DOI QR코드

DOI QR Code

Characterization of Biodegradable Conductive Composite Films with Polyaniline(1)

폴리아닐린을 함유한 도전성 복합필름의 제조 및 특성 연구(1)

  • Lee, Soo (Department of Chemical Engineering, Changwon National University) ;
  • Seong, Eun-Suk (Department of Chemical Engineering, Changwon National University)
  • 이수 (창원대학교 화공시스템공학과) ;
  • 성은숙 (창원대학교 화공시스템공학과)
  • Received : 2014.05.16
  • Accepted : 2014.06.25
  • Published : 2014.06.30

Abstract

Biodegradable conductive composite films of polylactic acid(PLA) were prepared with various amounts of polyaniline(PAni) doped with dodecylbenzenesulphonic acid (DBSA) by solution blending technique to identify their mechanical and electric properties. 15 mol% of DBSA doped PAni was easily obtained by polymerizing of aniline in the presence of APS and DBSA in THF at $0^{\circ}C$. FE SEM characterization showed that PAni were well spread on the PLA domains. The tensile strength of composite film with 15 wt% of PAni was significantly decreased from $565.3kg_f/cm^2$ for PLA film itself to $309.7kg_f/cm^2$. Elongations of all PAni/PLA composite films were also decreased up to 3-6%. Electrical conductivity of $2.9{\times}10^{-3}$ S/cm could be achieved for the composite film containing 15 wt% of PAni-DBSA. Thermal stability of these composite films measured by thermogravimetric analysis(TGA) showed a slight decrease with the amount of PAni in PAni/PLA composite films at temperature lower than $300^{\circ}C$. However, the final weight of char was strongly depended with the amount of PAni in original composite films. Conclusively, PAni/PLA composite films containing more than a 15 wt% of PAni could be used for intercepting electromagnetic and preventing electrostatic applications.

생분해성 고분자인 PLA를 매트릭스로 용액 중합된 DBSA가 15 mole% 정도 도핑된 PAni를 첨가하여 도전성 PAni/PLA 복합 필름을 제조하여 기계적, 전기적 특성 및 표면 morphology를 고찰하였다. FE SEM 측정 결과 PAni/PLA 복합 필름은 PAni 입자들이 매트릭스 고분자인 PLA에 비교적 잘 분산된 상태를 보였으며, 인장강도는 PAni 함유량 15 wt% 인 경우 $565.3kg_f/cm^2$에서 $309.7kg_f/cm^2$로 급격히 감소하였으며, 신율은 모든 필름에서 3-6%로 크게 변화하지는 않았다. 전기전도도는 PAni의 함량이 증가함에 따라 상승하였으며, PAni 함유량이 15 wt% 인 복합필름의 경우 $2.9{\times}10^{-3}$ S/cm의 전기전도도를 나타내었다. PAni 함유량에 따른 복합 필름의 열적 안정성은 $300^{\circ}C$ 이하에서는 약간 낮아졌으며, 고온 처리 후의 최종 잔존 타르의 함량은 PAni의 함량에 비례하였다. 결과적으로 PAni를 15 wt% 이상 함유한 복합필름은 전자파차폐 및 정전기방지 소재로 응용될 수 있다.

Keywords

References

  1. T. A. Stotheim, "Handbook of Conducting Polymer", Marcel Dekker, New York, 1986.
  2. T. Vikki, L. O. Pietila, H. Osterholm, L. Ahjopalo, A. Takala, A. Toivo, K Levon, P. Passiniemi, and O. Ikkala, Molecular Recognition Solvents for Electrically Conductive Polyaniline, Macromolecules, 29(8), 2945(1996). https://doi.org/10.1021/ma951555v
  3. F. Cheng, W. Tang, C. Li, J. Chen, H. Liu, P. Shen, and S. J. Dou, Conducting poly(aniline) nanotubes and nanofibers: controlled synthesis and application in lithium/PAni rechargeable batteries, Chemistry, 12(11), 3082-3088 (2006). https://doi.org/10.1002/chem.200500883
  4. B. C. Dalui, I. N. Basmallick, and S. Ghosh, Zinc-polyaniline rechargeable battery assembled with aqueous electrolyte, Indian Journal of Chemical Technology, 15, 576-580 (2008).
  5. A. A. Athawale, S. F. Patil, and B. Deore, Investigations of some selected properties of electrochemically synthesized poly(N-ethyl aniline) films, Polymer, 40, 4929 (1999). https://doi.org/10.1016/S0032-3861(98)00695-8
  6. J. Huang and M. Wan, Polyaniline doped with different sulfonic acids by in situ doping polymerization, J. Polym. Sci. Part A; Polym. Chem., 37(9), 1277-1284 (1999).
  7. A. G. Mac Diarmid, Y. Zhou, and J. Feng, Oligomers and isomers: New horizons in polyanilines, Syn. Met., 100, 131 (1999). https://doi.org/10.1016/S0379-6779(98)00164-7
  8. C. L. Gettinger, A. J. Heeger, D. J. Pine, and Y. Cao, Solution characterization of surfactant solubilized polyaniline, Syn. Met., 74, 81 (1995). https://doi.org/10.1016/0379-6779(95)80041-7
  9. K. Mullen and G. Wegner, "Electronic Materials: The Oligomer Approach", pp.264, 498, Wiley-VCH, New York, 1998.
  10. J. Kim, A. J. Kwon, S. Han, and E. R. Kim, Synthesis and characteristics of organic soluble polyaniline by emulsion polymerization, Polymer(Korea), 27(6), 549-554 (2003).
  11. G. Wu, and H. Zhang, Synthesis and Characterization of Camphor Sulfonic Acid Fully Doped Polyaniline, Research and Application of Material, 1(1), 5-8 (2013). https://doi.org/10.12966/ram.04.02.2013
  12. P. J. Kinlen, J. Liu, Y. Ding, C. R. Graham, and E. E. Remsen, Emulsion Polymerization Process for Organically Soluble and Electrically Conducting Polyaniline, Macromolecules, 31, 1735-1744 (1998). https://doi.org/10.1021/ma971430l
  13. J. Fan, M. Wan, and D. Zhu, Synthesis and characterization of water-soluble conducting copolymer poly(aniline-co-oaminobenzenesulfonic acid), J. Polym. Sci. Part A; Polym. Chem., 36, 3013-3019 (1998). https://doi.org/10.1002/(SICI)1099-0518(199812)36:17<3013::AID-POLA2>3.0.CO;2-W
  14. R. M. Rasal, A. V. Janorkar, and D. E. Hirt, Poly(lactic acid) modifications, Progress in Polymer Science, 35, 338-356 (2010). https://doi.org/10.1016/j.progpolymsci.2009.12.003
  15. D. Garlotta, A Literature Review of Poly(Lactic Acid), Journal of Polymers and the Environment, 9(2), 63-84 (2002).
  16. I. Lee, K. B. Rhyu, and B. C. Lee, Determination of Reactivities by MO Theory. MO Studies on Nonlinear Hammett Correlation of Benzyl Systems, J. Kor. Chem. Soc., 23(5), 277-285 (1979).
  17. R. Zallen, The physics of amorphous solids, John Wiely & Sons, 1983.
  18. C. O. Yoon, Electrically conducting polymeric Materials, Polym. Sci. Tech., 7(6), 710 (1996).