Bull. Korean Math. Soc. **51** (2014), No. 4, pp. 1055–1062 http://dx.doi.org/10.4134/BKMS.2014.51.4.1055

GENERATING SETS OF STRICTLY ORDER-PRESERVING TRANSFORMATION SEMIGROUPS ON A FINITE SET

HAYRULLAH AYIK AND LEYLA BUGAY

ABSTRACT. Let O_n and PO_n denote the order-preserving transformation and the partial order-preserving transformation semigroups on the set $X_n = \{1, \ldots, n\}$, respectively. Then the strictly partial order-preserving transformation semigroup SPO_n on the set X_n , under its natural order, is defined by $SPO_n = PO_n \setminus O_n$. In this paper we find necessary and sufficient conditions for any subset of SPO(n, r) to be a (minimal) generating set of SPO(n, r) for $2 \le r \le n - 1$.

1. Introduction

The partial transformation semigroup $P_{\mathcal{X}}$ and the full transformation semigroup $T_{\mathcal{X}}$ on a set \mathcal{X} , the semigroups analogue of the symmetric group $S_{\mathcal{X}}$, have been much studied over the last fifty years, for both finite and infinite \mathcal{X} . Here we are concerned solely with the case where $\mathcal{X} = X_n = \{1, \ldots, n\}$, and we write respectively P_n , T_n and S_n rather than P_{X_n} , T_{X_n} and S_{X_n} . Among recent contributions are [1, 2, 6, 10, 11]. The *domain*, *image*, *height* and *kernel* of $\alpha \in P_n$ are defined by

dom
$$(\alpha) = \{x \in X_n : \text{ there exists } y \in X_n \text{ such that } x\alpha = y\},\$$

im $(\alpha) = \{y \in X_n : \text{ there exists } x \in X_n \text{ such that } x\alpha = y\},\$
h $(\alpha) = |\text{im}(\alpha)|,\$
ker $(\alpha) = \{(x, y) \in X_n \times X_n : (x, y \in \text{dom}(\alpha) \text{ and } x\alpha = y\alpha) \text{ or }\$
 $(x, y \notin \text{dom}(\alpha))\},\$

respectively. Notice that ker(α) is an equivalence relation on X_n and the equivalence classes of ker(α) are all of the pre-image sets of elements in im (α) together with $X_n \setminus \text{dom}(\alpha)$. Then, the set kp (α) = { $y\alpha^{-1} : y \in \text{im}(\alpha)$ } is called the *kernel partition* of α and the ordered pair ks (α) = (kp (α), $X_n \setminus \text{dom}(\alpha)$)

O2014Korean Mathematical Society

Received August 14, 2013.

²⁰¹⁰ Mathematics Subject Classification. 20M20.

Key words and phrases. (partial/strictly partial) order-preserving transformation semigroup, idempotents, (minimal) generating set, rank.

is called the *kernel structure* of α . For any $\alpha, \beta \in P_n$ notice that

$$ks(\alpha) = ks(\beta) \quad \Leftrightarrow \quad kp(\alpha) = kp(\beta) \Leftrightarrow \quad ker(\alpha) = ker(\beta) \text{ and } dom(\alpha) = dom(\beta).$$

Moreover, for any α, β in P_n it is well known that dom $(\alpha\beta) \subseteq \text{dom}(\alpha)$, ker $(\alpha) \subseteq \text{ker}(\alpha\beta)$, im $(\alpha\beta) \subseteq \text{im}(\beta)$ and that $\alpha \in P_n$ is an idempotent if and only if $x\alpha = x$ for all $x \in \text{im}(\alpha)$. We denote the set of all idempotents in any subset U of any semigroup by E(U). (See [3, 7] for other terms in semigroup theory which are not explained here.)

