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ON MINIMAL NON-QNS-GROUPS

Zhangjia Han, Huaguo Shi, and Guiyun Chen

Abstract. A finite group G is called a QNS-group if every minimal
subgroup X of G is either quasinormal in G or self-normalizing. In this
paper the authors classify the non-QNS-groups whose proper subgroups
are all QNS-groups.

1. Introduction

Throughout this paper, all groups are finite. Given a group theoretical prop-
erty P , a P-critical group or a minimal non-P-group is a group which is not a
P-group but all of whose proper subgroups are P-groups. There are many re-
markable examples about minimal non-P-groups: minimal non-abelian groups
(Miller and Moreno [10]), minimal non-nilpotent groups (Schmidt), minimal
non-supersoluble groups ([2]) and minimal non-p-nilpotent groups (Itô), mini-
mal non-MSP -groups ([4]) and minimal non-NSN -groups ([5]). In [12], Sastry
classified the minimal non-PN-groups.

Recall that a subgroup H is called quasinormal in a group G, if HK = KH
holds for every subgroup K of G and a group G is called a QN -group if every
minimal subgroup of G is quasinormal in G (see [14]). Clearly, a QN -group is
a generalization of PN-groups. In this paper, we consider a generalization of
QN -groups, which is called QNS-groups.

Definition. A group G is called a QNS-group if every minimal subgroup of
G is either quasinormal in G or self-normalizing.

It is easy to see that a QNS-group need not to be a QN -group. An example
is S3, the symmetric group of degree 3.

In the first place, we investigate properties of QNS-groups in general. Next,
by applying the structure of QNS-groups, we give the classification of minimal
non-QNS-groups.
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Our main results are as follows:

Main Theorem. Suppose that G is a non-QNS-group, each of whose proper

subgroup is a QNS-group. Then G is solvable and one of the following state-

ments is true:
(1) G = 〈a, x | ap

n

= bp = xp = 1, [x, a] = b, [a, b] = [b, x] = 1〉.

(2) G = 〈a, x | ap
n

= bp = xp = 1, [x, a] = b, [b, x] = 1, b−1ab = a1+pn−1

,

x−1apx = ap+pn−1

〉.
(3) G = (〈v1〉 × 〈v2〉) ⋊ 〈a〉, where vq1 = vq2 = ap = 1, va1 = vm1

1 , va2 =
vm2

2 ,m1 6≡ m2 (mod q).
In the following (4)–(7), P ∈ Sylp(G), Q ∈ Sylq(G), p < q are distinct

primes.

(4) G = PQ, QEG, Q is of prime order, |P | = p2. Moreover |CP (Q)| ≤ p
if P is an elementary abelian p-group or |CP (Q)| = 1 if P is cyclic.

(5) G = PQ, P E G, P is an ultraspecial 2-group of order 23s, exp(P ) = 4
and |Q| is a prime dividing 2s + 1. Moreover, |CP (Q)| > 1.

(6) G = PQ, P EG, P is an elementary abelian p-group of rank > 1, Q is

cyclic and Q acts irreducibly on P .

(7) G = PQ, QEG, Q is an elementary abelian q-group of rank > 1, P is

cyclic and P acts irreducibly on Q.

(8) G = Cp ⋊ (Cq ⋊ Cr), where p > q > r are distinct primes and CpCr =
Cp × Cr.

(9) G = Cp ⋊ (Cq × Cr), where p > q, r are distinct primes and Z(G) = 1.
(10) G = Cp × (Cq ⋊ Cr), where p, q and r are distinct primes and r < p.

Our notations are all standard. For example, we denote by A ⋊ B the
semidirect product of A and B; Cn always denotes a cyclic group of order n
and π(G) denotes the set of all prime divisors of |G|. All unexplained notations
can be found in [8] and [11].

2. Some preliminaries

In this section, we collect some lemmas which will be frequently used in the
sequel.

Lemma 2.1 ([8, 7.2.2]). Suppose that the Sylow p-subgroups of G are cyclic,

where p is the smallest prime divisor of |G|.Then G has a normal p-complement.

