BOUNDED COMPOSITION OPERATORS FROM THE BERGMAN SPACE TO THE HARDY SPACE

Kazuhiro Kasuga and Takahiko Nakazi

ABSTRACT. Let ϕ be an analytic self map of the open unit disc D. In this paper, we study the composition operator C_{ϕ} from the Bergman space on D to the Hardy space on D.

1. Introduction

Let D be the open unit disc in the complex plane. L_a^2 and H^2 denote the Bergman space and the Hardy space on D, respectively. Then H^2 is contained in L_a^2 . If H^∞ is a set of all bounded analytic functions, then H^∞ is contained in H^2 . For an analytic self map ϕ of D, the composition operator C_ϕ is defined by $(C_\phi f)(z) = f(\phi(z))$ $(z \in D)$ for f in H, the set of all analytic functions on D. The Nevanlinna counting function of ϕ , is defined on $D \setminus \{\phi(0)\}$ by

$$N_{\phi}(w) = \sum_{\phi(z)=w} \log \frac{1}{|z|}.$$

T. Nakazi [4, Theorem 4] gives a necessary and sufficient condition for an isometric operator C_{ϕ} from L_a^2 to H^2 . That is, C_{ϕ} is isometric from L_a^2 to H^2 if and only if $N_{\phi}(w) = 2 \int_{|w|}^{1} \log \frac{r}{|w|} r dr$ for nearly all $w \in D \setminus \{0\}$.

W. Smith [6, Theorem 1.1] gives a necessary and sufficient condition for a bounded composition operator C_{ϕ} from L_a^2 to H^2 . That is, C_{ϕ} is bounded from L_a^2 to H^2 if and only if $N_{\phi}(w) = O([\log 1/|w|]^2)(|w| \to 1)$. For given ϕ , we can use some times this result in order to show C_{ϕ} is bounded but it may not be easy to use it.

A function ϕ in H^{∞} with $\|\phi\|_{\infty}=1$ is called a Rudin's orthogonal function in H^2 if $\{\phi^n:n=0,1,2,\ldots\}$ is a set of orthogonal functions in H^2 . It should be also called a Choe's function because B. R. Choe told W. Rudin about such a function. An inner function which has zeros at the origin is a Rudin's orthogonal function. Hence the Möbius transform of a Rudin's (Choe's)

Received July 22, 2013.

 $^{2010\} Mathematics\ Subject\ Classification.\ 47B33.$

 $Key\ words\ and\ phrases.$ Bergman space, Hardy space, isometry, bounded composition, Nevanlinna counting function.

orthogonal function is a generalization of an inner function. There exists a Rudin's (Choe's) orthogonal function which is not an inner function ([1], [7]).

In Section 2, we study isometric C_{ϕ} from L_a^2 to H^2 . In Section 3, we study bounded C_{ϕ} from L_a^2 to H^2 . In Section 4, we give few examples using a theorem of W. Smith. In Section 5, we study bounded C_{ϕ} from L_a^2 onto H^2 .

2. Isometric composition operator from L_a^2 to H^2

Lemma 1. Let ϕ be a Rudin's (Choe's) orthogonal function. Then, C_{ϕ} is isometric from L_a^2 to H^2 if and only if

$$\int_0^{2\pi} |\phi|^{2j} d\theta / 2\pi = \frac{1}{j+1} \ (j=0,1,2,\ldots).$$

Proof. Suppose $f = \sum_{j=0}^{\infty} a_j z^j$ and $f \in H$. If C_{ϕ} is isometric, then

$$\sum_{j=0}^{\infty} \frac{1}{j+1} |a_j|^2 = \sum_{j=0}^{\infty} |a_j|^2 \int_0^{2\pi} |\phi|^{2j} d\theta / 2\pi$$

because $||f||_{L^2_a} = ||f \circ \phi||_{H^2}$. Since f is arbitrary in L^2_a , we can show

$$\int_0^{2\pi} |\phi|^{2j} d\theta / 2\pi = \frac{1}{j+1} \ (j=0,1,2,\ldots).$$

The converse is clear.

