉

= 〈Lt
k, Fk+2〉. If r = k, then since F2k = FkLk, it follows from Theorem 2.3

that
Fn+k

Fn

= 〈〈Lt
k, F2k, Fk〉〉 = 〈〈Lt

k, FkLk, Fk〉〉 = 〈Lt
k, Lk〉 = 〈Lt+1

k 〉.

On the other hand, if k is even, then Fn+k = LkFn − Fn−k thus

Fn+k

Fn

= Lk −
1
Fn

Fn−k

= Lk −
1

Lk −
1

Fn−k

Fn−2k

= · · · = [[Lt
k, Fk+r, Fr ]],

and the rest follows similarly. �

In particular, in case of n = kt+ r with r = 3 ≤ k, the next theorem follows.

Theorem 4.5. With the same notations as in Theorem 4.4, let r = 3 and

write k = 3u + v with 1 ≤ v ≤ 3. Set P0 = 1 and Pu = 4Pu−1 + Pu−2. If k is

odd, then

Fn+k

Fn

=







〈
Lt
k, 〈〈3Pu; 2〉〉

〉
with P1 = 〈4; 3〉, if v = 1,

〈
Lt
k, 〈〈5Pu; 2〉〉

〉
with P1 = 〈4; 5〉, if v = 2,

〈
Lt
k, 〈〈4Pu; 2〉〉

〉
with P1 = 〈4; 4〉, if v = 3.
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If k is even, then
Fn+k

Fn
is either [Lt

k, 〈〈3Pu; 2〉〉], [L
t
k, 〈〈5Pu; 2〉〉] or [L

t
k, 〈〈4Pu; 2〉〉].

Proof. Assume k is odd. Theorem 4.4 together with Theorem 2.3 yields

Fn+k

Fn

= 〈〈Lt
k, Fk+r, Fr〉〉 =

〈
Lt
k, 〈〈Fk+3;F3〉〉

〉
.

Since 3 ≤ k, if we write k = 3u+ v with 1 ≤ v ≤ 3, then we have

Fk+3

Fk

=
F3(u+1)+v

F3u+v

= 〈〈Lu
3 , Fv+3, Fv〉〉 = 〈〈4u, Fv+3, Fv〉〉 = 〈4u, λ〉,

where λ = 3, 5 or 4 according to v = 1, 2 or 3 by Theorem 4.3.
Let P0 = 1 and P1 = 〈4;λ〉. Then we see that

〈42, λ〉 = 4 +
1

〈4;λ〉
=

4P1 + 1

P1
=

P2

P1
, where P2 = 4P1 + P0,

〈43, λ〉 = 4 +
1

〈42, λ〉
=

4P2 + P1

P2
=

P3

P2
, where P3 = 4P2 + P1,

〈44, λ〉 = 4 +
1

〈43, λ〉
=

4P3 + P2

P3
=

P4

P3
, where P4 = 4P3 + P2.

Thus we have, for any 0 ≤ i ≤ u,

F3(i+1)+v

F3i+v

= 〈4i, λ〉 =
Pi

Pi−1
, where Pi = 4Pi−1 + Pi−2

with P0 = 1 and P1 = 〈4;λ〉. It then follows that

〈〈Fk+3;F3〉〉 =
F3(u+1)+v

F3

=
F3(u+1)+v

F3u+v

F3u+v

F3(u−1)+v

· · ·
F3·2+v

F3+v

F3+v

F3

= 〈4u, λ〉 〈4u−1, λ〉 〈4u−2, λ〉 · · · 〈4;λ〉 〈〈Fv+3;F3〉〉

=
Pu

Pu−1

Pu−1

Pu−2
· · ·

P2

P1

P1

1
〈〈Fv+3;F3〉〉

= Pu〈〈Fv+3;F3〉〉.

If v = 1, then λ = 3 and
Fk+3

Fk

= 〈4u, 3〉 so

〈〈Fk+3;F3〉〉 = Pu〈〈F4;F3〉〉 = Pu〈〈3; 2〉〉 = 〈〈3Pu; 2〉〉,

with P1 = 〈4; 3〉 and Pi = 4Pi−1 + Pi−2. Thus
Fn+k

Fn

=
〈
Lt
k, 〈〈3Pu; 2〉〉

〉
.

If v = 2, then λ = 5 and
Fk+3

Fk

= 〈4u, 5〉 so
Fn+k

Fn
=

〈
Lt
k, 〈〈5Pu; 2〉〉

〉
with

P1 = 〈4; 5〉. Similarly if v = 3, then λ = 4 so
Fn+k

Fn
=

〈
Lt
k, 〈〈4Pu; 2〉〉

〉
with

P1 = 〈4; 4〉.
On the other hand, assume that k is even. Then Theorem 4.4 implies

Fn+k

Fn

= [[Lt
k, Fk+r , Fr]],
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which is equal to [Lt
k, [[Fk+3;F3]]] = [Lt

k, 〈〈Fk+3;F3〉〉]. Hence for k = 3u + v
with v = 1, 2, 3, the above calculations yield

〈〈Fk+3, F3〉〉 = Pu〈〈Fv+3, F3〉〉 =







〈〈3Pu; 2〉〉 with P1 = 〈4; 3〉, if v = 1,

〈〈5Pu; 2〉〉 with P1 = 〈4; 5〉, if v = 2,

〈〈4Pu; 2〉〉 with P1 = 〈4; 4〉, if v = 3. �

Example. In order to find F105 and F88, let n = 88 and k = 17. Then

F105

F88
=

F17·6+3

F17·5+3
= 〈〈L5

17, F20, F3〉〉 =
〈
L5
17, 〈〈F20;F3〉〉

〉
.

Now for 〈〈F20;F3〉〉, since 17 = 3u+ v with u = 5, v = 2,

F20

F17
=

F3·6+2

F3·5+2
= 〈〈L5

3, F5, F2〉〉 = 〈45, 5〉.

Thus by letting P0 = 1, P1 = 〈4; 5〉 =
21

5
and Pi = 4Pi−1 + Pi−2 (i ≤ 5), we

get P2 = 89
5 , P3 = 377

5 , P4 = 1597
5 and P5 = 6765

5 . Hence

〈〈F20;F3〉〉 = 〈〈P5F5;F3〉〉 = 〈〈6765; 2〉〉 =
6765

2
.

Therefore

F105

F88
= 〈L5

17,
6765

2
〉 = 3571 +

1

3571 + 1
3571+ 1

3571+ 1
3571+ 1

6765
2

,

which is 3,928,413,764,606,871,165,730
1,100,087,778,366,101,931 . Here the numerator is F105 and the denom-

inator is F88, which are 22 digit and 19 digit numbers respectively.

Corollary 4.6. Let n ≥ 6 and write n = 5t+ r with 1 ≤ r ≤ 5. Then we have

Fn+5

Fn

= 〈〈Lt
5, F5+r, Fr〉〉 =







〈〈Lt
5, 8, 1〉〉 = 〈11t, 8〉 if r = 1,

〈〈Lt
5, 13, 1〉〉 = 〈11t, 13〉 if r = 2,

〈〈Lt
5, 21, 2〉〉 = 〈11t, 10, 2〉 if r = 3,

〈〈Lt
5, 34, 3〉〉 = 〈11t+1, 3〉 if r = 4,

〈〈Lt
5, 55, 5〉〉 = 〈11t+1〉 if r = 5.

Proof. This is mainly due to Theorem 4.4. �
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