Lemma 2.2 (Maschke’s Theorem, [8, 8.4.6]). Suppose that the action of A
on an elementary abelian group G is coprime and H is an A-invariant direct
factor of G. Then H has an A-invariant complement in G.

Lemma 2.3 ([9]). Suppose that p′-group H acts on a p-group G. Let

Ω(G) =

{

Ω1(G) p > 2,
Ω2(G) p = 2.

If H acts trivially on Ω(G), then H acts trivially on G as well.
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Lemma 2.4 ([13]). If G is a minimal nonabelian simple group, i.e., non-

abelian simple groups whose all proper subgroups solvable, then G is isomorphic

to one of the following simple groups:
(1) PSL(2, p), where p is a prime with p > 3 and 5 ∤ p2 − 1.
(2) PSL(2, 2q), where q is a prime.

(3) PSL(2, 3q), where q is a prime.

(4) PSL(3, 3).
(5) The Suzuki group Sz(2q), where q is an odd prime.

The following lemma is an immediate consequence of [1, Theorem 2]:

Lemma 2.5. Let P be a quasinormal p-subgroup of G. Then Op(G) ≤ NG(P ).

3. Finite QNS-groups

In this section, we classify finite QNS-groups. Note that finite QN -groups
are obviously QNS-groups. Our results are the following theorem, which are
similar to those of QN -groups.

Theorem 3.1. Let G be a QNS-group. Then one of the following statements

is true:
(a) G is a QN -group.

(b) G = N ⋊Cp is a Frobenius group, where p is the smallest prime divisor

of |G| and every minimal subgroup of N is quasinormal in G.

Proof. Suppose that G is not a QN -group. We prove that G must be isomor-
phic to a group mentioned in (b) of the theorem.

We divide our proof into several steps.
(1) G is solvable.
Since G is not a QN -group, there is at least one minimal subgroup X0 in G

such that X0 is not quasinormal in G. By hypothesis, NG(X0) = X0. Hence
X0 is a Sylow p-subgroup of G. If p = 2, then G is obviously solvable. p 6= 2, if
the order of Sylow 2-subgroups of G is greater than 2, then any subgroup H of
order 2 in G is quasinormal, and hence X0H is a subgroup of G by hypothesis.
Therefore we get by Lemma 2.1 that NG(X0) ≥ X0H , a contradiction, which
implies that the order of any Sylow 2-subgroup of G is at most two. Thus G is
solvable.

(2) There is a unique p ∈ π(G) such that G has a non-quasinormal subgroup
of order p.

Suppose that G has two non-quasinormal minimal subgroupsX and Y which
are of coprime order in G. Then by the proof of (1), X and Y are Sylow
subgroups of G. Since G is solvable, we may assume that XY is a subgroup of
G without loss of generality. Hence either X or Y must not self-normalize by
Lemma 2.1, a contradiction.

(3) Conclusion established.
Let Cp be a non-quasinormal minimal subgroup of G. Then Cp is a Sylow

p-subgroup of G. Let Y be any minimal subgroup of G such that the orders of
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Cp and Y are coprime. Then Y is quasinormal in G by (2), and hence CpY is
a subgroup of G. Since NG(Cp) = Cp, we have that CpY = Y ⋊Cp, and then p
is the smallest prime divisor of |G|. Hence G has a normal p-complement N by
Lemma 2.1. It follows that G = N ⋊Cp. Again by NG(Cp) = Cp, we have that
CCp

(N) = 1. Therefore G is a Frobenius groups with kernel N and complement
Cp. Moreover, by (2), every minimal subgroup of N is quasinormal in G. This
proves our theorem. �

4. Minimal non-QNS-groups

It is easy to see that a subgroup H is quasinormal in G if and only if
HK = KH for every subgroup K of prime power order of G. We will use this
fact freely in our following proof.

Obviously all minimal non-QN -p-groups are minimal non-QNS-groups. The
classification of this kind of groups is given in [14], we list them as the following
lemma.