Theorem 1. Let ϕ be an analytic self map of the open unit disc. Then, C_{ϕ} is an isometric composition operator if and only if ϕ is a Rudin's (Choe's) orthogonal function and

$$\int_0^{2\pi} |\phi|^{2j} d\theta / 2\pi = \frac{1}{j+1} \ (j=0,1,2,\ldots).$$

Proof. If C_{ϕ} is an isometric operator from L_a^2 to H^2 , then Theorem 4 in [4] shows $N_{\phi}(w) = 2 \int_{|w|}^{1} \log \frac{r}{|w|} r dr$ for nearly all $w \in D \setminus \{0\}$. By Theorem 1 in [3] ϕ is a Rudin's (Choe's) orthogonal function. Now Lemma 1 shows the theorem.

In Theorem 1, if C_{ϕ} is onto, then by Theorem 3 in [4] ϕ is inner. This contradicts Theorem 1. Hence there does not exist any isometric composition operator from L_a^2 onto H^2 .

3. Bounded composition operator from L_a^2 to H^2

In the following theorem, (1) is known in [6] and (2) is known in [2].

Theorem 2. Let ϕ be an analytic self map of the open unit disc.

(1) C_{ϕ} is bounded from L_a^2 into H^2 if and only if

$$N_{\phi}(z) = O((\log \frac{1}{|z|})^2) \ as \ |z| \to 1.$$

(2) If ϕ has radial limits of modulus one on a set of positive measure, then C_{ϕ} does not map L_a^2 into H^2 .

Lemma 2. Let ϕ be a Rudin's (Choe's) orthogonal function. Then C_{ϕ} is bounded from L_a^2 to H^2 if and only if $\int_0^{2\pi} |\phi|^{2j} d\theta/2\pi \leq \frac{\gamma}{j+1}$ $(j=0,1,2,\ldots)$ for some finite constant $\gamma > 0$.

Proof. It is clear by the proof of Lemma 1.

Theorem 3. Let ϕ be a polynomial of a Rudin's (Choe's) orthogonal function ϕ_0 with $\|\phi\|_{\infty} = 1$. If C_{ϕ} is bounded from L_a^2 into H^2 , then

$$\sum_{j=0}^{\infty} \left| \left(\begin{array}{c} -\frac{1}{2} \\ j \end{array} \right) \right|^2 \int_0^{2\pi} |\phi_0|^{2j} d\theta / 2\pi < \infty.$$

In order to prove the Theorem 3 we need to prove two lemmas.

Lemma 3. If p is a polynomial with $||p||_{\infty} = 1$, then $1 - p(z) = \prod_{j=1}^{n} (z - a_j)g(z)$, where $|a_j| = 1$ $(1 \le j \le n)$ and |g(z)| > 0 on \bar{D} .

Proof. Obvious.
$$\Box$$

Lemma 4. For a with |a| = 1, $(z - a)^{-1/2}$ belongs to L_a^2 but does not belong to H^2 .

Proof. It is enough to show that $(1-z)^{-1/2} \in L_a^2$ but $(1-z)^{-1/2} \notin H^2$. This is a result of Wallis formula.

The proof of Theorem 3. Suppose $\|\phi\|_{\infty} = 1$. Let ϕ_0 be a Rudin's (Choe's) orthogonal function and p a polynomial and $\phi(z) = p(\phi_0(z))$ where $\|p\|_{\infty} = 1$. Suppose C_{ϕ} maps L_a^2 into H^2 . Then by the hypothesis and Lemma 4, $(1-\phi)^{-1/2}$ belongs to H^2 . By Lemma 3

$$1 - \phi(z) = \prod_{j=1}^{n} (\phi_0(z) - a_j) g(\phi_0(z)).$$

Hence $(\phi_0(z)-a_j)^{-1/2} \in H^2$ and so $(1-\phi_0(z))^{-1/2} \in H^2$. Since ϕ_0 is a Rudin's (Choe's) orthogonal function,

$$\|(1-\phi_0)^{-1/2}\|_2^2 = \sum_{j=0}^{\infty} \left| \begin{pmatrix} -\frac{1}{2} \\ j \end{pmatrix} \right|^2 \int_0^{2\pi} |\phi_0|^{2j} d\theta / 2\pi < \infty.$$

By Theorem 3, if ϕ is a polynomial of an inner function ϕ_0 with zero at the origin, then C_{ϕ} is not bounded by Lemma 4. In general, it is clear that C_{ϕ} is bounded when $\|\phi\|_{\infty} < 1$. By (1) of Theorem 2, if ϕ is an inner function, then C_{ϕ} is not bounded.

