DOI QR코드

DOI QR Code

직접모사법을 이용한 지구 저궤도 파라볼릭 안테나 탑재 위성의 항력 예측

Prediction of Parabolic Antenna Satellite Drag Force in Low Earth Orbit using Direct Simulation Monte Carlo Method

  • 투고 : 2014.04.27
  • 심사 : 2014.06.25
  • 발행 : 2014.07.01

초록

저궤도에서 운용되는 위성은 대기 저항에 의한 연료소모가 크며, 연료소모는 임무수명 및 발사무게에 영향을 미치게 되어 위성 형상에 따른 항력의 예측이 중요하다. 본 논문에서는 직접모사법을 이용하여 파라볼릭 안테나를 탑재한 저궤도 위성의 임무고도의 변화와 받음각에 따른 항력 및 항력 계수의 변화를 살펴보았다. 저궤도의 희박 기체의 거동을 모사하는 직접모사법의 적용성을 검증하기 위해 스타샤인(Starshine) 위성의 비행데이터를 이용하여 고도, 대기와 표면의 상호작용에 따른 항력 계수를 비교하였다. 결론적으로 계산결과로부터 저궤도 위성의 정밀한 궤도수명 계산에 적합한 항력 계수를 도출하였다.

Consumption of the fuel on the satellite operating in low earth orbit, is increased due to the air resistance and the amount of increase makes the satellite lifetime decrease or the satellite mass risen. Therefore the prediction of drag force of the satellite is important. In the paper, drag force and drag coefficient analysis of the parabolic antenna satellite in low earth orbit using direct simulation monte carlo method (DSMC) is conducted according to the mission altitude and angle of attack. To verify the DSMC simulated rarefied air movement, Starshine satellite drag coefficient according to the altitude and gas-surface interaction are compared with the flight data. Finally, from the analysis results, it leads to appropriate satellite drag coefficient for orbit lifetime calculation.

키워드

참고문헌

  1. Chang-Su Park, Sangbum Cho and Woong-Rae Roh, "Velocity Loss Due to Atmospheric Drag and Orbit Lifetime Estimation", Aerospace Engineering and Technology, Vol. 5, No. 2, 2006, pp.205-212.
  2. Mildred M. M., Steven D. W., and Kenneth M., "Recommended Drag Coefficients for Aeronomic Satellites", The Upper Mesosphere and Lower Thermosphere, 1995, pp.349-355.
  3. Marcin D. Philinski, et al., "Drag Coefficients of Satellites with Concave Geometries: Comparing Models and Observations", Journal of Spacecraft and Rockets, Vol. 48, No. 2, March-April 2011, pp.312-325. https://doi.org/10.2514/1.50915
  4. G. A. Bird, "Molecular Gas Dynamics and the Direct Simulation of Gas Flows", Oxford Science Publications, 1993.
  5. Kyun-Ho Lee and Sung-Nam Lee, "Study on Small Thruster Plume using Preconditioned Continuum Scheme and DSMC Method in Vaccum Area", Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 37, No. 9, 2009, pp.906-915. https://doi.org/10.5139/JKSAS.2009.37.9.906
  6. Dong-Dae Lee, Hyung-Koo Park and Chan-Guk Park, "Analyses of 2-Dimensional Flowfield and Aerodynamic Characteristics Around a Flat Plate in Rarefied Gas Regime by Direct Simulation Monte Carlo Method", Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 23, No. 5, 1995, pp.41-48.
  7. Schaaf, S. A. and Chambre, P. L., "Flow of Rarefied Gases", Princeton Univ. Press, Princeton, NJ, 1961.
  8. Kenneth M. and Mildred M., "Gas-Surface Interactions and Satellite Drag Coefficients", Planetary and Space Science, Vol. 53, No. 8, 2005, pp.793-801. https://doi.org/10.1016/j.pss.2005.03.005
  9. Michiru Y., Yoshiaki N., and Junichi T., "Monte Carlo Simulation of Flow into Channel with Sharp Leading Edge", AIAA Progress in Astronautics and Aeronautics, Vol. 118, 1989, pp.583-596.
  10. https://directory.eopotal.org/web/eoportal/satellite-missions/s/starshine
  11. David A. V., "Fundamentals of Astrodynamics and Applications", Springer Verlag, 3rd edition, 2007.