Lemma 4.1. Let G be a minimal non-QN -p-group. Then one of the following

statements is true:
(a) G = 〈a, x|ap

n

= bp = xp = 1, [x, a] = b, [a, b] = [b, x] = 1〉.

(b) G = 〈a, x|ap
n

= bp = xp = 1, [x, a] = b, [b, x] = 1, b−1ab = a1+pn−1

,

x−1apx = ap+pn−1

〉.

So, it only remains to classify finite minimal non-QNS-groups which are not
minimal non-QN -p-groups. In the first place, we study some basic properties
of minimal non-QNS-groups.

Proposition 4.2. Let G be a minimal non-QNS-group. Then G is solvable.

Proof. Suppose that G is not solvable. By Theorem 3.1, every proper subgroup
of G is solvable and hence G/Φ(G) is a minimal non-abelian simple group,
where Φ(G) is the Frattini subgroup of G. Let H be the 2-complement of
Φ(G). Then H EG and H is nilpotent. We have

(1) Every minimal subgroup of Φ(G) is normal in G.
Suppose that there exists a prime p ∈ π(G) such that Op(G) is a proper

subgroup of G. Then by the minimality of G, we know that Op(G) is solvable
and hence G is solvable, a contradiction. So, we have that Op(G) = G for each
p ∈ π(G). Let A be a proper subgroup of G. Then AΦ(G) is a proper subgroup
of G as well and hence every minimal subgroup X of Φ(G) is quasinormal in
AΦ(G). Thus XA = AX . It follows that X is quasinormal in G. Now by
Lemma 2.5, we have that X EG.

(2) H ≤ Z(G).
Indeed, let P ∈ Sylp(H), where p is a prime in π(H). Then P E G. By

(1), every subgroup X of order p in P is normal in G. Hence G/CG(X) =
NG(X)/CG(X) . Aut(X) ∼= Cp−1. If CG(X) is a proper subgroup G, then
CG(X) is solvable and G is hence solvable, a contradiction. Thus CG(X) = G,
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i.e., X ≤ Z(G). It follows that every subgroup of P of order p lies in the center
Z(G). Let S2 ∈ Syl2(G) and K = S2P . Apply Ito’s Lemma, we see that K is
p-nilpotent and so K is nilpotent. Then we have that S2 ≤ CG(P )EG. Using
the simplicity of G/Φ(G), we conclude that H ≤ Z(G). Thus (2) holds.

(3) H = 1.
Set K = G/S0, where S0 ∈ Syl2(Φ(G)). Then by (2) K/Z(K) ∼= G/Φ(G)

and K is a quasisimple group with the center of odd order. Hence in order to
prove H = 1, i.e., Z(K) = 1, it will suffice to show that the Schur multiplier of
each of the minimal simple groups is a 2-group. Indeed, this is true by checking
the table on the Schur multipliers of the known simple groups (see [3, p. 302]).

(4) Every subgroup of order 2mp (p an odd prime) of G = G/Φ(G) is 2-
nilpotent.

By (3), Φ(G) is a 2-group. Assume L/Φ(G) is a proper subgroup of order
2mp of G. Then L is a proper subgroup of order 2np of G for some natural
number n. Let P ∈ Sylp(L). Then |P | = p and hence P is quasinormal in
L. Since P is subnormal in L, we have that P is normal in L, that is, L is
2-nilpotent. Thus L/Φ(G) is 2-nilpotent.

(5) Final contradiction.
We know that G is isomorphic to one of the simple groups mentioned in

Lemma 2.4. Suppose that G ∼= PSL(2, p), PSL(2, 3q) or PSL(3, 3). Indeed,
each of PSL(2, p), PSL(2, 3q) and PSL(3, 3) contains a subgroup which is iso-
morphic to A4, the alternating group of degree 4, by (4) we conclude that
G cannot be any one of PSL(2, p), PSL(2, 3q) and PSL(3, 3). Suppose that
G ∼= PSL(2, 2q) or Sz(2q). Then G is a Zassenhaus group of odd degree and
the stabilizer of a point is a Frobenius group with kernel a 2-group. So G cannot
be any one of PSL(2, 2q) and Sz(2q) as well. Thus the proof is complete. �

By Proposition 4.2, we always assume in the following that G is a solvable
minimal non-QNS-group.