4. Some special case

In this section, we study whether C_{ϕ} is not bounded from L_a^2 to H^2 when $\phi = (1+q)/2$ and q is inner. If q(0) = 0, then by Theorem 3 C_{ϕ} is not bounded because q is a Rudin's (Choe's) orthogonal function. Hence we have to study in case $q(0) \neq 0$. Our main tools are (1) of Theorem 2 and the following Lemma 5.

Lemma 5. For nearly all w in D

$$N_{\phi}(w) = \int_0^{2\pi} \log \left| \frac{w - \phi(e^{i\theta})}{1 - \bar{w}\phi(e^{i\theta})} \right| d\theta / 2\pi - \log \left| \frac{w - \phi(0)}{1 - \bar{w}\phi(0)} \right|.$$

Proof. This is well known (see [3]).

Lemma 6.

$$\limsup_{\substack{|w| \to 1 \\ |w| \le 1 \\ |2w-1| \le 1}} \frac{-\log|2w-1|^2}{(\log|w|)^2} = \infty.$$

Proof. Put $w=r(x+iy),\ 0\leq r<1$ and $x^2+y^2=1$. Then $r\leq x$ when $|2w-1|\leq 1$. Hence

$$\limsup_{|w|\to 1, |2w-1|\le 1} \frac{-\log|2w-1|^2}{(\log|w|)^2} = \limsup_{r\to 1, r\le x} \frac{-\log(4r^2-4rx+1)}{(\log r)^2} = \infty.$$

In fact, put r = 1 - t, $x = 1 - \frac{1}{2}t$ and $t \to 0$.

Lemma 7.

$$\lim_{|w| \to 1} \frac{\log|1 + \bar{a}w|^2 - \log|w + a|^2}{(\log|w|)^2} = \infty.$$

Proof. Put $w=re^{i\alpha}$ and $a=be^{i\beta}$ where r=|w| and b=|a|, then $1+\bar{a}w=1+bre^{i(\alpha-\beta)}$ and $w+a=(re^{i(\alpha-\beta)}+b)e^{i\beta}$. Hence we may assume $w=re^{i\alpha}=r(x+iy)$ and a=b. Then

$$\begin{split} &\lim_{r\to 1} \frac{\log(1+a^2r^2+2arx) - \log(r^2+a^2+2arx)}{(\log r)^2} \\ &= \lim_{r\to 1} \left\{ \frac{2a^2r+2ax}{1+a^2r^2+2arx} - \frac{2r+2ax}{r^2+a^2+2arx} \right\} \frac{2r}{\log r} \\ &= \lim_{r\to 1} \frac{(2a^3x-2ax)r^2+(2a^4-2)r+2a^3x-2ax}{(1+a^2r^2+2arx)(r^2+a^2+2arx)} \times \frac{2r}{\log r} = \infty. \end{split}$$

Corollary 4. If $\phi = (1+q^n)/2$, n is a positive integer and $q = (z-a)/(1-\bar{a}z)$ with |a| < 1, then C_{ϕ} is not bounded.

Proof. By Lemma 5, for nearly all $re^{i\alpha}$

$$N_{\phi}(re^{i\alpha}) = \int_{0}^{2\pi} \log \left| (2re^{i\alpha} - 1) - \left(\frac{z - a}{1 - \bar{a}z} \right)^{n} \right| d\theta / 2\pi - \log |2re^{i\alpha} - 1 - (-a)^{n}|.$$

Put s_1, s_2, \ldots, s_n are distinct nth roots of s and $s = 2re^{i\alpha} - 1$ when |s| < 1. Moreover put $b_j = \frac{s_j + a}{1 + \bar{a}s_j}$ $(1 \le j \le n)$. Since $|b_j| < 1$ $(1 \le j \le n)$, by Jensen's formula

$$\int_0^{2\pi} \log \left| (2re^{i\alpha} - 1) - \left(\frac{z - a}{1 - \bar{a}z} \right)^n \right| d\theta / 2\pi = \sum_{i=1}^n \log \frac{1}{|b_j|} + \log |(2re^{i\alpha} - 1) - (-a)^n|.$$

