DOI QR코드

DOI QR Code

비선형 특성을 시스템 입력으로 처리하는 추적 필터

Tracking Filter Dealing with Nonlinear Inherence as a System Input

  • 신상진 (방위산업기술지원센터(국방과학연구소 부설))
  • Shin, Sang-Jin (Technical Support Center for National Defense Industry of Agency for Defense Development)
  • 투고 : 2014.03.04
  • 심사 : 2014.07.07
  • 발행 : 2014.07.31

초록

레이더에서 측정값은 직교 좌표계가 아니라 극 좌표계에서 얻어진다. 표적 동력학을 직교 좌표계에서 모델링하면 극 좌표계에서 획득된 측정값을 직교 좌표계로 변환한 의사 측정치를 사용하거나 확장형 칼만 필터를 사용하여 표적 추적 필터를 구현한다. 만일 표적 동력학을 극 좌표계에서 모델링하면 측정 방정식은 선형이나 동력학 방정식이 비선형이 된다. 본 논문에서는 극 좌표계에서 동력학 방정식을 모델링하고, 시스템 행렬을 시불변 형태로 모델링하여 발생한 비선형 성분을 시스템 입력으로 처리한 추적 필터를 제안한다. 이러한 추적 필터는 거리 측정값과 동시에 도플러 측정값이 가용할 경우, 측정방정식의 선형성을 그대로 유지하게 되므로 추적 필터의 알고리듬에 변동이 없고 추가된 도플러 정보를 사용하여 추적 성능을 높일 수 있다. 또한, 기존에 일반적으로 사용되고 있는 추적 필터와 제안한 모델링을 사용한 추적 필터의 추적 성능을 시뮬레이션을 통하여 검증한다.

The radar measurements are composed of range, Doppler and angles which are expressed as polar-coordinate components. An approach to match the measurements with the states of target dynamics which are modeled in cartesian coordinates is to use the pseudo-measurements or the extended Kalman filter in order to solve the mismatching problem. Another approach is that the states of dynamics are modeled in polar coordinates and measurement equation is linear. However, this approach bears that we have to deal with a time-varying dynamics. In this study, it is proposed that the states of dynamics are expressed as polar-coordinate component and the system matrix of the dynamic equation is modeled as a time-invariant. Nonlinear terms that appear due to the proposed modeling are regarded as a system input. The results of a series of simulation runs indicate that the tracking filter that uses the proposed modeling is viable from the fact that the Doppler measurement is easy to be augmented in the measurement equation.

키워드

참고문헌

  1. A. Jazwinski, Stochastec Processes and Filtering Theory, Academic Press, 1970.
  2. S. Blackman, R. Popoli, Design and Analysis of Modern Tracking Systems, Artech House, 1999.
  3. T. L. Song, J. Y. Ahn, and C. Park, "A suboptimal filter design with pseudo measurements for target tracking", IEEE Transactions on Aerospace and Electronic Systems, vol. 24, no. 1, pp. 28-39, 1988. https://doi.org/10.1109/7.1033
  4. D. Lerro, Y. Bar-Shalom, "Tracking with debiased consistent measurements versus EKF", IEEE Transactions on Aerospace and Electronic Systems, vol. 29, no. 3, pp 1015-1022, 1993. https://doi.org/10.1109/7.220948
  5. Raman K. Mehra, "A comparison of several nonlinear filters for reentry vehicle tracking", IEEE Transactions on Automatic Control, vol. 16, pp. 307-319, Aug. 1971. https://doi.org/10.1109/TAC.1971.1099744
  6. Peter J. Costa, "Adaptive model architecture and extended Kalman-Bucy filters", IEEE Transactions on Aerospace and Electronic Systems, vol. 30, pp. 525-533, Apr. 1994. https://doi.org/10.1109/7.272275
  7. J. Pearson, E. Stear, "Kalman filter applications in airborne radar tracking", IEEE Trans. on Aerospace and Electronic Systems, vol. 10, no. 3, pp. 319-329, 1974.
  8. R. A. Singer, "Estimating optimal tracking filter performance for manned maneuvering target", IEEE Transactions on Aerospace and Electronic Systems, vol. 6, no. 4, pp. 473-483, 1970.