The order-preserving transformation semigroup O_n and the partial orderpreserving transformation semigroup PO_n on X_n , under its natural order, are defined by

$$O_n = \{ \alpha \in T_n \setminus S_n, : x \le y \Rightarrow x\alpha \le y\alpha \; (\forall x, y \in X_n) \}, \text{ and} \\ PO_n = O_n \cup \{ \alpha \in P_n \setminus T_n : x \le y \Rightarrow x\alpha \le y\alpha \; (\forall x, y \in \text{dom} (\alpha)) \},$$

respectively. Since dom $(\alpha\beta) \subseteq \text{dom}(\alpha)$, for all $\alpha, \beta \in PO_n$, $SPO_n = PO_n \setminus O_n$ is a subsemigroup of PO_n which is called the *strictly partial order-preserving transformation semigroup* on X_n , and

$$SPO(n,r) = \{ \alpha \in SPO_n : |\mathrm{im}(\alpha)| \le r \}$$

is (under usual composition) a subsemigroup of SPO_n for $1 \le r \le n-1$. Notice that $SPO(n, n-1) = SPO_n$.

Let $\mathcal{A} = \{A_1, \ldots, A_k\}$ be a partition of a set $Y \subseteq X_n$. Then \mathcal{A} is called an ordered partition, and we write $\mathcal{A} = (A_1, \ldots, A_k)$, if x < y for all $x \in A_i$ and $y \in A_{i+1}$ $(1 \le i \le k-1)$ (the idea of ordering a family of sets appeared on p335 of [8]). Moreover, a set $\{a_1, \ldots, a_k\}$, such that $|\{a_1, \ldots, a_k\} \cap A_i| = 1$ for each $1 \le i \le k$, is called a *transversal* (or a *cross-section*) of \mathcal{A} . For $\alpha \in PO_n$ with height k, we have the order on the kernel classes A_1, \ldots, A_k of kp (α) as defined above and ker(α) = $\bigcup_{i=1}^{k+1} (A_i \times A_i)$, where $\emptyset \neq A_{k+1} = X_n \setminus \text{dom}(\alpha)$. Without loos of generality, if (A_1, \ldots, A_k) is an ordered partition of dom (α), then $A_1\alpha < \cdots < A_k\alpha$, and moreover, α can be written in the following tabular forms:

$$\alpha = \begin{pmatrix} A_1 & A_2 & \cdots & A_k & A_{k+1} \\ A_1 \alpha & A_2 \alpha & \cdots & A_k \alpha & - \end{pmatrix} \text{ or } \alpha = \begin{pmatrix} A_1 & A_2 & \cdots & A_k \\ A_1 \alpha & A_2 \alpha & \cdots & A_k \alpha \end{pmatrix}.$$

For any α, β in SPO(n, r), it is easy to show by using the definitions of the Green's equivalences that

$$(\alpha, \beta) \in \mathcal{L} \quad \Leftrightarrow \quad \operatorname{im} (\alpha) = \operatorname{im} (\beta), \qquad (\alpha, \beta) \in \mathcal{R} \quad \Leftrightarrow \quad \operatorname{ks} (\alpha) = \operatorname{ks} (\beta), (\alpha, \beta) \in \mathcal{D} \quad \Leftrightarrow \quad \operatorname{h} (\alpha) = \operatorname{h} (\beta) \qquad \text{and} \qquad (\alpha, \beta) \in \mathcal{H} \quad \Leftrightarrow \quad \alpha = \beta$$

(see for the definitions of the Green's equivalences [7, pages 45–47]). For each r such that $1 \leq r \leq n-1$, we denote Green's \mathcal{D} -class of all elements in SPO(n, r) of height k by D_k for $1 \leq k \leq r$.

Let $\Pi = (V(\Pi), \vec{E}(\Pi))$ be a digraph. For two vertices $u, v \in V(\Pi)$ we say u is connected to v in Π if there exists a directed path from u to v, that is, either $(u, v) \in \vec{E}(\Pi)$ or $(u, w_1), \ldots, (w_i, w_{i+1}), \ldots, (w_n, v) \in \vec{E}(\Pi)$ for some $w_1, \ldots, w_n \in V(\Pi)$. Moreover, we say Π is strongly connected if, for any two vertices $u, v \in V(\Pi)$, u is connected to v in Π . Let X be a non-empty subset of Green's \mathcal{D} -class D_r of SPO(n, r) for $2 \leq r \leq n-1$. Then we define a digraph Γ_X as follows:

- the vertex set of Γ_X , denoted by $V = V(\Gamma_X)$, is X; and
- the directed edge set of Γ_X , denoted by $\vec{E} = \vec{E}(\Gamma_X)$, is

$$\vec{E} = \{ (\alpha, \beta) \in V \times V : \alpha\beta \in D_r \}$$

Let S be any semigroup, and let A be any non-empty subset of S. Then the subsemigroup generated by A, that is, the smallest subsemigroup of S containing A, is denoted by $\langle A \rangle$. The rank of a finitely generated semigroup S, a semigroup generated by its a finite subset, is defined by

$$\operatorname{rank}(S) = \min\{|A| : \langle A \rangle = S\}.$$

Gomes and Howie pointed out that the semigroup SPO_n is not idempotent generated and the rank of SPO_n is 2n-2 in [5]. Moreover, for $2 \leq r \leq n-2$, Garba proved in [4] that the subsemigroup SPO(n,r) is generated by idempotents of height r, and the rank of SPO(n,r) is $\sum_{k=r}^{n-1} \binom{n}{k} \binom{k-1}{r-1}$.

The main goal of this paper is to find necessary and sufficient conditions for any subset of SPO(n, r) to be a (minimal) generating set of SPO(n, r) for $2 \le r \le n-1$.

2. Generating sets of SPO_n

For convenience we state and prove probably a well known proposition.

Proposition 1. For $n, k \geq 2$ and $1 \leq r \leq n-1$, let $\alpha, \beta, \alpha_1, \ldots, \alpha_k \in D_r$ in SPO(n, r). Then,

(i) $\alpha\beta \in D_r$ if and only if $\operatorname{im}(\alpha\beta) = \operatorname{im}(\beta)$. In other words, $\operatorname{im}(\alpha)$ is a transversal of the kernel partition kp (β) of β .

(ii) $\alpha_1 \cdots \alpha_k \in D_r$ if and only if $\alpha_i \alpha_{i+1} \in D_r$ for each $1 \le i \le k-1$.

Proof. The proof of (i) is clear. We prove (ii):

 (\Rightarrow) This part of the proof is also clear.

(\Leftarrow) Suppose that $\alpha_i \alpha_{i+1} \in D_r$ for each $1 \leq i \leq k-1$. We use the inductive hypothesis on k to complete the proof.

For k = 2 the claim is obviously true. Suppose that the claim holds for $k - 1 \ge 2$. If $\operatorname{im}(\alpha_{k-1}) = \{y_1, \ldots, y_r\}$, then $\operatorname{im}(\alpha_1 \cdots \alpha_{k-1}) = \{y_1, \ldots, y_r\}$ since $\operatorname{im}(\alpha_1 \cdots \alpha_{k-1}) \subseteq \operatorname{im}(\alpha_{k-1})$ and $\alpha_1 \cdots \alpha_{k-1}, \alpha_{k-1} \in D_r$. Thus it follows from (i) that

$$\operatorname{im}(\alpha_1 \cdots \alpha_{k-1} \alpha_k) = \{y_1 \alpha_k, \dots, y_r \alpha_k\} = \operatorname{im}(\alpha_{k-1} \alpha_k) = \operatorname{im}(\alpha_k),$$

and so $\alpha_1 \cdots \alpha_{k-1} \alpha_k \in D_r$, as required.

For $0 \leq s \leq r \leq n$ recall the set

$$[r,s] = \{\alpha \in PO_n : |\operatorname{dom}(\alpha)| = r \text{ and } |\operatorname{im}(\alpha)| = s\}$$

(defined in [5, p. 276]). It is indicated in [5] that the top Green's \mathcal{D} -class $D_{n-1} = [n-1, n-1]$ in SPO_n does not generate SPO_n , and that SPO_n is not idempotent generated.

