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ON THE SOLUTIONS OF

THE (λ, n + m)-EINSTEIN EQUATION

Seungsu Hwang

Abstract. In this paper, we study the structure of m-quasi Einstein
manifolds when there exists another distinct solution to the (λ, n + m)-
Einstein equation. In particular, we derive sufficient conditions for the
non-existence of such solutions.

1. Introduction

Let (M, g) be a complete n-dimensional Riemannian manifold and f be a
smooth real valued function on M . Recently, there has been an increasing
interest in the study of the extension of the Ricci tensor called the m-Bakry-
Emery Ricci tensor (c.f. [3], [5]). It is given by

rmg = rg +Dgdf −
1

m
df ⊗ df

for 0 < m ≤ ∞, where rg is the Ricci tensor of g and Dgdf is the Hessian of
f . For λ ∈ R, (M, g, f) is called m-quasi Einstein if it satisfies the (λ, n+m)-
Einstein equation

(1) rg +Dgdf −
1

m
df ⊗ df = λ g.

It is well known that when m is a positive integer, the m-quasi Einstein metrics
correspond to certain warped product Einstein metrics (c.f. [3], [5]). It is clear
that if we take m to infinity, we obtain the gradient Ricci soliton equation

rg +Dgdf = λ g.

Thus we may call a gradient Ricci soliton a (λ,∞)-Einstein manifold. Ricci
solitons are self-similar solutions of the Ricci flow.
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The main purpose of this paper is to answer the following natural question for
them-quasi Einstein metrics withm < ∞: What is the geometric characteristic
of (M, g), if distinct solution of (1) exists?

Here, we call the solutions distinct when they do not differ by certain con-
stants. It is clear from equation (1) that if c is a constant, f̄ = f + c is also a
solution of (1). Thus, we say that the two solution functions f and f̄ of (1) are
distinct only when the difference function ϕ = f − f̄ is not a constant function.

The answers to the abovementioned question are given as follows.

Theorem 1.1. Let (M, g) be a compact m-quasi Einstein manifold. Then,

there exists no other distinct solution to the (λ, n+m)-Einstein equation

rg +Dgdf −
1

m
df ⊗ df = λ g.

Theorem 1.2. Let (M, g) be a complete m-quasi Einstein manifold, possibly

with non-empty boundary. If there exists another distinct solution to the (λ, n+
m)-Einstein equation, then the scalar curvature sg is constant. Moreover, there

exists no other distinct solution to the (λ, n + m)-Einstein equation, either if

λ > 0 and f has its local maximum in the interior of M , or λ ≤ 0.

When m = ∞, the constancy of the scalar curvature implies rigidity of the
gradient Ricci solitons in some cases (c.f. [2], [4], and [6]. See also Remark 2.3).
For the definition of the rigidity of gradient Ricci solitons, see [7].

2. Level sets of the difference function

Suppose that there exists another solution f̄ to (1). Then, the difference
function ϕ = f − f̄ satisfies the equation

Dgdϕ =
1

m

(

df ⊗ df − df̄ ⊗ df̄
)

=
1

m
(df ⊗ dϕ+ dϕ⊗ df − dϕ⊗ dϕ) .(2)

Consider a level set ϕ−1(c) for c ∈ R. For any tangent vectorsX,Y to ϕ−1(c), it
is easy to see that 〈DXdϕ, Y 〉 = 0. This implies that ϕ−1(c) is totally geodesic
if |∇ϕ| 6= 0 on ϕ−1(c); for ν = ∇ϕ/|∇ϕ| the second fundamental form of ϕ−1(c)
is given by

II(X,Y ) = 〈DXν, Y 〉 =
1

|∇ϕ|
〈DXdϕ, Y 〉 = 0.

Further, we have the following result.

