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ON THE SOLUTIONS OF
THE (A\,n + m)-EINSTEIN EQUATION

SEUNGSU HWANG

ABSTRACT. In this paper, we study the structure of m-quasi Einstein
manifolds when there exists another distinct solution to the (A, n 4+ m)-
Einstein equation. In particular, we derive sufficient conditions for the
non-existence of such solutions.

1. Introduction

Let (M, g) be a complete n-dimensional Riemannian manifold and f be a
smooth real valued function on M. Recently, there has been an increasing
interest in the study of the extension of the Ricci tensor called the m-Bakry-
Emery Ricci tensor (c.f. [3], [5]). It is given by

m 1
Ty :rg—l—ngf—Edf@df

for 0 < m < oo, where ry is the Ricci tensor of g and Dgydf is the Hessian of
f. For A € R, (M, g, f) is called m-quasi Einstein if it satisfies the (A, n 4+ m)-
Einstein equation

(1) Ty + Dydf — %df@df:)\g_

It is well known that when m is a positive integer, the m-quasi Einstein metrics
correspond to certain warped product Einstein metrics (c.f. [3], [5]). It is clear
that if we take m to infinity, we obtain the gradient Ricci soliton equation

rg + Dgdf = Ag.

Thus we may call a gradient Ricci soliton a (A, oo)-Einstein manifold. Ricci
solitons are self-similar solutions of the Ricci flow.
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The main purpose of this paper is to answer the following natural question for
the m-quasi Einstein metrics with m < co: What is the geometric characteristic
of (M, g), if distinct solution of (1) exists?

Here, we call the solutions distinct when they do not differ by certain con-
stants. It is clear from equation (1) that if ¢ is a constant, f = f + ¢ is also a
solution of (1). Thus, we say that the two solution functions f and f of (1) are
distinct only when the difference function ¢ = f — f is not a constant function.

The answers to the abovementioned question are given as follows.

Theorem 1.1. Let (M,g) be a compact m-quasi Einstein manifold. Then,
there exists no other distinct solution to the (\,n + m)-FEinstein equation

1
T9+ngffgdf®df:)\g.

Theorem 1.2. Let (M,g) be a complete m-quasi Einstein manifold, possibly
with non-empty boundary. If there exists another distinct solution to the (A, n+
m)-Einstein equation, then the scalar curvature sy is constant. Moreover, there
exists no other distinct solution to the (A, n + m)-Einstein equation, either if
A >0 and f has its local mazimum in the interior of M, or X < 0.

When m = oo, the constancy of the scalar curvature implies rigidity of the
gradient Ricci solitons in some cases (c.f. [2], [4], and [6]. See also Remark 2.3).
For the definition of the rigidity of gradient Ricci solitons, see [7].

2. Level sets of the difference function

Suppose that there exists another solution f to (1). Then, the difference
function ¢ = f — f satisfies the equation

1 _
E(df@dffdf®dﬂ

(2) = %(df®d<p+dga®dffdcp®dga).

Dydp =

Consider a level set ¢! (c) for ¢ € R. For any tangent vectors X, Y to ¢~!(c), it
is easy to see that (Dxdip,Y) = 0. This implies that ¢~!(c) is totally geodesic
if [Vip| # 0 on ¢~ 1(c); for v = Vip/| V| the second fundamental form of ¢~ (c)
is given by

1
II(X,Y) = (Dxv,Y) = wwxd@,m =0.

Further, we have the following result.

Lemma 2.1. Each level set o~'(c) with |Vp| # 0 is totally geodesic. In
particular, on the level set p~*(c), we have

Vel2 = k(e) e,

where k(c) is a constant depending only on c.
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Proof. Tt is sufficient to prove only the second statement. For a tangent vector
X to ¢~ 1(c), by (2) we have

1 1
5 X(IVel*) = (Dxdp, V) = — df (X) [V,
Thus, on ¢~ (c)
2
X <ln |Ve|* — —f) = 0.
m

In other words, In|Ve|? — 2 f is constant on ¢~ *(c). O
From this, we have the following result.
Proposition 2.2. We have
(m —1)iver = (A(n — 1) = s) dop,
where iy is the interior product with respect to the vector field Y. In particular,
for any tangent vector X to p~t(c) where V| # 0,

r(X,Ve) =0.
Proof. Taking the divergence of (2) gives
—mdAp —mr(Ve,:) = —(Af)dp— Dyyde — (Ap)df
*Dwodf + (Asﬁ) dp + DV«pd%
since
dDydp = —dAo—1r(Ve,-)
o(df ©@dp) = —(Af)dp — Dysde,

and so on.
Note that the trace of (1) is given by

1
(3) Af = —sg+n+ — [V
Now, since the trace of (2) is given by
m Ay = 2df () - [Vel?,
for any vector &,