Hence for nearly all $re^{i\alpha}$

$$N_{\phi}(re^{i\alpha}) = \begin{cases} -\sum_{j=1}^{n} \log|b_{j}| & (|2re^{i\alpha} - 1| < 1) \\ 0 & (|2re^{i\alpha} - 1| \ge 1). \end{cases}$$

By Lemma 7,

$$\limsup_{r \to 1, |s| < 1} \frac{N_{\phi}(re^{i\alpha})}{(\log r)^{2}} = -\frac{1}{2} \liminf_{r \to 1, |s| < 1} \sum_{j=1}^{n} \frac{\log \left| \frac{s_{j} + a}{1 + \bar{a}s_{j}} \right|^{2}}{(\log r)^{2}}$$

$$\geq -\frac{1}{2} \sum_{j=1}^{n} \limsup_{r \to 1, |s| < 1} \frac{\log \left| \frac{s_{j} + a}{1 + \bar{a}s_{j}} \right|^{2}}{(\log r)^{2}}$$

$$\geq -\frac{1}{2} \sum_{j=1}^{n} \limsup_{r \to 1, |s| < 1} \frac{\log \left| \frac{s_{j} + a}{1 + \bar{a}s_{j}} \right|^{2}}{(\log |s_{j}|)^{2}} \frac{(\log |s_{j}|)^{2}}{(\log |s|)^{2}} \frac{(\log |s|)^{2}}{(\log r)^{2}}$$

because $\limsup_{r \to 1, |s| < 1} (\log |s|)^2/(\log r)^2 = \infty$ by Lemma 6 and

$$(\log |s_j|)^2/(\log |s|)^2 = 1/n^2 \ (1 \le j \le n).$$

Hence (1) of Theorem 2 shows that C_{ϕ} is not bounded.

Now we are interested in the case

$$q = \frac{z - a}{1 - \bar{a}z} \frac{z - b}{1 - \bar{b}z} \quad (z \in D, \ |a| < 1 \text{ and } |b| < 1).$$

We would like to prove if $\phi = (1+q)/2$, then C_{ϕ} is not bounded. Unfortunately we could not prove it except two special cases.

Lemma 8. Let x and y be complex numbers with |x| < 1 and |y| < 1. Fix x and as $|y| \to 1$, $\log |y|/(\log |y| + \log |\frac{x-y}{1-yx}|)$ converges to a finite constant $\gamma(x)$.

Proof. As $|y| \to 1$

$$\begin{split} \log|y| / \left(\log|y| + \log\left| \frac{x - y}{1 - yx} \right| \right) \\ &= 1 / \left(1 + \log\left| \frac{x - y}{1 - yx} \right| / \log|y| \right) \approx \frac{1 - |\frac{x - y}{1 - yx}|^2}{1 - |y|} = \frac{1 - |x|^2}{|1 - yx|} \end{split}$$

where $A(x) \approx B(x)$ means const $A(x) \leq B(x) \leq \text{const} B(x)$.

Corollary 5. If $\phi = (1+q)/2$ and $q = \frac{z-a}{1-\bar{a}z} \cdot \frac{z+a}{1+\bar{a}z}$ with |a| < 1, then C_{ϕ} is not bounded.

Proof. As in Corollary 4, for nearly all $re^{i\alpha}$

$$N_{\phi}(re^{i\alpha}) = \int_{0}^{2\pi} \log \left| (2re^{i\alpha} - 1) - \frac{z - a}{1 - \bar{a}z} \cdot \frac{z + a}{1 - \bar{a}z} \right| d\theta / 2\pi - \log |2re^{i\alpha} - 1 + a^{2}|.$$

Put $s=2re^{i\alpha}-1$ when |s|<1. Moreover $b_j^2=\frac{s+a^2}{1+\bar{a}^2s}$ (j=1,2) where b_1,b_2 are distinct roots of $\frac{s+a^2}{1+\bar{a}^2s}$. Since $|b_j|<1$ (j=1,2), by Jensen's formula for nearly all $re^{i\alpha}$

$$N_{\phi}(re^{i\alpha}) = \begin{cases} -\sum_{j=1}^{2} \log|b_{j}| & (|2re^{i\alpha} - 1| < 1) \\ 0 & (|2re^{i\alpha} - 1| \ge 1). \end{cases}$$