Lemma 2.1. Each level set ϕ−1(c) with |∇ϕ| 6= 0 is totally geodesic. In

particular, on the level set ϕ−1(c), we have

|∇ϕ|2 = k(c) e
2

m
f ,

where k(c) is a constant depending only on c.
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Proof. It is sufficient to prove only the second statement. For a tangent vector
X to ϕ−1(c), by (2) we have

1

2
X(|∇ϕ|2) = 〈DXdϕ,∇ϕ〉 =

1

m
df(X) |∇ϕ|2.

Thus, on ϕ−1(c)

X

(

ln |∇ϕ|2 −
2

m
f

)

= 0.

In other words, ln |∇ϕ|2 − 2
m
f is constant on ϕ−1(c). �

From this, we have the following result.

Proposition 2.2. We have

(m− 1) i∇ϕr = (λ(n− 1)− sg) dϕ,

where iY is the interior product with respect to the vector field Y . In particular,

for any tangent vector X to ϕ−1(c) where |∇ϕ| 6= 0,

r(X,∇ϕ) = 0.

Proof. Taking the divergence of (2) gives

−md△ϕ−mr(∇ϕ, ·) = −(∆f) dϕ−D∇fdϕ− (∆ϕ)df

−D∇ϕdf + (∆ϕ) dϕ+D∇ϕdϕ,

since

δDgdϕ = −d△ϕ− r(∇ϕ, ·)

δ(df ⊗ dϕ) = −(△f) dϕ−D∇fdϕ,

and so on.
Note that the trace of (1) is given by

(3) △f = −sg + λn+
1

m
|∇f |2.

Now, since the trace of (2) is given by

m∆ϕ = 2 df(ϕ)− |∇ϕ|2,

for any vector ξ,

2〈Dξdf,∇ϕ〉+ 2〈∇f,Dξdϕ〉 − 2〈Dξdϕ,∇ϕ〉 +mr(∇ϕ, ξ)

= (−s+ λn+
1

m
|∇f |2) ξ(ϕ) +

1

m

(

|∇f |2ξ(ϕ) + df(ϕ)ξ(f)− df(ϕ)ξ(ϕ)
)

+
1

m
(2 df(ϕ)− |∇ϕ|2) ξ(f)− r(∇ϕ, ξ) +

1

m
df(ϕ)ξ(f) + λ ξ(ϕ)

−
1

m
(2 df(ϕ)− |∇ϕ|2) ξ(ϕ) −

1

m
(df(ϕ)ξ(ϕ) + |∇ϕ|2ξ(f)− |∇ϕ|2ξ(ϕ))

=

(

−s+ λ(n+ 1) +
2

m
|∇f |2 +

2

m
|∇ϕ|2 −

4

m
df(ϕ)

)

ξ(ϕ) − r(∇ϕ, ξ)
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+
2

m

(

2 df(ϕ)− |∇ϕ|2
)

ξ(f).

On the other hand, the left-hand side of the above equation is

2〈Dξdf,∇ϕ〉 + 2〈∇f,Dξdϕ〉 − 2〈Dξdϕ,∇ϕ〉+mr(∇ϕ, ξ)

= − 2 r(ξ,∇ϕ) +
2

m
ξ(f)df(ϕ) +

2

m
(|∇f |2ξ(ϕ) + df(ϕ)ξ(f)− df(ϕ)ξ(ϕ))

+ 2λ ξ(ϕ)−
2

m
(|∇ϕ|2ξ(f) + ξ(ϕ)df(ϕ) − ξ(ϕ)|∇ϕ|2) +mr(∇ϕ, ξ)

= (m− 2) r(∇ϕ, ξ) + 2

(

λ+
1

m
|∇f |2 −

2

m
df(ϕ) +

1

m
|∇ϕ|2

)

ξ(ϕ)

+
2

m

(

2df(ϕ)− |∇ϕ|2
)

ξ(f).

By substituting this equation in the previous equation, we obtain the desired
equation

(m− 1) r(∇ϕ, ξ) = (λ(n− 1)− s) ξ(ϕ).