Proposition 4.3. Let G be a minimal non-QNS-group. Then |π(G)| ≤ 3.

Proof. Suppose that |π(G)| > 3. Let {P1, P2, . . . , Pk, . . . , Pr}, r > 3 be a
Sylow system of G, where Pi ∈ Sylpi

(G), i = 1, 2, . . . , r. Since G is not a
QNS-group by hypothesis, G has at least one minimal subgroup X0 such that
X0 is neither quasinormal in G nor self-normalizing. Without loss of generality
we may assume that X0 ≤ P1. Then there is a subgroup Y ≤ Pk(k 6= 1) such
that X0Y 6= Y X0. Let G1 = P1Pk. Then G1 is a QNS-group by hypothesis.
Since X0 is not quasinormal in G1, we have P1 = X0 and G1 = Pk ⋊ X0

is a Frobenius group. On the other hand, since NG(X0) > X0, there is a
Pi ∈ Sylpi

(G), i 6= k such that NPi
(X0) > 1. Let G2 = PiX0. Then G2 is

a QNS-group with NG2
(X0) > X0. Hence X0 is quasinormal in G2. Now

G3 = PkPiX0 is a proper subgroup of G since |π(G)| > 3, and therefore is a
QNS-group. However, X0 is neither quasinormal in G3 nor self-normalizing,
a contradiction. Thus |π(G)| ≤ 3. �
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The following theorem classifies all minimal non-QNS-groups whose order
having just two prime divisors.

Theorem 4.4. Suppose that G is a minimal non-QNS-group with |G| = paqb,
where a > 0, b > 0, p < q are distinct primes and P ∈ Sylp(G) and Q ∈
Sylq(G). Then one of the following statements is true:

(i) G = PQ, Q EG, Q is of prime order, |P | = p2. Moreover |CP (Q)| ≤ p
if P is an elementary abelian p-group or |CP (Q)| = 1 if P is cyclic.

(ii) G = (〈v1〉 × 〈v2〉) ⋊ 〈a〉, where vq1 = vq2 = ap = 1, va1 = vm1

1 , va2 = vm2

2 ,

m1 6≡ m2 (mod q).
(iii) G = PQ, P EG, P is an ultraspecial 2-group of order 23s, exp(P ) = 4

and |Q| is a prime dividing 2s + 1. Moreover, |CP (Q)| > 1.
(iv) G = PQ, P EG, P is an elementary abelian p-group of rank > 1, Q is

cyclic and Q acts irreducibly on P .

(v) G = PQ, QEG, Q is an elementary abelian q-group, P is cyclic and P
acts irreducibly on Q.

Proof. Let G = PQ with P ∈ Sylp(G) and Q ∈ Sylq(G), where p < q. We
divide our proof into two cases.

Case 1. G is supersolvable.
Assume that |Q| = q. Since G is not a QNS-group, there exists a minimal

subgroupX0 ≤ P such thatX0 is neither quasinormal inG nor self-normalizing.
If |P | > p2, let P ∗ be any maximal subgroup of P containing X0. Then P ∗Q
is a QNS-group. Hence X0 is quasinormal in P ∗Q by Theorem 3.1 and thus
X0 is quasinormal in G, a contradiction. Therefore we have |P | = p2. As
X0 � CP (Q), we have |CP (Q)| ≤ p if P is an elementary abelian p-group and
|CP (Q)| = 1 if P is cyclic. It follows that G is of type (i)

Suppose that |Q| > q. If Q is cyclic, then the minimal subgroup Q0 is
normal in G and |P | > p. Since PQ0 is a proper QNS-subgroup of G, we get
by Theorem 3.1 that each minimal subgroup P0 of P is quasinormal in PQ0.
Hence Q0 ≤ CG(P0) by Lemma 2.5. Thus P0 is quasinormal in G by Lemma
2.3, a contradiction. Therefore Q is non-cyclic.

