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PARALLEL SECTIONS HOMOTHETY BODIES WITH

MINIMAL MAHLER VOLUME IN R
n

Youjiang Lin and Gangsong Leng

Abstract. In the paper, we define a class of convex bodies in Rn–parallel
sections homothety bodies, and for some special parallel sections homoth-
ety bodies, we prove that n-cubes have the minimal Mahler volume.

1. Introduction

The well-known Mahler’s conjecture (see, e.g., [8], [15], [25] for references)
states that, for any origin-symmetric convex body K in R

n,

P(K) ≥ P(Cn) =
4n

n!
,(1.1)

where Cn is an n-cube and P(K) = V ol(K)V ol(K∗), which is known as the
Mahler volume of K.

For n = 2, Mahler [16] himself proved the conjecture, and in 1986 Reisner
[22] showed that equality holds only for parallelograms. For n = 2, a new
proof of inequality (1.1) was obtained by Campi and Gronchi [4]. Recently,
Lin and Leng [12] gave a new and intuitive proof of the inequality (1.1) in
R

2. Reisner (see, e.g., [9, 21, 22]) established the same inequality for a class of
bodies that have a high degree of symmetry, known as zonoids. Inequality (1.1)
was established by Saint Raymond [24] for bodies which are symmetric with
respect to the coordinate hyperplanes. For the case of polytopes with at most
2n+ 2 vertices (or facets) (see, e.g., [2] for references), Lopez and Reisner [13]
proved the inequality (1.1) for n ≤ 8 and the minimal bodies are characterized.
Recently, Nazarov, Petrov, Ryabogin and Zvavitch [20] proved that the cube is
a strict local minimizer for the Mahler volume in the class of origin-symmetric
convex bodies endowed with the Banach-Mazur distance.
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For some special classes of origin-symmetric convex bodies in R
n, a sharper

estimate for the lower bound of P(K) has been obtained. If K is a convex
body which is symmetric around all coordinate hyperplanes, Saint Raymond
[24] proved that P(K) ≥ 4n/n!; the equality case was discussed in [17, 23].
When K is a zonoid (limits of finite Minkowski sums of line segments), Meyer
and Reisner (see, e.g., [9, 21, 22]) proved that the same inequality holds, with
equality if and only if K is an n-cube. For the case of polytopes with at most
2n+ 2 vertices (or facets) (see, e.g., [2] for references), Lopez and Reisner [13]
proved the inequality (1.1) for n ≤ 8 and the minimal bodies are characterized.
Recently, Nazarov, Petrov, Ryabogin and Zvavitch [20] proved that the cube is
a strict local minimizer for the Mahler volume in the class of origin-symmetric
convex bodies endowed with the Banach-Mazur distance.

Bourgain and Milman [3] proved that there exists a universal constant c > 0
such that P(K) ≥ cnP(B), which is now known as the reverse Santaló in-
equality. Very recently, Kuperberg [11] found a beautiful new approach to the
reverse Santaló inequality. What’s especially remarkable about Kuperberg’s
inequality is that it provides an explicit value for c.

Another variant of the Mahler conjecture without the assumption of origin-
symmetry states that, for any convex body K in R

n,

P(K) ≥
(n+ 1)(n+1)

(n!)2
,(1.2)

with equality conjectured to hold only for simplices. For n = 2, Mahler himself
proved this inequality in 1939 (see, e.g., [5, 6, 14] for references) and Meyer
[18] obtained the equality conditions in 1991. Recently, Meyer and Reisner
[19] have proved inequality (1.2) for polytopes with at most n + 3 vertices.
Very recently, Kim and Reisner [10] proved that the simplex is a strict local
minimum for the Mahler volume in the Banach-Mazur space of n-dimensional
convex bodies.

Strong functional versions of the Blaschke-Santaló inequality and its reverse
form have been studied recently (see, e.g., [1, 7]).

The Mahler conjecture is still open even in the three-dimensional case. Ter-
ence Tao in [26] made an excellent remark about the open question.

In the following, we give the definition of parallel sections homothety bodies.

Definition 1. In R
n, u ∈ Sn−1 and L ⊂ {x ∈ R

n : x · u = 0} is an origin-
symmetric convex body. Let f(x) be a concave, even and nonnegative function
defined on [−a, a], a > 0. A parallel sections homothety body is defined as the
convex body

K =
⋃

x∈[−a,a]

{f(x)L+ xu},

where f(x) is called its generating function and L is its homothetic section.

In this paper, we prove that among some special parallel sections homothety
bodies in R

n, n-cubes have the minimal Mahler volume.
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Theorem 1.1. For a parallel sections homothety body K in R
n, if its homo-

thetic section L is a zonoid, then we have

P(K) ≥
4n

n!
,(1.3)

and the equality holds if and only if L is an (n− 1)-cube or an octahedron and

its generating function f(x) = f(0) or f∗(x′) = 1/f(0).