Suppose that A is a (minimal) generating set of SPO_n . Since there exist n different Green's \mathcal{L} -classes and n different Green's \mathcal{R} -classes in D_{n-1} , A must contain at least n elements from D_{n-1} . Next notice that a typical element $\alpha \in [n-1, n-2] \subseteq D_{n-2}$ has the form:

$$\alpha = \begin{pmatrix} a_1 & \cdots & a_{n-1} \\ b_1 & \cdots & b_{n-1} \end{pmatrix} \in [n-1, n-2],$$

where $a_1 < \cdots < a_{n-1}, b_1 \leq \cdots \leq b_{n-1}$ and all but one of the inequalities between the b's are strict. Then α is called of kernel type i if $b_i = b_{i+1}$, and we write $K(\alpha) = i$, and so the possible values for $K(\alpha)$ are $1, 2, \ldots, n-2$. It is shown in [5] that $A \cap [n-1, n-2]$ must contain at least one element of each of the n-2 possible kernel types in [n-1, n-2]. For each $i = 2, \ldots, n$ let

(1)
$$\alpha_i: X_n \setminus \{i\} \to X_n \setminus \{i-1\} \text{ and } \alpha_1: X_n \setminus \{1\} \to X_n \setminus \{n\}$$

be the unique order-preserving (bijective) transformations. That is, let α_1 denote the unique order-preserving (bijective) transformation from $X_n \setminus \{1\}$ onto $X_n \setminus \{n\}$ and, for each $i \in \{2, \ldots, n\}$, let α_i denote the unique orderpreserving (bijective) transformation from $X_n \setminus \{i\}$ onto $X_n \setminus \{i-1\}$. For each $i = 1, \ldots, n-2$, let

$$(2) \qquad \qquad \beta_i: X_n \setminus \{n\} \to X_n$$

be the order-preserving transformation defined by

$$j\beta_i = \begin{cases} i+1 & \text{if } j=i\\ j & \text{otherwise.} \end{cases}$$

Then it is clear that $\{\alpha_1, \ldots, \alpha_n\} \subseteq [n-1, n-1] = D_{n-1}$ and $\{\beta_1, \ldots, \beta_{n-2}\} \subseteq [n-1, n-2]$ and it is showed in [5] that

(3)
$$\mathcal{Z} = \{\alpha_1, \dots, \alpha_n\} \cup \{\beta_1, \dots, \beta_{n-2}\}$$

is a minimal generating set of SPO_n . Thus rank $(SPO_n) = 2n - 2$. Although $SPO_n = SPO(n, n - 1)$ is not idempotent generated, it is shown in [4] that SPO(n, r) is generated by the idempotents in D_r , and that

$$\operatorname{rank}\left(SPO(n,r)\right) = \sum_{k=r}^{n-1} \binom{n}{k} \binom{k-1}{r-1}$$

for $2 \leq r \leq n-2$.

Notice that if $\alpha, \beta \in [r, r] \subseteq SPO(n, r)$ for $1 \leq r \leq n - 1$, then it follows from Proposition 1(i) that $\alpha\beta \in D_r$ if and only if im $(\alpha) = \operatorname{dom}(\beta)$.

Theorem 2. Let A be a subset of SPO_n , and let $B = A \cap [n-1, n-1]$ and $C = A \cap [n-1, n-2]$. Then A is a generating set of SPO_n if and only if

- (i) there exists $\lambda_i \in B$ such that dom $(\lambda_i) = X_n \setminus \{i\}$ for each i = 1, 2, ..., n,
- (ii) there exist $\gamma_1 \in B$ such that $\operatorname{im}(\gamma_1) = X_n \setminus \{n\}$ and $\gamma_i \in B$ such that $\operatorname{im}(\gamma_i) = X_n \setminus \{i-1\}$ for each $i = 2, 3, \dots, n$,
- (iii) λ_i is connected to γ_i in the digraph Γ_B for each i = 1, 2, ..., n; and
- (iv) there exists at least one element of each of the n-2 possible kernel types in C.