Let V = Ω1(Q). Since Q is a QN -group, V is an elementary abelian q-
group and so by the supersolvability of G and Lemma 2.2, we have V = 〈v1〉×
(〈v2〉 × · · · × 〈vn〉), where 〈v1〉 E G and 〈v2〉 × · · · × 〈vn〉 is P -invariant. Now
P (〈v2〉×· · ·×〈vn〉) is a proper subgroup of G and so is aQNS-group. If |P | > p,
then every minimal subgroup of P is quasinormal in P (〈v2〉 × · · · × 〈vn〉) and
in P 〈v1〉 by Theorem 3.1. Hence for every minimal subgroup P0 of P , we have
V ≤ CG(P0) by Lemma 2.5. Thus P0 acts trivially on V and therefore P0

acts trivially on Q by Lemma 2.3, which implies that G is a QNS-group, a
contradiction. Hence we may assume that |P | = p.

Suppose that PV < G. If P is quasinormal in PV , then V ≤ NG(P ) by
Lemma 2.5 and hence P ≤ CG(V ). By Lemma 2.3, P acts trivially on Q, a
contradiction. Thus P is self-normalizing in PV , that is, NPV (P ) = P , which
implies that NG(P ) = P . By hypothesis, there exists a minimal subgroup Q0
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of Q such that Q0 is neither quasinormal in G nor self-normalizing in G. If
QG

0 < Q, then QG
0 P is a QNS-group and hence Q0 is quasinormal in QG

0 P .
Therefore Q0 is quasinormal in G, a contradiction. Therefore we get that
QG

0 = Q, which implies that Q = QG
0 = V , a contradiction as well. Hence we

obtain that PV = G. In this case Q = V = 〈v1〉 × (〈v2〉 × · · · × 〈vn〉) is an
elementary abelian q-group. Since P 〈v2〉×· · ·×〈vn〉 is a QNS-group , we have
that P ≤ NG(〈vi〉) by Lemma 2.5, where i = 2, . . . , n. Therefore we get 〈vi〉 is
normal in G for i = 2, . . . , n. Hence we obtain that 〈vi〉EG for i = 1, . . . , n.

An element a is said to act on V by scalars if there exists an integer m such
that a−1va = vm for all v in V . We claim that P can not act by scalars on V .
Assume that P acts by scalars on V . Then every subgroup of V is normal in
G. Hence, every subgroup of order q is normal in G. Set P = 〈a〉, and let m
be an integer satisfying a−1va = vm for all v in V . If m = 1, then a centralizes
V = Q. Thus P EG. If m 6= 1 (mod q), then CQ(a) = CV (a) = 1. It follows
that NG(P ) = P . Therefore we have proven that every minimal subgroup of
G is either normal in G or self-normalizing. By definition then, G is a QNS-
group, a contradiction. This contradiction concludes our claim. Hence n ≥ 2
and we may choose v1 and v2 so that a−1v1a = vm1

1 and a−1v2a = vm2

2 , where
m1 6≡ m2 (mod q). Then 〈v1v2〉 is not a quasinormal subgroup of 〈a〉〈v1, v2〉.
Hence 〈a〉〈v1, v2〉 is not a QNS-group, and so G = 〈a〉〈v1, v2〉, P = 〈a〉 is of
prime order and Q = 〈v1, v2〉 is of order q2. That is, G is of type (ii).

Case 2. G is non-supersolvable.
Let F (G) be the Fitting subgroup of G. Then F (G) = Op(G)×Oq(G).
Suppose in the first place that G = Op(G)Y = PY for some Y < G with

|Y | = q.
Since G is not a QNS-group, there exists a minimal subgroup X0 in G such

