
19

Efficient and Secure Group Key Generation Protocol for

Small and Medium Business

Jung Hyun Soo1*

1*Information Security, Songsil University

Abstract Group communication is becoming increasingly popular in Internet applications such as
videoconferences, online chatting programs, games, and gambling. For secure communications, the

integrity of messages, member authentication, and confidentiality must be provided among group

members. To maintain message integrity, all group members use the Group Key (GK) for encrypting

and decrypting messages while providing enough security to protect against passive attacks.

Tree-based Group Diffie-Hellman (TGDH) is an efficient group key agreement protocol to generate

the GK. TGDH assumes all members have an equal computing power. One of the characteristics of

distributed computing and grid environments is heterogeneity; the member can be at a workstation, a

laptop or even a mobile computer. Member reordering in the TDGH protocol could potentially lead to

an improved protocol; such reordering should capture the heterogeneity of the network as well as

latency. This research investigates dynamic reordering mechanisms to consider not only the overhead

involved but also the scalability of the proposed protocol.

Key Words : Protocol design, Group key management, Network security, Secure group communication.

Received 2014-11-01 Revised 2014-11-20 Accepted 2014-11-27
*Corresponding author: Jung Hyun Soo (hsj6552@hanmail.net)

1. Introduction

Group communications are created all over the

network in the form of videoconferences, on-line

chatting programs, games, and gambling. Security

plays an important role in these instances of group

communication. According to [3, 4], member authentication

processes and key distribution take place at the

beginning of a group communication. The group size

tends to be less than 100 [8]. However, the Group Key

(GK) computation takes a relatively long time to

complete. For achieving a high level of security, the

GK should be changed after every member joins and

leaves so that a former group member has no access to

current communications and a new member has no

access to previous communications [3]. The group key

agreement protocol focuses on the GK computation,

which consists of evaluating a function of modular

exponentiations. In order to calculate the GK using

modular exponentiations, the adaptation of key trees is

needed to reduce the computational overhead. Modular

exponentiation is the computationally most expensive

operation in TGDH [2]. The number of exponentiations

for membership events depends on the number of

group members. The algorithm efficiency of TGDH is

O (log2n), where n is the current number of members,

so it is efficient as long as the key tree is perfectly

balanced. However, maintaining a perfect key tree

balance results in a significant overhead. Maintaining a

perfectly balanced tree after a membership change is

one problem; another is that TGDH assumes an

underlying homogeneous network. However, in

distributed computing environments, members can be

at a workstation, a laptop, or even a mobile computer.

중소기업융합학회 논문지 제4권 제4호 pp. 19-23, 2014 ISSN 2234-4438

중소기업융합학회 논문지 제4권 제4호

20

For example, if there is a mobile computer member in

the group communication and his position is assigned

to the last position in the key computational sequence

in the group key computation, then he/she must

calculate the cardinal value K = gK1K2...Knmod p. The

last positioned member has to compute the most

complex value, so if a mobile member is assigned to

the last position in the key computation, then all

members must wait longer for obtaining the GK. It is

clear that a member sequence must be reordered taking

into account that the network is composed mainly of

heterogeneous components and therefore, each has

different computing power. A reordering scheme to

optimize the GK computation is proposed in this

research. A secure and efficient key management is a

critical issue in group communication [7]. If the

system’s performance is low, then the system’s

usability will be low. Therefore, the focus on increasing

the efficiency of the group key computation is aimed at

maximizing system’s usability.

2. Related Work

Group communication arises in many different

settings, from low-level network multicasting to

conferencing, and other groupware applications.

Regardless of the environment, security services are

needed to provide communication privacy and integrity.

These services are not possible without a secure and

efficient key distribution, authentication, and other

mechanisms. In a secure communication, group

members need a common group key to protect their

messages exchanged as well as group key management

for the computation and distribution of the GK. Unless

the communication channel is secure, delivery of

messages over the network to the right destination

cannot be guaranteed. Group key management is a

building block to provide such assurance. There are

two types of schemes in group key management, group

key distribution and group key agreement [9]. The

group key distribution is assigned to one member in the

group who then becomes the key distribution center.

He/she computes the GK and distributes it to each

member in the group. The group key agreement is

suitable for peer-to-peer group communication [9]. In

these groups the group key agreement protocol ensures

that each member has an equal opportunity for

generating the GK. One member takes the role of the

Group Controller (GC), collects all the members’ blind

keys (public keys), broadcasts the group key

computation tree structure to all members, and controls

the overall group key computational processes [12, 13].

