DOI QR코드

DOI QR Code

Effect of Cell Size on Growth and Development of Plug Seedlings of Three Indigenous Medicinal Plants

플러그 셀 크기가 세 가지 자생 약용식물 묘 생육에 미치는 영향

  • Oh, Hye Jin (Department of Horticulture, Division of Applied Life Science (BK21 Plus), Graduate School of Gyeongsang National University) ;
  • Park, Yoo Gyeong (Department of Horticulture, Division of Applied Life Science (BK21 Plus), Graduate School of Gyeongsang National University) ;
  • Park, Ji Eun (Department of Horticulture, Division of Applied Life Science (BK21 Plus), Graduate School of Gyeongsang National University) ;
  • Jeong, Byoung Ryong (Department of Horticulture, Division of Applied Life Science (BK21 Plus), Graduate School of Gyeongsang National University)
  • 오혜진 (경상대학교 대학원 응용생명과학부(BK21 Plus)) ;
  • 박유경 (경상대학교 대학원 응용생명과학부(BK21 Plus)) ;
  • 박지은 (경상대학교 대학원 응용생명과학부(BK21 Plus)) ;
  • 정병룡 (경상대학교 대학원 응용생명과학부(BK21 Plus))
  • Received : 2013.11.19
  • Accepted : 2014.04.24
  • Published : 2014.06.30

Abstract

There have not been many studies conducted on the seedling production, especially in plug trays, of traditional medicinal plant species. In an effort to establish guide lines for seedling production, this study investigated the effect of plug cell size on the growth and development of plug seedling of three medicinal plant species. Seeds were sown in either 128, 200, or 288-cell plug trays, containing a commercial medium. Growth and development of individual seedling was generally promoted with increasing size of a plug cell in all of the three species. The greatest biomass of the seedlings gained in a plug tray was obtained in the 288-cell trays in Perilla frutescens var. acuta Kudo and Sophora tonkinensis, and the 200-cell trays in Angelica gigas Nakai. Overall growth and development of the shoot and root of a single seedling of Perilla frutescens var. acuta Kudo, except total chlorophyll and anthocyanin contents, was the greatest in the 128-cell tray. However, length of the longest root, length, width and area of the leaf, internode length, root fresh weight, and root ball formation in the 200- and 288-cell trays were not significantly different each other. In Sophora tonkinensis, although length of the longest root, stem diameter, leaf width, leaf area, shoot fresh weight, and root ball formation were not significantly different among the treatments, length of the longest root and root ball formation of a single seedling were the greatest in the 128-cell tray. Overall shoot and root growth, except total chlorophyll content, of a single seedling of Angelica gigas Nakai was the greatest in the 128-cell tray. Based on the total biomass, it is concluded that 288-cell trays are recommended for production of plug seedlings of medicinal plant species P. frutescens var. acuta Kudo and S. tonkinensis. In A. gigas Nakai, it would be more economical to use the 200-cell trays than 128-cell trays due to total biomass.

약용식물을 플러그 트레이를 이용하여 공정육묘를 한 연구결과는 거의 없는 실정이다. 세 종류 약용식물 묘의 생산을 위한 기준을 마련하기 위해 플러그셀 크기가 플러그묘의 생장에 미치는 영향을 구명하기 위하여 본 연구를 수행하였다. 상업용 상토가 들어있는 128, 200, 288구 플러그셀 트레이에 종자를 파종하였다. 세종류 약용식물은 플러그 셀 크기가 커질수록 생육이 우수하였다. 하나의 플러그 트레이에서 얻어진 총 바이오매스는 차조기와 산두근은 288구에서 가장 높았고, 참당귀는 200구에서 가장 높았다. 총 엽록소와 안토시아닌 함량을 제외한 차조기의 지상부와 지하부 생장은 128구에서 가장 우수하였다. 하지만 최대근장, 엽장, 엽폭, 엽면적, 절간장, 뿌리 생체중, 근군형성은 200구와 288구에서 유의한 차이가 없었다. 산두근은 최대근장, 경경, 엽폭, 엽면적, 지상부 생체중, 근군형성을 제외한 모든 생장에서 처리간에 유의한 차이가 없었다. 그러나 최대근장, 경경, 엽폭, 엽면적, 지상부 생체중, 근군형성은 128구에서 가장 우수하였다. 엽록소 함량을 제외한 참당귀의 지상부와 지하부의 모든 생장이 128구에서 우수하였다. 경제적인 부분과 총 바이오매스를 고려했을 때 차조기와 산두근은 288구에서 육묘하는 것이 좋고, 참당귀는 200구에서 육묘하는 것을 권장한다.