By Lemma 7

$$\limsup_{r \to 1, |s| < 1} \frac{N_{\phi}(re^{i\alpha})}{(\log r)^2} = -\frac{1}{2} \liminf_{r \to 1, |s| < 1} \sum_{j=1}^{2} \frac{\log |b_j|^2}{(\log r)^2}$$

$$\geq -\frac{1}{2} \limsup_{r \to 1, |s| < 1} \sum_{j=1}^{2} \frac{\log |b_j|^2}{(\log |s|)^2} \frac{(\log |s|)^2}{(\log r)^2}$$

$$\geq -\frac{1}{2} \sum_{j=1}^{2} \limsup_{r \to 1, |s| < 1} \frac{\log |b_j|^2}{(\log |s|)^2} \frac{(\log |s|)^2}{(\log r)^2} = \infty.$$

Corollary 6. If $\phi = (1+q)/2$ and $q = \frac{z-a}{1-az} \cdot \frac{z-b}{1-bz}$ with -1 < a < 1 and -1 < b < 1, then C_{ϕ} is not bounded.

Proof. Put $s = 2re^{i\delta} - 1$ when |s| < 1 and $\Phi(z) = s - \frac{z-a}{1-az} \frac{z-b}{1-bz}$. Let α and β such that $\Phi(\alpha) = \Phi(\beta) = 0$, $|\alpha| < 1$ and $|\beta| < 1$. Then

$$s = \frac{\alpha - a}{1 - a\alpha} \cdot \frac{\alpha - b}{1 - b\alpha} = \frac{\beta - a}{1 - a\beta} \cdot \frac{\beta - b}{1 - b\beta}.$$

Put $s_1 = (\alpha - a)/(1 - a\alpha)$, $s_2 = (\alpha - b)/(1 - b\alpha)$, $s_3 = (\beta - a)/(1 - a\beta)$ and $s_4 = (\beta - b)/(1 - b\beta)$. Then

$$\frac{b-a}{1-ab} = \frac{s_1 - s_2}{1 - s_1 s_2} = \frac{s_3 - s_4}{1 - s_3 s_4}.$$

As in Corollary 5, for nearly all $re^{i\alpha}$

$$N_{\phi}(re^{i\delta}) = \begin{cases} \log \frac{1}{|\alpha|} + \log \frac{1}{|\beta|} & (|2re^{i\delta} - 1| < 1) \\ 0 & (|2re^{i\delta} - 1| \ge 1). \end{cases}$$

Hence

$$\frac{N_{\phi}(re^{i\delta})}{(\log r)^{2}} = \frac{-\log\left|\frac{s_{1}+a}{1+as_{1}}\right| \left|\frac{s_{3}+a}{1+as_{3}}\right|}{(\log r)^{2}}$$

$$= \frac{1}{(\log r)^{2}} \cdot \frac{1}{2} \left(-\log\left|\frac{s_{1}+a}{1+as_{1}}\right|^{2} - \log\left|\frac{s_{3}+a}{1+as_{3}}\right|^{2}\right)$$

$$\geq \frac{1}{(\log r)^{2}} \left\{ \left(\log\left|\frac{s_{1}+a}{1+as_{1}}\right|^{2}\right) \left(\log\left|\frac{s_{3}+a}{1+as_{3}}\right|^{2}\right)\right\}^{1/2}$$

$$= \frac{(\log|s_{1}|)(\log|s_{3}|)}{(\log r)^{2}} \left\{ \frac{-\log\left|\frac{s_{1}+a}{1+as_{1}}\right|^{2}}{(\log|s_{1}|)^{2}}\right\}^{1/2} \left\{ \frac{-\log\left|\frac{s_{3}+a}{1+as_{3}}\right|^{2}}{(\log|s_{3}|)^{2}}\right\}^{1/2}.$$