that X0 is neither quasinormal in G nor self-normalizing. If X0 = Y , then
CP (Y ) > 1. If Ω1(P ) = P , then there exists two Y -invariant proper subgroups
A and B of P such that P = A × B by Lemma 2.2. By hypothesis, both AY
and BY are QNS-groups. By Theorem 3.1, every minimal subgroup of A and
B is quasinormal G. Thus G is nilpotent, a contradiction. Hence Ω1(P ) < P .
Now Ω1(P )Y is a QNS-group, and hence CP (Y ) ≥ Ω1(P ) since CP (Y ) > 1.
If p > 2, then Y acts trivially on P by Lemma 2.3, a contradiction. Hence, we
have that p = 2. By the same argument as above we get that exp(P ) = 4 and
P is non-abelian. Let P ′ is a Y -invariant proper subgroup of P . If P ′Y < G,
then [P ′, Y ] = 1. Hence Y acts irreducibly on P/Φ(P ) and [P, Y ] = P . By [6,
Theorem 1.3], we know that P is an ultraspecial 2-group of order 23s, and |Q|
is a prime dividing 2s + 1. That is, G is of type (iii).

Assume that X0 < P . If XG
0 < P , then XG

0 Y is a QNS-group and hence
X0 is quasinormal in XG

0 Y . Therefore X0 is quasinormal in G, a contradiction.
Hence we get that XG

0 = P , which implies that P = XG
0 = Ω1(P ) is an

elementary group. If P is Y -reducible, then there exists two Y -invariant proper
subgroupsA and B of P such that P = A×B. By hypothesis, both AY and BY
are QNS-groups. By Theorem 3.1, every minimal subgroup of A is in normal
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AY , which implies that every minimal subgroup of A lies in the center of AY .
Similarly, we have that every minimal subgroup of B lies in the center of BY .
Thus we obtain G = P × Y , a contradiction, which means P is Y -irreducible.
That is, G is of type (iv).

Secondly we suppose that Op(G)Y < G for each Y < G with |Y | = q. In this
case Op(G)Y is a QNS-group, hence Y is quasinormal in Op(G)Y by Theorem
3.1 and so Y centralizes Op(G) by Lemma 2.5.

Subcase 1. There is a minimal subgroup Y of order q satisfying Y � Oq(G).
Suppose first that F (G)Y < G. Then by what has been said as above,

Y ≤ CG(Op(G)). If CG(Op(G)) < G, then Y is quasinormal in CG(Op(G)),
and hence is subnormal in CG(Op(G)), which implies that Y is subnormal
in G. Therefore Y ≤ Oq(G), a contradiction. Hence we may assume that
CG(Op(G)) = G, and then Op(G) ≤ Z(G). By the same argument, we can get
that Ω1(Oq(G)) ≤ Z(G).

Since G is solvable, there is a normal maximal subgroup M of G such that
|G : M | = r is a prime. If Y ≤ M , then we have by Theorem 3.1 that Y is
quasinormal in M and hence Y is subnormal in M . Thus we get Y ≤ Oq(G),
a contradiction. Therefore G = MY . Since M is a QNS-group, Ω1(Oq(G)) ≤
Ω1(Q ∩ M) ≤ Ω1(Oq(M)) ≤ Ω1(Oq(G)) ≤ Z(G), that is, every subgroup of
order q in M is normal in M . By [7, IV, 5.5], M is q-nilpotent and hence
P = Op(G) ≤ Z(G). Thus G = PQ is nilpotent, a contradiction.

Suppose now that F (G)Y = G. In this case G = Op(G) × (Oq(G)Y ) =
Op(G)×Q is a nilpotent group, a contradiction.

Subcase 2. Every minimal subgroup Y of order q lies in Oq(G).
By hypothesis G is not a QNS-group. Assume that G contains a minimal

subgroup X0 such that X0 is neither quasinormal in G nor self-normalizing.
(1) Suppose that |X0| = p. We claim now that |P | > p. Assume that

|P | = p. Then QEG by Lemma 2.1. If Ω1(Q)X0 = G, then Q is an elementary
abelian q-group. Since NQ(X0) > 1, we know that Q is X0-reducible by Lemma
2.2. Then there exists two X0-invariant proper subgroups A and B of Q such
that Q = A × B. By hypothesis, both AX0 and BX0 are QNS-groups. By
Theorem 3.1, every minimal subgroup of A and B is quasinormal G. Hence we
have that all minimal subgroups of A and B are all normal in G by Lemma 2.5,
which implies that G is supersolvable, a contradiction. If Ω1(Q)X0 < G, then
Ω1(Q)X0 is a QNS-group by hypothesis and hence Ω1(Q)X0 = Ω1(Q) × X0

since X0 is not self-normalizing. Therefore we obtain that G is nilpotent by
Lemma 2.3, a contradiction too. Thus |P | > p.