The second statement follows by taking ξ = X . �

Remark 2.3. By Proposition 2.2, when m = 1, the scalar curvature sg equals
to a constant λ (n− 1) unless ϕ is trivial.

On the other hand, if there are two solutions f and f̄ to the gradient Ricci
soliton equation

rg +Dgdf = λg,

the difference function ϕ = f − f̄ satisfies Dgdϕ = 0, and thus ∇ϕ is a parallel
vector field on M , which splits a line thus decomposing M as M = R×N for
some (n− 1)-dimensional manifold N . In particular,

0 = δDgdϕ = −d∆ϕ− r(∇ϕ, ·) = −r(∇ϕ, ·),

which is the gradient Ricci soliton version of Proposition 2.2. Further, if the
second function f̄ satisfies

rg +Dgdf = λ̄g

with λ̄ 6= λ, then ∇ϕ is a non-Killing homothetic vector field, and it is known
by [8] that the universal cover of M is flat.

3. Existence of distinct solutions

As a consequence of Proposition 2.2, we have:

Theorem 3.1. Let (M, g) be a complete m-quasi Einstein manifold, possibly

with boundary. If there exists another distinct solution f̄ to (1), then the scalar

curvature sg is constant, and when m 6= 1,

r(∇ϕ, ·) = 0

for the difference function ϕ = f − f̄ .
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Proof. Suppose that ϕ is not trivial. Then, if m = 1, sg is constant by Re-
mark 2.3. Now we assume that m 6= 1. Then, on ϕ−1(c) where |∇ϕ| 6= 0, from
the well-known Riccati equation we have

−ν(m) = rg(ν, ν) + ||II||2,

where ν = ∇ϕ/|∇ϕ|. Thus, by Lemma 2.1, we have

ν(m) = ||II||2 ≡ 0.

Therefore,

rg(ν, ν) = 0

on each level set ϕ−1(c). However, by Proposition 2.2,

0 = r(ν, ν) =
1

m− 1
(λ(n− 1)− sg) .

This implies that

(4) sg = λ(n− 1).

In other words, sg equals to λ(n−1) on the level set of ϕ where |∇ϕ| 6= 0. Note
that on the whole manifold M , the metric tensor g and the functions f, f̄ are
real analytic by Proposition 2.4 of [5]. In particular, ϕ is real analytic, implying
that the set ∇ϕ = 0 is not open unless ϕ is trivial. Hence, by continuity we
may conclude that sg is constant on all of M . Combining these facts and
Proposition 2.2 with continuity gives our theorem. �

Since a compact m-quasi Einstein metric with constant scalar curvature is
trivial by Proposition 2.1 of [3], we may deduce the following result, which is
Theorem 1.1. Here, however, we include a different proof.

Corollary 3.2. Let (M, g) be a compact m-quasi Einstein manifold (without
boundary). Then, there exists no other distinct solution to (1).

Proof. Suppose that there exists another distinct solution f̄ to (1). Then,
ϕ = f − f̄ is not trivial. Therefore, by (3) and Theorem 3.1 with (4)

(5) ∆f =
1

m
|∇f |2 + λ.

If λ > 0, then f is a subharmonic function on M . Moreover, if λ ≤ 0, then f is
trivial by [5]. In either case, f should be trivial and g, Einstein. Thus, f̄ is also
trivial, implying that ϕ is trivial. This contradiction proves our corollary. �

Corollary 3.3. Let (M, g) be a complete m-quasi Einstein manifold, possibly

with non-empty boundary. Then, there exists no other distinct solution to (1),
either if λ > 0 and f has its local maximum in the interior of M , or λ ≤ 0.

Proof. As in the proof of Corollary 3.2, suppose that ϕ is not trivial. Then
λ > 0. Our corollary follows immediately from equation (5). �
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Theorem 3.1 and Corollary 3.3 constitute Theorem 1.2. We remark that if
λ > 0 and M is complete, possibly with non-empty boundary, M is known to
be compact by [5].
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