3. Tree-based Diffie-Hellman Group

Key Computation
The Group Diffie-Hellman (GDH) key agreement

protocol [10, 11] is an extension to the Diffie-Hellman

(DH) key exchange protocol [3]. The GK computation

is an important component of group key management

in securing group communication; several efforts to

enhance the group key computational process have

been reported [13,14,15] in which every member must

contribute in the computation of the GK. Therefore,

group key management focuses on minimizing

computational overhead due to its inherent expensive

cryptographic operations [1]. Because of the complexity

of the GK computation, the group key management

adopts a key tree structure that reduces computational

times. Key trees have been suggested in the past for

centralized group key distribution systems to reduce

the complexity of the key calculation [6]. One such

group key computational protocol is the Tree-based

Group Diffie-Hellman TGDH [5].

An example of the key tree-based GK computational

process follows. In the binary key tree for generating

a group key in Fig. 1, each node <l, v> represents a

v-th node at level l in the tree and node <l, v>’s secret

(private) key K<l, v> and a blind (public) key BK<l,

v>=f(K<l, v>) = g
K<l, v> modp, where g and p are large

integers. Every member holds the secret key along the

Efficient and Secure Group Key Generation Protocol for Small and Medium Business

21

3,62,1 3,73,0 3,1 2,2
()()

0,0

K KKK K Kg gg gg g
K g

< >< > < >< > < > < >

< > =

key path. For simplicity, assume each member knows

the blind keys in the key tree. The key paths are the

shadowed nodes (node <0,0>, <1,0>, and <2,0>) in Fig.

1. The final group key K<0,0> in Fig. 1 is computed

with the key paths using blind keys BK<3, 0>,BK<3,

1>,BK<2, 1>,BK<2, 2>,BK<3, 6>,andBK<3, 7>[2]. Therefore,

the final group key can be computed as Eq.(1):

mod p (1)

The TGDH has two major disadvantages. First,

maintaining a balanced group key computational tree

causes overhead. The group key computational tree

must be balanced at any given time so that the

efficiency of group key computation would be O(log n).

Otherwise, the performance of group key computational

key would be worse than O(log n). The second

disadvantage is derived from no regard for member’s

diversity in that if a slow member such as a mobile

computer joins the group key computational processes,

then the wait time would be long.

Fig. 1. A Binary Tree for Group Key

4. Performance Evaluations

Big O notation is useful when analyzing algorithms

for efficiency. For example, the time (or the number of

steps) it takes to complete a problem of size n might

be found to be T(n) = 4n² - 2n + 2. As n grows large,

the n² term will come to dominate, so that all other

terms can be neglected [14]. The efficiency of T(n) is

O(n2), so we can compare algorithm efficiency with Big

O notation. Complexity analysis requires however, that

the problem size n must be significantly large. As

mentioned earlier, the group size is less than 100, so it

is not suitable to analyze group key computational

protocols. Therefore, direct measurements is the only

way to estimate elapsed times for comparing the

algorithm efficiency.

In this section, group computational processes were

tested at four different Intel Pentium IV machines.

Each machine’s elapsed times were measured 16 times

for the group key computation at each level in Table 1.

Their averages are found in Table 1. We used 1,024-bit

integer g (exponentiation base), p (divider), and K

(secret key) for all measurements. These values are

known to be secure in the current technology [15].

Fig. 2 is based on Table 1. The values in x-axis

mean the level of group key computation. The values

in y-axis are elapsed times (msec). TGDH was

compared with Enhanced Group Key Computation

Protocol (EGKCP). Fig. 3 shows the differences

between TGDH and EGKCP. TGDH does not consider

member’s computing power. Thus, TGDH must wait

until the slowest member has completed computation of

the group key.

However, in EGKCP, only fast members are allowed

to compute the group key, so it always takes the least

time to compute the group key. Therefore, the overall

performance of EGKCP is on average 2.9 times faster

than in TGDH.

Table 1. Computational time for group key

(msec)

중소기업융합학회 논문지 제4권 제4호

22

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

1 2 3 4 5 6 7

Level

m
se

TGDH
EGKCP

Fig. 3. Group Key Computation for Each

Machine

5. Conclusions

Group key computation protocols must consider a

variety of members; otherwise, the system usability

will be degraded. Currently mobile computers are

becoming more popular. Network clusters are

communicating with conventional servers. The

enhanced group key computation protocol is proposed

because conventional group key agreements do not

consider the network heterogeneity in terms of

member’s computational power. The enhanced protocol

proposed also takes into account the latency of the

network as it affects message delays during the group

interaction. Each time membership changes, the

members who join in the group key computational

processes must be fast members to avoid unexpected

delays in obtaining the group key. The BKQ structure

proposed is being used to order messages containing

blind (public keys) in the order of arrival. The first

members in the queue are selected to join in the group

key computational processes. Currently the feasibility

of the Enhanced Group Key Computation Protocol

(EGKCP) approach is being investigated in terms of

improved GK efficiency. In addition, the feasibility of

the proposed protocol is being investigated in Grid

environments [16].