2Dedf, Vi) + 2(V f, Dedyp) — 2(Dedip, Vi) +mr(Vep, €)
= (=5 + An+ —[VFP) () + — (IVSPE() + AL — dF(9)E()
= (2df(6) ~ Vo) () — (Vi ) + —df (@) + AE(y)
= (247(¢) ~ Vo) €(2) — - (A (P)E() +IVoPE(T) ~ V()

1
m m
2

(= amt 0+ 21912+ 296 = 2a7(0) ) €66~ (908
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2
+— (2df () = [Vol) £(f)-
On the other hand, the left-hand side of the above equation is
2(Dedf, V) + 2(V f, Dedp) — 2(Dedep, Vo) +mr(Vep, §)

—27(&, V) + %é(f)df(w) + = (IVfPE(0) + df (0)E(f) — df (9)E())

2
(IVeI*E(f) + E(p)df (9) — E(P)[Vl?) +mr(Vip, £)

— =290, +2 (A+ VTP = Zd7(e) + -1V6l ) €0)

F2AE(9) - =

+ 2 (241 () ~ [Vol?) €1,

By substituting this equation in the previous equation, we obtain the desired
equation

(m=1)7r(Vep, &) = (Mn —1) = s) ().
The second statement follows by taking & = X. (I

Remark 2.3. By Proposition 2.2, when m = 1, the scalar curvature s, equals
to a constant A (n — 1) unless ¢ is trivial.

On the other hand, if there are two solutions f and f to the gradient Ricci
soliton equation

rg + Dgdf = Ag,

the difference function ¢ = f — f satisfies D,dp = 0, and thus Ve is a parallel
vector field on M, which splits a line thus decomposing M as M =R x N for
some (n — 1)-dimensional manifold N. In particular,

0=0Dydp = —dAp —r(Vy,) = —r(Ve,-),

which is the gradient Ricci soliton version of Proposition 2.2. Further, if the
second function f satisfies

ry + Dydf = Ag
with A # ), then Vi is a non-Killing homothetic vector field, and it is known
by [8] that the universal cover of M is flat.
3. Existence of distinct solutions

As a consequence of Proposition 2.2, we have:

Theorem 3.1. Let (M,g) be a complete m-quasi FEinstein manifold, possibly
with boundary. If there exists another distinct solution f to (1), then the scalar
curvature sq is constant, and when m # 1,

T(V% ) =0
for the difference function ¢ = f — f.
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Proof. Suppose that ¢ is not trivial. Then, if m = 1, s, is constant by Re-
mark 2.3. Now we assume that m # 1. Then, on p~1(c) where |Vi| # 0, from
the well-known Riccati equation we have

—v(m) = rg(v,v) + |ILI],
where v = V¢ /|Vy|. Thus, by Lemma 2.1, we have

v(m) = |1 = 0.
Therefore,
re(v,v) =0
on each level set p~!(c). However, by Proposition 2.2,
0= r(v,v) = ﬁ (A(n—1) —s,).
This implies that
(4) sg = A(n —1).

In other words, s, equals to A(n—1) on the level set of ¢ where [Vp| # 0. Note
that on the whole manifold M, the metric tensor g and the functions f, f are
real analytic by Proposition 2.4 of [5]. In particular, ¢ is real analytic, implying
that the set V¢ = 0 is not open unless ¢ is trivial. Hence, by continuity we
may conclude that s, is constant on all of M. Combining these facts and
Proposition 2.2 with continuity gives our theorem. O

Since a compact m-quasi Einstein metric with constant scalar curvature is
trivial by Proposition 2.1 of [3], we may deduce the following result, which is
Theorem 1.1. Here, however, we include a different proof.

Corollary 3.2. Let (M, g) be a compact m-quasi Einstein manifold (without
boundary). Then, there exists no other distinct solution to (1).

Proof. Suppose that there exists another distinct solution f to (1). Then,
¢ = f — f is not trivial. Therefore, by (3) and Theorem 3.1 with (4)

(5) Af = %|Vf|2+)\.

If A > 0, then f is a subharmonic function on M. Moreover, if A < 0, then f is
trivial by [5]. In either case, f should be trivial and g, Einstein. Thus, f is also
trivial, implying that ¢ is trivial. This contradiction proves our corollary. [l

Corollary 3.3. Let (M,g) be a complete m-quasi Einstein manifold, possibly
with non-empty boundary. Then, there exists no other distinct solution to (1),
either if A > 0 and f has its local mazimum in the interior of M, or A < 0.

Proof. As in the proof of Corollary 3.2, suppose that ¢ is not trivial. Then
A > 0. Our corollary follows immediately from equation (5). O
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Theorem 3.1 and Corollary 3.3 constitute Theorem 1.2. We remark that if

A > 0 and M is complete, possibly with non-empty boundary, M is known to
be compact by [5].
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