2. Definitions, notation, and preliminaries

As usual, Sn−1 denotes the unit sphere, and Bn the unit ball centered at the
origin, O the origin and ‖ · ‖ the norm in Euclidean n-space R

n. The symbol
for the set of all natural numbers is N. Let Kn denote the set of convex bodies
(compact, convex subsets with non-empty interiors) in R

n. Let Kn
o denote the

subset of Kn that contains the origin in its interior. For u ∈ Sn−1, we denote
by u⊥ the (n − 1)-dimensional subspace orthogonal to u. For x, y ∈ R

n, x · y
denotes the inner product of x and y. We denote by V (K) the n-dimensional
volume of K.

If K ∈ Kn
o , we define the polar body K∗ of K by

K∗ = {x ∈ R
n : x · y ≤ 1 , ∀y ∈ K}.

For K ∈ Kn
o , if (x1, x2, . . . , xn) ∈ K, we have (ε1x1, . . . , εnxn) ∈ K for any

signs εi = ±1 (i = 1, . . . , n), then K is a 1-unconditional convex body. In fact,
K is symmetric with respect to all coordinate planes.

For a convex body K in R
n, and u ∈ Sn−1, a Schwarz rounding of K about

the direction u is any translate of the convex body K for which for all t ∈ R,
K̃(t) = {x ∈ K̃ : x · u = t}, if it is not empty or a single point, is an (n − 1)-

dimensional Euclidean ball and voln−1(K̃(t)) = voln−1(K(t)). In fact, the

Schwarz rounding K̃ of K is a special parallel sections homothety body, its
homothetic section is a Euclidean ball.

3. Main result and its proof

Lemma 3.1. Let f be a concave, even and nonnegative function defined on

[−a, a], a > 0. Then we have

(n+ 1)

∫ a

0

fn(t)dt ≥ nf(x)

∫ a

0

fn−1(t)dt+ xfn(0)

or

(n+ 1)

∫ a

0

fn(t)dt ≥ nf(x)

∫ a

0

fn−1(t)dt+ (a− x)fn(a),

for every x ∈ [0, a] and every n ≥ 1.
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Proof. By uniform approximation we may assume that f is differentiable. By
concavity we have for all x, t ∈ [0, a], f(x) ≤ f(t)+ (x− t)f ′(t). Multiply both
sides of the last inequality by f(t)n−1 and integrate. This gives

f(x)

∫ a

0

fn−1(t)dt ≤

∫ a

0

fn(t)dt+
1

n

∫ a

0

(x− t)(fn(t))′dt,

integration by parts gives
∫ a

0

(x − t)(fn(t))′dt = (x− a)fn(a)− xfn(0) +

∫ a

0

fn(t)dt

≤ − xfn(0) +

∫ a

0

fn(t)dt, (or ≤ (x − a)fn(a) +

∫ a

0

fn(t)dt).

The last two inequalities taken together, prove the required inequality. �

Lemma 3.2. Let f be a concave, even and nonnegative function defined on

[−a, a], a > 0 and for x′ ∈ [− 1
a ,

1
a ] define

f∗(x′) = inf
x∈[−a,a]

1− x′x

f(x)
.(3.1)

Then, for every integer n ≥ 0
(
∫ a

−a

(f(x))ndx

)

(

∫ 1/a

−1/a

(f∗(x′))ndx′

)

≥
4

n+ 1
.

Equality holds if and only if f(x) = f(0) or f∗(x′) = 1/f(0).

Proof. We may assume that f(0) = 1. For n ≥ 0, we define the numbers an and

bn by an = (n + 1)
∫ a

0 f(x)ndx and bn = (n + 1)
∫ 1

a

0 (f∗(x′))ndx′. By Lemma
3.1. we have for n ≥ 1:

an ≥ f(x)an−1 + x for every x ∈ [0, a],(3.2)

bn ≥ f∗(x′)bn−1 + x′ for every x′ ∈ [0, 1/a].(3.3)

It follows that an−1f(x)
an

+ x
an

≤ 1 for every x ∈ [0, a], which gives, by the

definition of f∗, f∗( 1
an

) ≥ an−1

an

. Using the inequality (3.3), we get for every
n ≥ 1, bnan ≥ an−1bn−1 + 1. By induction and a0b0 = 1, we get anbn ≥
an−1bn−1 + 1 ≥ an−2bn−2 + 2 ≥ · · · ≥ a0b0 + n = n+ 1. Thus, we have

(
∫ a

−a

(f(x))ndx

)

(

∫ 1/a

−1/a

(f∗(x′))ndx′

)

=
4anbn

(n+ 1)2
≥

4

n+ 1
.

