DOI QR코드

DOI QR Code

폐쇄형 육묘 시스템에서의 파프리카 묘 생산에 적합한 재배 기간 및 암면 블록의 크기

Optimum Cultivation Period and Rockwool Block Size for Paprika Transplant Production using a Closed Transplant Production System

  • 곽유리나 (서울대학교 농업생명과학연구원) ;
  • 김동섭 (서울대학교 식물생산과학부) ;
  • 전창후 (서울대학교 농업생명과학연구원)
  • Kwack, Yurina (Research Institute of Agriculture and Life Science, Seoul National University) ;
  • Kim, Dong Sub (Department of Plant Science, Seoul National University) ;
  • Chun, Changhoo (Research Institute of Agriculture and Life Science, Seoul National University)
  • 투고 : 2014.05.21
  • 심사 : 2014.06.11
  • 발행 : 2014.06.30

초록

본 연구는 폐쇄형 육묘 시스템에서의 파프리카 묘 생산에 적합한 재배 기간 및 암면 블록의 크기를 구명하기 위하여 수행되었다. 파프리카 종자를 세 가지 크기의 암면 블록($45{\times}40{\times}35$, $70{\times}70{\times}60$, $100{\times}100{\times}65mm$)에 파종하고 형광등을 인공 광원으로 이용하는 폐쇄형 육묘 시스템에서 23, 30, 37일간 재배하였다. 또한, 온실에서 $100{\times}100{\times}65mm$의 암면 블록을 이용하여 관행 재배한 파프리카 묘를 온실 처리구로 설정하였다. 육묘 일수와 관계없이 $70{\times}70{\times}60mm$의 암면 블록에서 육묘한 파프리카 묘의 지상부, 지하부 생육 및 R/S율이 가장 높았으며, 온실에서 관행 재배한 처리구보다 폐쇄형 육묘 시스템에서 재배한 파프리카 묘의 소질이 우수하였다. 폐쇄형 육묘 시스템과 온실에서 23, 30, 37일간 재배한 파프리카 묘를 암면 슬라브에 정식하고 초기 수량을 조사하였다. 파종후 125일의 파프리카 평균 과중은 암면 블록 크기와 육묘 일수의 영향을 거의 받지 않았으나, 단위 면적당 수량은 $70{\times}70{\times}60$$100{\times}100{\times}65mm$의 암면 블록을 이용하여 23일간 폐쇄형 육묘 시스템에서 재배한 처리구에서 가장 높았다. 따라서, 폐쇄형 육묘 시스템에서 파프리카 육묘시 관행 재배보다 작은 $70{\times}70{\times}60mm$의 암면 블록을 이용하고 육묘 일수를 23일로 단축하여도 우수한 품질의 파프리카 묘를 생산할 수 있음을 확인하였다.

This study was conducted to investigate the effect of cultivation period and rockwool block size on the growth and early yield of paprika transplants grown in a closed transplant production system. Paprika seeds were sown and germinated in three different size of rockwool blocks ($45{\times}40{\times}35$, $70{\times}70{\times}60$, $100{\times}100{\times}65mm$) and cultivated in a closed transplant production system for 23, 30, and 37 days after sowing. Paprika transplants were cultivated using $100{\times}100{\times}65mm$ rockwool blocks in a greenhouse following a conventional and typical production method for comparing with the growth of paprika transplants grown in a closed transplant production system. Also, we transplanted paprika transplants grown for 23, 30, and 37 days in a closed transplant production system and greenhouse to rockwool slabs and investigated fresh weight of fruits and yield 125 days after sowing. The growth of paprika transplants grown in $70{\times}70{\times}60mm$ rockwool blocks in a closed transplant production system was highest, and the quality of paprika transplant grown in a closed transplant production system was better than in a greenhouse. Rockwool block size and cultivation period in a closed transplant production system did not affect fresh weight of fruits, however, yield was largest when paprika transplants were cultivated using $70{\times}70{\times}60$ and $100{\times}100{\times}65mm$ rockwool blocks for 23 days in a closed transplant production system. These results suggest that decreasing rockwool block size and cultivation period can be strategically used to enhance transplant quality and yield of paprika, as paprika transplants were cultivated in a closed transplant production system.

키워드

참고문헌

  1. Block, C. 1999. Air/water management in rockwool slabs. Acta Hort. 481:79-88.
  2. Choi, G.L., M.W. Cho, J.W. Cheong, M.Y. Roh, H.C. Rhee, and Y.I. Kang. 2011. Effect of nursery period and block size on growth and yield of paprika. J. Bio-Env. Con. 20:263-268.
  3. Chun, C. 2002. Closed-type systems for producing high quality transplants of floral horticultural crops. Kor. J. Hort. Sci. Technol. 20:191-196.
  4. Dufault, R.J. and L. Waters, Jr. 1985. Container size influences broccoli and cauliflower transplant growth but not yield. HortScience 20:682-684.
  5. Kim, S.K., P.J. Seo, and C. Chun. 2005. Development of a transplant production module using artificial lighting for high quality vegetable transplant production. Kor. J. Hort. Sci. Technol. 23:388-395.
  6. Kozai, T. 2008. Closed systems for high quality transplants using minimum resources, p. 275-312. In: S.D. Gupta and Y. Ibaraki (eds.). Plant tissue culture engineering. Springer, Dordrecht, The Netherlands.
  7. Kozai, T., C. Kubota, C. Chun, K. Ohyama, and F. Afreen. 2000. Necessity and concept of the closed transplant production system, p. 3-19. In: C. Kubota and C. Chun (eds.). Transplant production in the 21st century. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  8. Kratky, B.A., J.K. Wang, and K. Kubojiri. 1982. Effects of container size, transplant age, and plant spacing on Chinese cabbage. J. Amer. Soc. Hort. Sci. 107:345-347.
  9. Lee, J.S., H.I. Lee, and Y.H. Kim. 2012. Seedling quality and early yield after transplanting of paprika nursed under lightemitting diodes, fluorescent lamps and natural light. J. Bio- Env. Con. 21:220-227.
  10. Lee, J.W., K.Y. Kim, and Y.M. Yu. 2001. Effect of nutrient solution strength, seedling age, and container size on seedling quality and yield of 'Spirit' colored bell pepper (Capsicum annum L.). J. Kor. Soc. Hort. Sci. 42:300-304.
  11. MAFRA (Ministry of Agriculture, Food, and Rural Affairs). 2013. http://www.mafra.go.kr.
  12. Markovic, V., M. Djurovka, Z. Ilin, and B. Lazic. 2000. Effect of seedling quality on yield characters of plant and fruits of sweet pepper. Acta Hort. 533:113-120.
  13. Weston, L.A. 1988. Effect of flat cell size, transplant age, and production site on growth and yield of pepper transplants. HortScience 23:709-711.
  14. Weston, L.A. and B.H. Zandstra.1986. Effect of root container size and location of production on growth and yield of tomato transplants. J. Amer. Soc. Hort. Sci. 111:498-501.