Proof. (\Rightarrow) Suppose that A is a generating set of SPO_n . Let α_i , with $i = 1, 2, \ldots, n$, be the elements defined in (1). Since A is a generating set, there exist $\lambda_{(i,1)}, \ldots, \lambda_{(i,k)} \in A$ such that

$$\alpha_i = \lambda_{(i,1)} \cdots \lambda_{(i,k)}$$

for each $i \in \{1, \ldots, n\}$. Since $\ker(\lambda_{(i,1)}) \subseteq \ker(\alpha_i)$, dom $(\alpha_i) \subseteq \dim(\lambda_{(i,1)})$, $\operatorname{im}(\alpha_i) \subseteq \operatorname{im}(\lambda_{(i,k)})$ and $\alpha_i \in [n-1, n-1]$, it follows that dom $(\alpha_i) = X_n \setminus \{i\} = \operatorname{dom}(\lambda_{(i,1)})$ for each $i = 1, 2, \ldots, n$ and that $\operatorname{im}(\alpha_1) = X_n \setminus \{n\} = \operatorname{im}(\lambda_{(1,k)})$ and $\operatorname{im}(\alpha_i) = X_n \setminus \{i-1\} = \operatorname{im}(\lambda_{(i,k)})$ for each $i = 2, 3, \ldots, n$. Then it is clear that $\lambda_{(i,1)}, \ldots, \lambda_{(i,k)} \in B$. Let $\lambda_i = \lambda_{(i,1)}$ and $\gamma_i = \lambda_{(i,k)}$. Hence, the first two conditions hold. Moreover, it follows from Proposition 1(ii) that $\lambda_{(i,j)}\lambda_{(i,j+1)} \in [n-1, n-1]$ for each $1 \leq j \leq k-1$, and so there exists a directed edge from $\lambda_{(i,j)}$ to $\lambda_{(i,j+1)}$ in Γ_B for each $1 \leq j \leq k-1$. Thus, λ_i is connected to γ_i in the digraph Γ_B . Therefore, the third condition holds as well. Since the last condition follows from the result in [5, p. 280], the first part of the proof is complete.

(\Leftarrow) For this part of the proof it is enough to show that the generating set \mathcal{Z} given in (3) is a subset of $\langle A \rangle$.

For any element α_i defined in (1) it follows from the conditions that there exist $\lambda_i, \gamma_i \in B$ such that dom $(\lambda_i) = \text{dom}(\alpha_i)$, im $(\gamma_i) = \text{im}(\alpha_i)$ and λ_i is connected to γ_i in the digraph Γ_B . Thus there exists a directed path from λ_i to γ_i , say

$$\lambda_i = \sigma_1 \to \sigma_2 \to \cdots \to \sigma_{k-1} \to \sigma_k = \gamma_i,$$

where $\sigma_1, \ldots, \sigma_k \in B$, and hence, $\sigma_j \sigma_{j+1} \in [n-1, n-1]$ for each $1 \leq j \leq k-1$. It follows from Proposition 1(ii) that $\delta = \sigma_1 \cdots \sigma_k \in [n-1, n-1]$. Thus we have $\operatorname{im}(\delta) = \operatorname{im}(\sigma_k) = \operatorname{im}(\gamma_i) = \operatorname{im}(\alpha_i)$ and $\operatorname{dom}(\delta) = \operatorname{dom}(\sigma_1) = \operatorname{dom}(\lambda_i) = \operatorname{dom}(\alpha_i)$, and so $\alpha_i = \delta \in \langle B \rangle \subseteq \langle A \rangle$ since $\alpha_i, \delta \in [n-1, n-1]$ are order-preserving bijections.

It follows from the last condition that, for each i = 1, 2, ..., n - 2, we may choose and fix an element with the kernel type i in C and say θ_i . Thus, we have

$$\theta_i = \begin{pmatrix} a_1 & \cdots & a_{i-1} & a_i & a_{i+1} & a_{i+2} & \cdots & a_{n-1} \\ b_1 & \cdots & b_{i-1} & b_i & b_i & b_{i+1} & \cdots & b_{n-2} \end{pmatrix} \in C$$

for some $a_1 < \cdots < a_{n-1}$ and $b_1 < \cdots < b_{n-2}$ in X_n . For any element β_i $(1 \leq i \leq n-2)$ defined in (2), consider two strictly partial order-preserving transformations

$$\varphi_i = \begin{pmatrix} 1 & 2 & \cdots & n-1 \\ a_1 & a_2 & \cdots & a_{n-1} \end{pmatrix} \in [n-1, n-1] \text{ and}$$

$$\psi_i = \begin{pmatrix} b_1 & \cdots & b_{i-1} & b_i & \cdots & b_{n-2} \\ 1 & \cdots & i-1 & i+1 & \cdots & n-1 \end{pmatrix} \in [n-2, n-2].$$

