DOI QR코드

DOI QR Code

A study on properties and synthesis of polyurethane compound formed hard segments by polyether polyol for lamb skin coat

Lamb skin 코팅용 polyether polyol을 이용한 hard segment를 형성하는 polyurethane compound의 합성 및 물성에 관한 연구

  • Lee, Joo-Youb (Department of Disaster Management and Safety Engineering, Jungwon University) ;
  • Nam, Sang-Sung (Department of Resource Recycling and Environmental Engineering, Jungwon University)
  • 이주엽 (중원대학교 방재안전공학과) ;
  • 남상성 (중원대학교 자원순환환경공학과)
  • Received : 2014.06.03
  • Accepted : 2014.06.27
  • Published : 2014.06.30

Abstract

For this research, prepared polyurethane dispersion of hard segment type and polyethylene emulsion wax. Use these resin, this article has been analyzed about mechanical properties variation by increasing amount of polyethylene emulsion wax on Lam skin leather and dried film. According to measure data for solvent resistance, PUD had good property. As known in the results, increase of polyethylene wax constant did not influence to big variation of hybrid resin properties. As test of tensile strength, PUD had good tensile characteristic($1.235kg_f/mm^2$) and PUD-EW4 had lowest tensile characteristic($1.022kg_f/mm^2$). As same as tensile characteristic, abrasion test determined PUD(52.225 mg.loss) had highest properties. In elongation case, PUD showed 698 % modulus which was best properties in this experiment.

본 연구에서는 hard segment를 형성하고 있는 폴리우레탄을 합성한 다음 피혁산업에서 마감 코팅시 많이 사용되고있는 폴리에틸렌왁스의 적하량을 점차 증가시켜 필름 및 Lam skin에 코팅에 적용하여 변화하는 물성을 측정하였다. 내용제성 측정 결과 높은 내용제성 물성을 지닌 폴리우레탄 수지에 폴리에틸렌왁스의 함량에 따른 물성적 변화는 크게 나타나지 않았다. 인장 강도 측정치에서는 폴리우레탄 단독 필름의 측정치가 $1.235kg_f/mm^2$로 가장 높은 수치를 나타내었으며, 폴리에틸렌왁스의 함량이 제일 높은 PUD-EW3가 가장 낮은 인장력 $1.022kg_f/mm^2$를 나타내었다. 또한 내마모도 측정에서는 PUD가 제일 높은 52.22 5mg.loss로 우수한 물성변화를 나타내었고, 연실율의 경우 역시 우레탄 단독 코팅인 PUD가 698%로 가장 높은 수치를 나타내었다.

Keywords

References

  1. J. Li, W. Zheng, W. Zeng, D. Zhang and X. Peng, Structure properties and application of a novel low-glossed waterborne polyurethane, Applied Surface Science, 307, 255, (2014). https://doi.org/10.1016/j.apsusc.2014.04.022
  2. V. Garcia-Pacios, J. A. Jofre-Reche, V. Costa, M. Colera and J. M. Martin- Martinez, Coatings prepared from waterborne polyurethane dispersions obtained with polycarbonates of 1,6-hexanediol of different molecular weights, Progress in Organic Coatings, 76, 1484, (2013) https://doi.org/10.1016/j.porgcoat.2013.06.005
  3. H. Daemi, M. Barikani and M. Barmar, Compatible compositions based on aqueous polyurethane dispersions and sodium alginate, Carbohydrate Polymers, 92 490, (2013). https://doi.org/10.1016/j.carbpol.2012.09.046
  4. J. Bullermann, S. Friebel, T. Salthammer and R. Spohnholz, Novel polyurethane dispersions based on renewable raw materials-Stability studies by variations of DMPA content and degree of neutralisation, Progress in Organic Coatings, 76, 609, (2013). https://doi.org/10.1016/j.porgcoat.2012.11.011
  5. V. Garcia-Pacios, V. Costa, M. Colera and J. M. Martin-Martinez, Waterborne polyurethane dispersions obtained with polycarbonate of hexanediol intended for use as coatings. Progress in Organic Coatings, 71, 136, (2011). https://doi.org/10.1016/j.porgcoat.2011.01.006
  6. G. M. Wu, Z. W. Kong, J. Chen, S. P. Huo, and G. F. Liu, Preparation and properties of waterborne polyurethane/ epoxy resin composite coating from anionic terpene-based polyol dispersion, Progress in Organic Coatings, 77, 315, (2014). https://doi.org/10.1016/j.porgcoat.2013.10.005
  7. S. M. Cakic, J. V. Stamenkovic, D. M. Djordjevic, I. S. Ristic, Synthesis and degradation profile of cast films of PPG-DMPA-IPDI aqueous polyurethane dispersions based on selective catalysts, Polymer Degradation and Stability, 94, 2015, (2009). https://doi.org/10.1016/j.polymdegradstab.2009.07.015
  8. V. D. Athawale and M. A. Kulkarni, Polyester polyols for waterborne polyurethanes and hybrid dispersions, Progress in Organic Coatings, 67, 44, (2010). https://doi.org/10.1016/j.porgcoat.2009.09.015
  9. M. Tielemans, P. Roose, P. D. Groote and J. C. Vanovervelt. Colloidal stability of surfactant-free radiation curable polyurethane dispersions, Progress in Organic Coatings, 55, 128, (2006). https://doi.org/10.1016/j.porgcoat.2005.08.010
  10. W. B. Im and H. S. Park, Preparation and Physical Properties of Polyurethane Flame Retardant Coatings by Phosphate- Containing Modified Polyester/TDI-Adduct, J. Kor. oil Chemist's Soc., 15, 77 (1998).
  11. J. W. Lim, S. M. Yun and N. H. Jeong, Synthesis of Epoxy Functionalized Fluoro-silicone Surfactant, J. Kor. oil Chemist's Soc., 27, 87 (2010).
  12. J. Y. Lee, and K. J. Kim, Study on Mechanical Properties of Waterborne Polyurethane-Acrylic Hybrid Resin for Leather Coatings, J. Kor. Oil Chemist's Soc., 27, 188 (2010).
  13. M. A. AlMaadeed, S. Labidi, I. Krupa and M. Ouederni, Effect of waste wax and chain structure on the mechanical and physical properties of polyethylene, Arabian Journal of Chemistry, 21, (2014).
  14. W. H. Sun, S. Kong, W. Chai, T. Shiono, C. Redshaw, X. Hu, C. Guo and X. Hao, 2-(1-(Arylimino)ethyl)-8-arylimino-5,6,7-t rihydroquinolylcobalt dichloride: Synthesis and polyethylene wax formation, Applied Catalysis A: General, 447, 67, (2012).
  15. I. Krupa, G. Mikova and A. S. Luyt, Phase change materials based on low-density polyethylene/paraffin wax blends, European Polymer Journal, 43, 4695, (2007). https://doi.org/10.1016/j.eurpolymj.2007.08.022