DOI QR코드

DOI QR Code

지점부 블록아웃 공법으로 연속화된 프리스트레스트 콘크리트 거더의 긴장력 손실 저감

Reduction of Prestress Loss in PSC (Prestressed Concrete) Continuous Girder by Employing Block-out Method

  • 투고 : 2013.11.14
  • 심사 : 2014.03.03
  • 발행 : 2014.07.30

초록

PSC거더교는 탁월한 안정성, 사용성 등의 특징으로 전세계적으로 가장 많이 사용되는 교량의 한 형식이다. 그러나, 긴장재 (강연선)의 시공오차나 곡률반경 등에 의하여 절곡되는 상황이 발생하는 경우가 생기며, 이는 국부적인 긴장력의 손실울 유발한다. 그러나, 일반적으로 설계와 시공과정에서는 긴장재의 국부적인 절곡으로 발생하는 긴장력의 손실에 대하여는 간과하고 있다. 이 연구에서는 PSC 거더 연속화 지점부에서 시공오차와 선형반경으로 인하여 발생하는 긴장력 손실량을 실험적으로 규명하였다. 또한, 국부적 긴장력 손실을 감소시킬수 있는 공법을 제안하고 이에 대한 효용을 실험으로 검증하였다. 실험결과에 따르면 국부적 절곡에 의해 최대 10%의 긴장손실이 나타났고, 블록아웃 공법을 통해 손실률을 최대 약 5% 감소시킬 수 있는 것으로 나타났으며, 이는 블록아웃 공법으로 연속화 교량의 긴장효율을 향상시킬 수 있음을 의미한다.

Prestressed concrete girder bridge has been one of the most widely used bridges in the world because of its excellent construction feasibility, economic efficiency, serviceability, and safety. In certain situations, the prestressing tendon is supposed to be bent by the construction error and the radius of curvature at the continuous joint of PSC girders, and this leads to the loss of prestressing force. However, this kind of prestress loss is not considered in the design and construction processes. This study proves that the prestress loss occurs at the continuous joint due to the local bending of tendon by the construction error or the radius of curvature. Also, a method that can reduce this type of prestress loss is proposed, and proved by the experiment. The result shows that maximum 10% of prestress loss occurs at the continuous joint and the proposed block-out method can reduce the prestress loss ratio by maximum 5%, approximately. This means that the block-out method can enhance the prestressing efficiency of continuous PSC girder bridges.

키워드

참고문헌

  1. Chandra, V., and Warshaw, R. (2004), Historical perspective in the development of precast prestressed concrete bridges, PCI Journal, 49(6), 56-69.
  2. Chung, C. H., and Hyun, B. H. (2007), Continuity of PSC Composite Bridge with Precast Decks, KSCE Anual conference, 27-4A, 561-568 (in Korean).
  3. Han, M. Y. (2010), A revolutionary design for post-tensioned I-type bridges girders, ACF 2010 Proceedings, Taipei.
  4. Han, M. Y., Kim, J. G., Hwang, E. S., Lee, C. D., and Park, S. I. (2000), IPC Girder: The Lowest Height/Length Ratio Girder A revolutionary design for post-tensioned I-type bridges girders, Journal of the Korea Concrete Institute, 12(1), 50-59 (in Korean).
  5. KEC (2001), Quality Management Practices, Korea Expressway Corporation (in Korean).
  6. Kim, et al. (2004), Establishment of advanced design for material quantity reduction and quality improvement of PSC box girder bridges, KICT (Korea Institute of Construction Technology) (in Korean).
  7. Kim, Y. H., Ra, J. K., Kim, T. H., and Shin, H. M. (2003), Analytical Study on the Prestress Losses of Prestressed Concrete Bridges, Journal of the Korea Institute for Structural Maintenance Inspection, 7(1), 131-138 (in Korean).
  8. MOLIT (1999), Standard Specifications for Highway Bridges, Ministry of Land, Infrastructure and Transport (in Korean).
  9. MOLIT (2005), Standard Specifications for Highway Bridges, Ministry of Land, Infrastructure and Transport (in Korean).
  10. MOLIT (2009), Status report of road bridges and tunnels, Ministry of Land, Infrastructure and Transport (in Korean).
  11. MOLIT (2010), Bridge Design Specifications for Highway Bridges, Ministry of Land, Infrastructure and Transport (in Korean).
  12. Nawy, Edward G. (2009), Prestressed Concrete Fifth Edition.
  13. Oh, B. H., Yang, I. H, and Kim, J. S. (2001), A Study on the Estimation of Prestress Losses in Prestressed Concrete Box Girder Bridges, Journal of the Korea Institute for Structural Maintenance Inspection, 5(2), 111-120 (in Korean).