Suppose that L = POq(G) < G. Then by Theorem 3.1, every minimal
subgroup of Q is quasinormal in L and hence quasinormal in G. Let Y be any
minimal subgroup ofQ. Then PY is a proper subgroup ofG and hence is aQN -
group by hypothesis and every minimal subgroup of order q in PY is normal
in PY by Theorem 3.1. It follows that X acts trivially on Ω1(Oq(G)) for every
minimal subgroup X of P and therefore X acts trivially on Oq(G) by Lemma
2.3, that is, X ≤ CG(Oq(G)) E G. If CG(Oq(G)) = G, then Oq(G) ≤ Z(G).
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Now [7, IV, 5.5] tells us that G is q-nilpotent and hence P = Op(G). If
CG(Oq(G)) < G, then X is subnormal in G. Therefore X ≤ Op(G). Thus we
obtain that X ≤ Op(G) for each X < G with |X | = p.

If Op(G)Q < G, then X0 is quasinormal in Op(G)Q and hence is quasi-
normal in G, a contradiction. Therefore we may assume that Op(G)Q = G.
If Ω1(Op(G))Q < G, then X0 is quasinormal in Ω1(Op(G))Q and hence is
quasinormal in G, a contradiction too. Thus we get Ω1(Op(G))Q = G, and
P = Ω1(Op(G)) is a normal elementary abelian p-subgroup of G. Let 1 6= y ∈ Q
be an element with minimal order such that 〈y〉 cannot normalize X0. Then
P 〈y〉 is clearly not a QNS-group. Hence G = P 〈y〉 = PQ. If P is Q-reducible,
then there exists two Q-invariant proper subgroups A and B of P such that
P = A×B. By hypothesis, both AQ and BQ are QNS-groups. By Theorem
3.1, every minimal subgroup of A is in normal AQ, which implies that every
minimal subgroup of A lies in the center of AQ. Similarly, we have that every
minimal subgroup of B lies in the center of BQ. Thus we obtain G = P ×Q,
a contradiction, which means P is Q-irreducible. Since L = POq(G) < G, we
have that |Q| > q. That is, G is of type (iv).

Suppose that L = POq(G) = G. Then Q is normal in G. Let M =
PΩ1(Q). If M is a proper subgroup of G, then every minimal subgroup of
M is quasinormal in M by Theorem 3.1. It follows that X0 acts trivially on
Ω1(Q) by Lemma 2.5 and therefore X0 acts trivially on Q by Lemma 2.3, which
implies that X0 is quasinormal in G, a contradiction. Hence M = PΩ1(Q) = G
and so Q is an elementary abelian q-group. Let P ∗ be a maximal subgroup of
P containing X0. Then QP ∗ is a QNS-group by hypothesis. If |P ∗| > p, then
we have X0 is quasinormal in QP ∗ by Theorem 3.1 and so X0 is quasinormal
in G, a contradiction. Hence |P ∗| = p and so |P | = p2. If P is an elementary
abelian p-group, let P = 〈a〉 × 〈b〉. Then 〈a〉Q and 〈b〉Q are all QNS-groups.
Hence every minimal subgroup of Q is quasinormal in G by Theorem 3.1, which
implies that G is supsolvable, a contradiction. Thus P is cyclic of order p2. By
the same argument as above we know that the action of P on Q is irreducible.
In addition, since G is non-supersolvable, we have |Q| > q. It follows that G is
of type (v).