From [5, Lemmas 3.4 and 3.12] we have that $[r, r] \subseteq \langle B \rangle$ for all $r = 1, \ldots, n-1$, and so $\varphi_i, \psi_i \in \langle B \rangle$ $(1 \le i \le n-2)$. Thus it follows from the fact

$$\beta_i = \varphi_i \theta_i \psi_i$$

that $\beta_i \in \langle A \rangle$ for all i = 1, ..., n - 2. Therefore, \mathcal{Z} defined in (3) is a subset of $\langle A \rangle$, and so $SPO_n = \langle A \rangle$.

Since a generating set of SPO_n must contain at least n elements from [n-1, n-1] and at least n-2 elements from [n-1, n-2], we have the following corollary from Theorem 2:

Corollary 3. Let B be a subset of [n-1, n-1] with cardinality n and let C be a subset of [n-1, n-2] with cardinality n-2. Then $B \cup C$ is a minimal generating set of SPO_n if and only if

- (i) there exists exactly one element $\lambda_i \in B$ such that dom $(\lambda_i) = X_n \setminus \{i\}$ for each i = 1, ..., n,
- (ii) there exist exactly one element $\gamma_1 \in B$ such that $\operatorname{im}(\gamma_1) = X_n \setminus \{n\}$ and exactly one element $\gamma_i \in B$ such that $\operatorname{im}(\gamma_i) = X_n \setminus \{i-1\}$ for each $i = 2, 3, \ldots, n$,
- (iii) λ_i is connected to γ_i in the digraph Γ_B for i = 1, 2, ..., n; and
- (iv) there exists exactly one element of each of the n-2 possible kernel types in C.

For example, consider SPO_3 , $B = \{\sigma_1, \sigma_2, \sigma_3\} \subseteq [n-1, n-1]$ with cardinality 3, and $C = \{\theta\} \subseteq [n-1, n-2]$ with cardinality 1 where

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 \\ - & 1 & 3 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & - & 2 \end{pmatrix},$$
$$\sigma_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & - \end{pmatrix}, \quad \theta = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & - \end{pmatrix}.$$

First of all it is easy to see that B satisfies the first two conditions and C satisfies the last condition of Corollary 3. Moreover, since $\operatorname{im}(\sigma_i)$ is a transversal of the kernel partition kp (σ_{i+1}) , there exists a directed edge from σ_i to σ_{i+1} for each $1 \leq i \leq 3$ (where $\sigma_4 = \sigma_1$) in the digraph Γ_B . Thus Γ_B is a Hamiltonian digraph. It follows from their definitions that Hamiltonian digraphs are strongly connected (see [9, pages 88 and 148]) the third condition of Corollary 3 is satisfied as well, and so $A = B \cup C$ is a minimal generating set of SPO_3 .

Notice that if $A \subseteq SPO_n$ is a (minimal) generating set of SPO_n , then we may use the paths in Γ_B to write each α_i (for $1 \le i \le n$) defined in (1) as a product of elements from B, where $B = A \cap [n - 1, n - 1]$. For example, consider the minimal generating set $A = \{\sigma_1, \sigma_2, \sigma_3, \theta\}$ of SPO_3 given above and consider the transformation

$$\alpha_1 = \left(\begin{array}{rrr} 1 & 2 & 3 \\ - & 1 & 2 \end{array}\right)$$

defined in (1). Since $B = \{\sigma_1, \sigma_2, \sigma_3\}$, dom $(\alpha_1) = \text{dom}(\sigma_1)$, im $(\alpha_1) = \text{im}(\sigma_2)$ and

$$\sigma_1 \to \sigma_2$$

is a path in Γ_B , it follows that dom $(\sigma_1 \sigma_2) = \text{dom}(\alpha_1)$ and im $(\sigma_1 \sigma_2) = \text{im}(\alpha_1)$, that is, $\sigma_1 \sigma_2 = \alpha_1$.

