DOI QR코드

DOI QR Code

Erosion Criteria for the Blast Analysis of Reinforcement Concrete Members

철근콘크리트 부재의 폭발해석을 위한 침식 기준

  • Received : 2013.09.05
  • Accepted : 2014.02.10
  • Published : 2014.03.25

Abstract

Erosion is fundamentally a numerical technique to overcome the problems such as large numerical errors or abrupt termination of analysis which are associated with the excessive element distortions in finite element analysis. In this paper, erosion was utilized to represent cracks and failures in the reinforced concrete structures subjected to blast or impact loads. The erosion criteria for the realistic blast simulation were suggested by comparing experiment results and numerical analysis results. Instantaneous effective strain of 0.1 was proposed as a reference erosion criteria value to show the closest failure shape to the blast experiments of reinforced concrete beams and slabs.

Keywords

References

  1. 이나현, 김성배, 김장호, 최종권, 폭발하중을 받는 콘크리트 구조물의 실험적 거동 분석, 대한토목공학회 논문집, 제29권, 제 5호, p.p. 557-564, 2009
  2. 김한수, 박재표, 단면의 형상에 따른 철근콘크리트 기둥의 폭발 저항 성능 평가, 한국전산구조공학회 논문집, 제23권, 제4호, p.p. 387-394, 2010
  3. 김한수, 이재용, P-M 상관곡선을 이용한 철근콘크리트 기둥의 폭발 저항 성능 평가, 대한건축학회 논문집 구조계, 제27권, 제10호, p.p. 47-54, 2011
  4. 김한수, 박재표, 전산해석을 이용한 CFT 기둥의 폭발저항성능 평가, 대한건축학회 논문집 구조계, 제27권, 제3호, p.p. 65-72, 2011
  5. 최호순, 김민숙, 이영학, 주철근의 개수 및 단면비에 따른 폭발 하중을 받는 촐근콘크리트 기둥의 해석적 연구, 한국전산구조공학회 논문집, 제 26권, 제3호, p.p. 219-226, 2012
  6. Carriere M. and Heffoernan P.J. and Wight R.G. and Braim ah A., Behaviour of Steel Reinforced Polymer Strengthened RC Members under Blast Load, Canadian Journal of Civil Engineering, vol. 36, p.p 1356-1365, 2009 https://doi.org/10.1139/L09-053
  7. Mutalib A. and Hao H., Development of P-I Diagrams for FRP Strengthened RC Columns, International Journal Of Impact Engineering, vol. 38, no. 5, p.p. 209-304, 2011
  8. Luccionia B. and Araozb G., Erosion Criteria for Frictional Materials under Blast Load, Mecanica Computacional, vol. 30, p.p. 1809-1831, 2011
  9. Ansys, AUTODYN Theory Manual, Century dynamics, p.p. 204-206, 2005
  10. Nystrom U. and Gylltoft K., Numerical Studies of the Combined Effects of Blast and Fragment Loading, International Journal of Impact Engineering, vol. 36, p.p. 995-1005, 2009 https://doi.org/10.1016/j.ijimpeng.2009.02.008
  11. Hao Y. and Hao H. and Li Z-X., Confinement Effects on Impact Test of Concrete Compressive Material Properties, International Journal of Protective Structures, p.p. 145-167, 2010
  12. Beppu M. and Miwa K. and Itohb M. and Katayama M. and Ohno T., Damage Evaluation of Concrete Plates by High-velocity Impact, International Journal of Impact Engineering, vol. 35, p.p. 1419-1426, 2008 https://doi.org/10.1016/j.ijimpeng.2008.07.021
  13. Luccionia B. and Luegeb M., Concrete Pavement Slab under Blast Loads, International Journal of Impact Engineering, vol. 32, p.p.734-743, 2006
  14. Zukas J A., Introduction to Hydrocodes, Elsevier, UK, p.313, 2004
  15. Luccionia B. and Ambrosini R. and Danesi R., Analysis of Building collapse under blast loads, Engineering Structures, vol. 26, p.p. 63-71, 2004 https://doi.org/10.1016/j.engstruct.2003.08.011
  16. Birnbaum K. and Francis J. and Gerber I., Coupled Techniques for the Simulation of Fluid-Structure and Impact problems, Computer, Assisted Mechanics and Engineering Science, vol. 16, p.p. 295-311, 1999

Cited by

  1. Parametric study of anti-explosion performance of reinforced concrete T-shaped beam strengthened with steel plates vol.156, 2017, https://doi.org/10.1016/j.conbuildmat.2017.08.150
  2. A Modified Equation of Parameter of Surface Blast Load vol.17, pp.3, 2017, https://doi.org/10.9712/KASS.2017.17.3.075