(2) Suppose that |X0| = q. Let R = PΩ1(Oq(G)). Then X0 ≤ R and hence
R = G by the choice of X0. In particular, Q = Ω1(Oq(G)) is normal in G and
Q is an elementary abelian q-group. Since X0 ≤ Q is not quasinormal in G,
there exists an element y ∈ P such that y−1X0y 6= X0. Obviously 〈y〉Q is not
a QNS-group, hence G = 〈y〉Q. In particular, P is cyclic. Now we claim that
P acts irreducibly on Q. Indeed, since G is non-supersolvable, some G-chief
factor Q0 of Q has order more than q. Then by Lemma 2.2, we may assume Q0

is a minimal normal subgroup of G contained in Q. If PQ0 is a QNS-group,
then every minimal subgroup of Q0 is quasinormal in PQ0 and so quasinormal
in G since Q is a QNS-group, a contradiction. Hence Q0 = Q and our claim
holds. It follows that G is of type (v).

The proof of the theorem is now complete. �
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The following theorem classifies all minimal non-QNS-groups whose order
having just three prime divisors.

Theorem 4.5. Suppose that G is a minimal non-QNS-group with |π(G)| = 3.
Then one of the following statements is true:

(i) G = Cp ⋊ (Cq ⋊ Cr), where p > q > r are distinct primes and CpCr =
Cp × Cr.

(ii) G = Cp ⋊ (Cq × Cr), where p > q, r are distinct primes and Z(G) = 1.
(iii) G = Cp × (Cq ⋊ Cr), where p, q and r are distinct primes and r < p.

Proof. Since G is solvable by Proposition 4.2, we may assume that G = P1P2P3,
where Pi ∈ Sylpi

(G), i = 1, 2, 3. By hypothesis G is not a QNS-group, we may
assume that G contains a minimal subgroup X ≤ P1 such that X is neither
quasinormal in G nor self-normalizing without loss of generality. As P1P2 and
P1P3 are proper subgroups of G, both P1P2 and P1P3 are QNS-groups. Since
X is not quasinormal in G, we know that either P2 or P3 cannot normalize
X . Assume that P2 can not normalize X without loss of generality, then
P1P2 = P2 ⋊ P1. It follows that X = P1 by Theorem 3.1. On the other hand,
since X is not self-normalizing, we have XP3 = X ⋊ P3 or XP3 = X × P3.

Case 1. XP3 = X ⋊ P3. Then P3 = Z is of prime order, and p2 > p1 > p3
by Theorem 3.1. Hence P2P3 = P2 ⋊ P3 or P2P3 = P2 × P3.

If P2P3 = P2⋊P3, then G = P2⋊(X⋊Z). Choose a minimal subgroup Y of
P2 and let T = Y ⋊ (X⋊Z). If T is a proper subgroup of G, then T is a QNS-
group. However as we know X is neither quasinormal in T nor self-normalizing,
a contradiction. On the other hand, X ⋊ Z ∼= NG(Y )/CG(Y ) . Aut(Y ) is a
cyclic group, a contradiction.

By the similar way, we can get that if P2P3 = P2 ×P3, then G is of type (i).
Case 2. XP3 = X × P3. If P2P3 is a QNS-group and P2P3 = P2 ⋊ P3,

then P3 = Z is of prime order, and p2 > p1, p3 by Theorem 3.1. In this case,
G = P2⋊(X×Z). Choose a minimal subgroup Y of P2 and let U = Y ⋊(X×Z).
If U is a proper subgroup of G, then U is a QNS-group. However X and Z are
neither quasinormal in U nor self-normalizing, a contradiction. Hence U = G
and G is of type (ii).

If P2P3 is a QNS-group and P2P3 = P3⋊P2, then P2 = Y is of prime order,
and p3 > p2 > p1 by Theorem 3.1. By the same way as in Case 1, we can get
G is of type (i).

If P2P3 is a QN -group, choose a minimal subgroup Y of P2 and a minimal
subgroup Z of P3. Let W = Z × (Y ⋊ X). If W is a proper subgroup of
G, then W is a QNS-group. However X is neither quasinormal in W nor
self-normalizing, a contradiction. Hence G = W . That is, G is of type (iii).

The proof of the theorem is now complete. �

Proof of Main Theorem. It follows from Lemma 4.1, Proposition 4.2, Theorems
4.4 and 4.5. �
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