The case of equality: It is easy to check that if f satisfies the conditions
at the end of the Lemma, equality holds. Suppose, on the other hand that
we have equality. Then, we have a1b1 = a0b0 + 1 = 2, which implies that
∫ a

−a
f(x)dx

∫ 1/a

−1/a
f∗(x′)dx′ = 2. Let C = {(x, y) : x ∈ [−a, a], |y| ≤ f(x)}, then

C∗ = {(x′, y′) : x′ ∈ [−1/a, 1/a], |y| ≤ f∗(x′)}, thus, P(C) = 8. Since the
Mahler conjecture is correct for n = 2, for any origin-symmetric convex body
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K in R
2, we have P(K) ≥ 8 with equality if and only if K is a square or a

diamond. Thus, f satisfies the conditions at the end of the Lemma. �

Lemma 3.3. For a parallel sections homothety body K in R
n, if

K =
⋃

x∈[−a,a]

{f(x)L+ xu},(3.4)

where f(x) is its generating function and L is its homothetic section. Then,

we have

K∗ =
⋃

x′∈[−1/a,1/a]

{f∗(x′)L∗ + x′u},(3.5)

where f∗ is given in (3.1).

Proof. Let

K ′ =
⋃

x′∈[−1/a,1/a]

{f∗(x′)L∗ + x′u}.

For any v′ ∈ K ′ and v ∈ K, there are x′ ∈ [−1/a, 1/a], y′ ≤ f∗(x′), l′ ∈ L∗,
x ∈ [−a, a], y ≤ f(x) and l ∈ L such that v′ = y′l′ + x′u and v = yl + xu.
Thus, we have

v′ · v = y′yl′ · l + x′x ≤ f∗(x′)f(x)l′ · l + x′x

≤
1− x′x

f(x)
f(x) + x′x ≤ 1,(3.6)

which implies that v′ ∈ K∗.
On the other hand, if v′ = y′l′ + x′u /∈ K ′, where l′ ∈ L∗, then either

|x′| > 1/a or |x′| ≤ 1/a and y′l′ /∈ f∗(x′)L∗. If x′ > 1/a (or x′ < −1/a), then
for au ∈ K (or −au ∈ K), we have

v′ · (au) = x′a > 1 (or v′ · (−au)) > 1),

which implies that v′ /∈ K∗. If |x′| ≤ 1/a and y′l′ /∈ f∗(x′)L∗, then there is

l ∈ L such that y′l′·l > f∗(x′). Let f∗(x′) = 1−x′x0

f(x0)
. For v0 = f(x0)l+x0u ∈ K,

we have

v′ · v0 = y′f(x0)l
′ · l + x′x0 > f(x0)f

∗(x′) + x′x0

= f(x0)
1− x′x0

f(x0)
+ x′x0 = 1,(3.7)

which implies that v′ /∈ K∗. Hence, we have K ′ = K∗. �

In the following, we will restate and prove Theorem 1.1.

Theorem 3.4. For a parallel sections homothety body K in R
n, if its homo-

thetic section is a zonoid, then we have P(K) ≥ 4n

n! , and the equality holds if

and only if L is an (n − 1)-cube or an octahedron and its generating function

f(x) = f(0) or f∗(x′) = 1/f(0).
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Proof. Let

K =
⋃

x∈[−a,a]

{f(x)L+ xu},

where f(x) is its generating function and L is its homothetic section. By [9, 22],

if L is a zonoid, by the known result, we have P(L) ≥ 4n−1

(n−1)! , with equality if

and only if L is an (n−1)-cube or an octahedron. Thus, by Lemma 3.3, we have

P(K) = V (K)V (K∗) = P(L)
∫ a

−a
(f(x))n−1dx

∫
1

a

−
1

a

(f∗(x′))n−1dx′ ≥ 4n−1

(n−1)!
4
n =

4n

n! , the equality holds if and only if L is an (n− 1)-cube or an octahedron and
its generating function f(x) = f(0) or f∗(x′) = 1/f(0). �

Remark 1. (1) In [9] and [22], the necessary and sufficient condition for equality

to hold in inequality P(K) ≥ 4n

n! is that L is an (n− 1)-cube, because that the
polar body of a cube is an octahedron and the Mahler volumes of a convex body
and its polar body are equivalent, therefore we can say that the necessary and
sufficient condition for equality to hold is that L is an (n − 1)-cube or an
octahedron.

(2) By Lemma 3.2 and Theorem 3.4, for any origin-symmetric convex body

K in R
n, its Schwarz rounding K̃ satisfies P(K̃) ≥ 4

nκ
2
n−1, where κn−1 =

V (Bn−1).
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[15] K. Mahler, Ein Übertragungsprinzip für konvexe Körper, Casopis Pest. Mat. Fys. 68
(1939), 93–102.

[16] , Ein Minimalproblem für konvexe Polygone, Mathematica (Zutphen) B. 7

(1939), 118–127.
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