REFERENCES

[1] Y. Kim, A. Perrig, and G. Tsudik, "Tree-based group key

agreement," ACM Transaction on Information and System

Security, 2004.

[2] C. Wong, M. Gouda, and S. Lam, "Secure group

communications using key graphs," IEEE / ACM

Transactions on Networking, vol. 8, no. 1, Feb. 2000.

[3] W. Diffie and M. E. Hellman. “New directions in

cryptography,” Transactions on Information Theory,

IT-vol. 22, no. 6, pp. 644-654. Nov. 1976.

[4] Y. Kim, A. Perrig, and G. Tsudik, “Simple and

fault-tolerant key agreement for dynamic collaborative

groups,” In S. Jajodia, editor, 7th ACM Conference on

Computer and Communications Security, ACM Press,

Athens, Greece, pp. 235–244, Nov. 2000.

[5] D. Wallner, E. Harder, and R. Agee, “Key management for

multicast: Issues and architecture,” Internet-Draft

draft-wallner-keyarch-00.txt, Jun. 1997.

[6] Y. Amir, Y. Kim, C. Nita-Rotaru, J. Schultz, and J.

Stanton, “Secure group communication using robust

contributory key agreement,” IEEE Transaction on parallel

and distributed systems, vol. 15, no.4, Apr. 2004.

[7] M. Steiner, G. Tsudik and M. Waidner, “Key agreement in

dynamic peer groups,” IEEE Transactions on Parallel and

Distributed Systems, vol. 11, no. 8, pp.769-780, Aug. 2000.

[8] Y. Kim, “Group key agreement: theory and practice,” Ph.D.

thesis, May. 2002.

[9] E. Bresson, O. Chevassut, D. Pointcheval, amd J.

Quisquater, "Provably authenticated group Diffie-Hellman

key exchange," Conference on Computer and

Communications Security Proceedings of the 8th ACM

conference on Computer and Communications Security,

Philadelphia, PA, pp. 255-264, 2001.

[10] M. Steiner, G. Tsudik, and M. Waidner, “Cliques: A new

approach to group key agreement,” IEEE ICDCS'98 , May.

1998.

Efficient and Secure Group Key Generation Protocol for Small and Medium Business

23

[11] A. Fekete, N. Lynch, and A. Shvartsman, “Specifying and

using a partionable group communication service,” ACM

Transactions on Computer Systems, vol. 19, no. 2, May.

2001.

[12] Y. Amir,; Y. Kim, and C. Nita-Rotaru, "On the

performance of group key agreement protocols," ACM

transactions on information and system security, vol. 7,

no. 3, pp. 457, 2004.

[13] Donald Knuth. "The Art of Computer Programming,"

vol.1: Fundamental Algorithms, Third Edition.

Addison-Wesley, pp. 107–123, 1997.

[14] A. K. Lenstra and E. R. Verheul. Selecting cryptographic

key sizes. http://www.cryptosavvy.com/, Nov. 1999.

Shorter version of the report appeared in the proceedings

of the Public Key Cryptography Conference (PKC2000)

and in the Autumn ’99 PricewaterhouseCoopers CCE

newsletter. To appear in Journal of Cryptology.

[15] Lan Foster, The Grid: Blueprint for a New Computing

Infrastructure, Second Edition, Elsevier, pp.47-53, 2004.

저 자 소 개
정 현 수(Jung Hyun Soo) [정회원]

▪1982년 2월 : 숭실대학교 전자계

산학과 학사

▪1991년 2월 : 숭실대학교 컴퓨터

학과 석사

▪1995년 2월 :숭실대학교컴퓨터학

과 박사

▪1982년 2월 ∼ 2005년 11월 : ETRI 책임연구원

▪2006년 2월 ∼ 2011년 3월 : TANC CTO

▪2009년 2월 ∼ 2012년 2월 : 한남대학교 경영정보학과

겸임교수

▪2012년 4월 ∼ 현재 : 숭실대학교 정보보안학과 교수

<관심분야> : 정보보호 정책, 컴퓨터 비젼