3. Generating sets of SPO(n, r)

Now we consider the subsemigroups SPO(n, r) for all $2 \le r \le n-2$. Since $\alpha \in D_k$ $(1 \le k \le r)$ can not be written as a product of elements with height smaller than k, and since SPO(n, r) is generated by its idempotents of height r, it is enough to consider only the subsets of D_r as a generating set of SPO(n, r). Moreover, a subset X of D_r is a generating set of SPO(n, r) if and only if $E(D_r) \subseteq \langle X \rangle$ for $2 \le r \le n-2$.

Theorem 4. Let X be a subset of Green's \mathcal{D} -class D_r in SPO(n,r) for $2 \leq r \leq n-2$. Then X is a generating set of SPO(n,r) if and only if, for each idempotent ξ in $E(D_r)$, there exist $\alpha, \beta \in X$ such that

- (i) $\operatorname{ks}(\alpha) = \operatorname{ks}(\xi)$,
- (ii) $\operatorname{im}(\beta) = \operatorname{im}(\xi)$, and
- (iii) α is connected to β in the digraph Γ_X .

Proof. The proof is similar to the proof of Theorem 2. But it is much easier since each SPO(n, r) (for $2 \le r \le n-2$) is idempotent generated. \Box

Similarly, since rank $(SPO(n,r)) = \sum_{k=r}^{n-1} {n \choose k} {k-1 \choose r-1}$ for $2 \le r \le n-2$, we have the following corollary:

Corollary 5. For $2 \leq r \leq n-2$ let X be a subset of Green's \mathcal{D} -class D_r with cardinality $\sum_{k=r}^{n-1} \binom{n}{k} \binom{k-1}{r-1}$. Then X is a minimal generating set of SPO(n,r) if and only if, for each idempotent $\xi \in E(D_r)$, there exist $\alpha, \beta \in X$ such that ks $(\alpha) = \text{ks}(\xi)$, im $(\beta) = \text{im}(\xi)$ and α is connected to β in Γ_X . \Box

References

- G. Ayık, H. Ayık, L. Bugay, and O. Kelekci, Generating sets of finite singular transformation semigroups, Semigroup Forum 86 (2013), no. 1, 59–66.
- [2] G. Ayık, H. Ayık, and M. Koç, Combinatorial results for order-preserving and orderdecreasing transformations, Turkish J. Math. 35 (2011), no. 4, 617–625.

- [3] O. Ganyushkin and V. Mazorchuk, *Classical Finite Transformation Semigroups*, Springer-Verlag, London, 2009.
- [4] G. U. Garba, On the idempotent ranks of certain semigroups of order-preserving transformations, Portugal. Math. 51 (1994), no. 2, 185–204.
- [5] G. M. S. Gomes and J. M. Howie, On the ranks of certain semigroups of order-preserving transformations, Semigroup Forum 45 (1992), no. 3, 272–282.
- [6] P. M. Higgins, The product of the idempotents and an H-class of the finite full transformation semigroup, Semigroup Forum 84 (2012), no. 2, 203–215.
- [7] J. M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, New York, 1995.
- [8] S. Sornsanam and R. P. Sullivan, Regularity conditions on order-preserving transformation semigroups, Southeast Asian Bull. Math. 28 (2004), 333–342.
- [9] R. J. Wilson and J. J. Watkins, Graphs: An Introductory Approach, Wiley, 1990.
- [10] H. Yang and X. Yang, Automorphisms of partition order-decreasing transformation monoids, Semigroup Forum 85 (2012), no. 3, 513–524.
- [11] P. Zhao, B. Xu, and M. Yang, A Note on maximal properties of some subsemigroups of finite order-preserving transformation semigroups, Comm. Algebra 40 (2012), no. 3, 1116–1121.

HAYRULLAH AYIK DEPARTMENT OF MATHEMATICS ÇUKUROVA UNIVERSITY ADANA 01330, TURKEY *E-mail address:* hayik@cu.edu.tr

Leyla Bugay Department of Mathematics Çukurova University Adana 01330, Turkey *E-mail address*: ltanguler@cu.edu.tr