Keywords

References

  1. Cantliffe, D.J. 1993. Pre- and postharvest practices for improved vegetable transplant quality. HortTechnology 3:415-417.
  2. Csizinszky, A.A. and D.J. Schuster. 1993. Impact of insecticide schedule, N and K rates, and transplant container size on cabbage yield. HortScience 28:299-301.
  3. Dere, S., T. Genes, and R. Sivaci. 1998. Spectrophotometric determination of chlorophyll-a, b and total carotenoid contents of some algae species using different solvents. Turkish J. Bot. 22:13-17.
  4. Dubik, S.P., D.T. Krizek, D.P. Stimart, and M.S. McIntosh. 1992. Growth analysis of spreading euonymus subjected to root restriction. J. Plant Nutr. 15:469-486. https://doi.org/10.1080/01904169209364334
  5. Dufault, R.J. and L. Waters, Jr. 1985. Container size influences broccoli and cauliflower transplant growth but not yield. HortScience 20:682-284.
  6. Fuleki, T. and F.J. Francis. 1968. Quantitative methods for anthocyanins. J. Food Sci. 33:72-77. https://doi.org/10.1111/j.1365-2621.1968.tb00887.x
  7. Goleniowski, M.E., G.A., Bongiovanni, L. Bongiovanni, C.O. Palacio, and J.J. Cantero. 2006. Medicinal plants from the 'Sierra de Comechingones'. Argentina J. Ethnopharmacol. 107:324?341. https://doi.org/10.1016/j.jep.2006.07.026
  8. Ha, T.J., J.H. Lee, M.H. Lee, B.W. Lee, H.S. Kwon, C.H. Park, K.B. Shin, H.T. Kim, I.Y. Baek and D.S. Jang. 2012. Isolation and identification of phenolic compounds from the seeds of Perilla frutescens (L.) and their inhibitory activities against a-glucosidase and aldose reductase. Food Chem. 135:1397-1403. https://doi.org/10.1016/j.foodchem.2012.05.104
  9. Hall, M.R. 1989. Cell size of seedling containers influences early vine growth and yield of transplanted watermelon. HortScience 24:771-773.
  10. Jana, S., I. Sivanesan, and B.R. Jeong. 2013. Effect of cytokinins in vitro multiplication of Sophora tonkinensis. Asian Pac. J. Trop. Biomed. 3:549-553. https://doi.org/10.1016/S2221-1691(13)60111-2
  11. Jeong, B.R. 1998. Technology and environment management for the production of plug transplants of flower crops. Kor. J. Hort. Sci. Technol. 16:282-286.
  12. Jeong, B.R. 2000. Advances and current limitations of plug transplant technology in Korea. p. 102-107. In: Kubota, C. and C. Chun (eds.). Transplant production in the 21st century. Springer. Dordrecht. The Netherlands.
  13. Konoshima, M., H.J. Chi and K. Hata. 1986. Courmarins from the root of Angelica gigas. Chem. Pharm. Bull. 16:1139-1140.
  14. Krishna, P.M., S. Sandhya, and B. David. 2012. A review on phytochemical, ethnomedical and pharmacological studies on genus Sophora, Fabaceae. Rev. Bras. Farmacogn. Braz. J. Pharmacogn. 22:1145-1154. https://doi.org/10.1590/S0102-695X2012005000043
  15. Krizek, D.T., A. Carmi, R.M. Mirecki, F.W. Snyder, and J.A. Bruce. 1985. Comparative effects of soil moisture stress and restricted root zone volume on morphogenetic and physiological responses of soybean (Glycine max L. Merr.). J. Expt. Bot. 36:25-38. https://doi.org/10.1093/jxb/36.1.25
  16. Lai, J.P., X.W. He, Y. Jiang, and F. Chen. 2003. Preparative separation and determination of matrine from the Chinese medicinal plant Sophora flavescens Ait by molecularly imprinted solid-phase extraction. Anal. Bioanal. Chem. 375: 264-269.
  17. Latimer, J.G. 1991. Container size and shape influence growth and landscape performance of marigold seedlings. Hort- Science 26:124-126.
  18. Liu, A. and J.G. Latimer. 1995. Root cell volume in the planter flat affects watermelon seedling development and fruit yield. HortScience 30:242-246.
  19. Makino, T., Y. Furata, H. Wakushima, H. Fuji, K. Saito and Y. Kano. 2003. Antiallergic effect of Perilla frutescens and its active constituents. Phytother. Res. 17:240-243. https://doi.org/10.1002/ptr.1115
  20. Maynard, E.T., C.S. Vavrina, and W.D. Scott. 1996. Containerized muskmelon transplants: Cell volume effects on pretransplant development and subsequent yield. HortScience 31:58-61.
  21. McConnughay, K.D.M. and F.A. Bazzar. 1991. Is physical space a soil resource? Ecology 72:94-103. https://doi.org/10.2307/1938905
  22. NeSmith, D.S., D.C. Bridges, and J.C. Bardour. 1992. Bell pepper responses to root restriction. J. Plant Nutr. 15:2763-2776. https://doi.org/10.1080/01904169209364507
  23. Peterson, T.A., M.D. Reinscl, and D.T. Krizek. 1991. Tomato (Lycopersicon esculentum Mill. cv 'Better Bush') plant response to root restriction. J. Expt. Bot. 42:1241-1249. https://doi.org/10.1093/jxb/42.10.1241
  24. Rural Development Administration (RDA). 2011. Evolution of herbage industry. RDA, Suwon, Korea.
  25. van Iersel, M. 1997. Root restriction effects on growth and development of salvia (Salvia splendens). HortScience 32:1186-1190.
  26. Son, S.H., K.K. Park, Y.C. Kim and W.Y. Chung. 2010. Decursin and decursinol from Angelica gigas inhibit the lung metastasis of murine colon carcinoma. Phytother. Res. 25:959-964.
  27. Vavrina, C.S. 1995. An introduction to the production of containerized vegetable transplants. Univ. of Florida Coop. Ext. Serv., Bul. 302. Gainesville, FL, U.S.A.
  28. Weston, L.A. 1988. Effect of flat cell size, transplant age, and production site on growth and yield of pepper transplants. HortScience 23:709-711.
  29. Weston, L.A. and B.H. Zandstra. 1986. Effect of root container size and location of production on growth and yield of tomato transplants. J. Amer. Soc. Hort. Sci. 111:498-501.
  30. Yang, S.T., C. Hong, H. Lee, S. Park, B. Park and K.W. Lee. 2012. Protective effect of extracts of Perilla frutescens treated with sucrose on tert-butyl hydroperoxide-induced oxidative hepatotoxicity in vitro and in vivo. Food Chem. 133:337-343. https://doi.org/10.1016/j.foodchem.2012.01.037