By Lemma 7

$$\lim_{\substack{|s_1|\to 1\\|s_2|\to 1}} \left\{ \frac{-\log\left|\frac{s_1+a}{1+as_1}\right|^2}{(\log|s_1|)^2} \right\}^{1/2} \left\{ \frac{-\log\left|\frac{s_3+a}{1+as_3}\right|^2}{(\log|s_3|)^2} \right\}^{1/2} = \infty.$$

Hence by Lemmas 7 and 8

$$\frac{\log |s_1|}{\log |s|} = \frac{\log |s_1|}{\log |s_1| + \log |s_2|} = \frac{\log |s_1|}{\log |s_1| + \log \left|\frac{x - s_1}{1 - s_1 x}\right|}$$

and so

$$\frac{(\log|s_1|)(\log|s_3|)}{(\log r)^2} = \frac{(\log|s|)^2}{(\log r)^2} \cdot \frac{\log|s_1|}{\log|s|} \cdot \frac{\log|s_3|}{\log|s|} \to \infty \text{ as } |s| \to 1.$$

Therefore

$$\lim_{r \to 1} \sup_{|s| < 1} \frac{N_{\phi}(re^{i\alpha})}{(\log r)^2} = \infty.$$

5. Bounded composition operator from L_a^2 onto H^2

We would like to prove that there does not exist any bounded composition operator from L_a^2 onto H^2 .

Proposition 1. If C_{ϕ} is bounded and onto, then ϕ is one-to-one on D and $\phi(D) \subsetneq D$.

Proof. If $C_{\phi}L_a^2=H^2$, then there exists f in L_a^2 such that $f\circ\phi(z)=z$ and ϕ is one-to-one on D. If $\phi(D)=D$, then $\phi(z)=\alpha\frac{z-a}{1-\bar{a}z}$ when $|\alpha|=1$ and $a\in D$, and $f(z)=\frac{\bar{\alpha}z+a}{1+\bar{\alpha}\bar{a}z}$. Then $\phi\circ f(z)=z$. Suppose $F\in L_a^2$ but $F\not\in H^2$. Since $F\circ\phi\in H^2$, $F\circ\phi\circ f$ belongs to H^2 . It contradicts that $F=F\circ\phi\circ f$. Thus $C_{\phi}L_a^2\neq H^2$.

Lemma 9. If $\phi(z) = \alpha z$ and $|\alpha| < 1$, then $C_{\phi}L_a^2 \subsetneq H^2$.

Proof. It is easy to see $C_{\phi}L_a^2 \subseteq H^2$. If $C_{\phi}L_a^2 = H^2$, then $||f \circ \phi||_{H^2} \ge \delta ||f||_{L_a^2}$ $(f \in L_a^2)$. Hence

$$\sum_{n=0}^{\infty} |\alpha|^{2n} |a_n|^2 \ge \delta^2 \sum_{n=0}^{\infty} \frac{|a_n|^2}{(n+1)}$$

when $f = \sum_{n=0}^{\infty} a_n z^n$ and $f \in L_a^2$. If $f_{\varepsilon} = \sum_{n=0}^{\infty} (n+1)^{-\varepsilon} z^n$, then $||f_{\varepsilon} \circ \phi||_{H^2}^2 = \sum_{n=0}^{\infty} |\alpha|^{2n} (n+1)^{-2\varepsilon}$ and $||f_{\varepsilon}||_{L_a^2}^2 = \sum_{n=0}^{\infty} (n+1)^{-(1+2\varepsilon)}$. Hence $||f_{\varepsilon}||_{L_a^2}^2 \to \infty$ and $||f_{\varepsilon}||_{H^2}^2 = \sum_{n=0}^{\infty} |\alpha|^{2n}$ as $\varepsilon \to 0$. This contradiction shows $C_{\phi} L_a^2 \subsetneq H^2$. \square

Proposition 2. If $\overline{\phi(D)} \subsetneq D$, then C_{ϕ} is bounded but not onto.

Proof. If $\overline{\phi(D)} \subsetneq D$, then $\alpha = \|\phi\|_{\infty} < 1$. Put $\psi(z) = \phi(z)/\alpha$ and $\phi_{\alpha}(z) = \alpha z$. Then C_{ψ} is bounded from H^2 to H^2 and $C_{\phi_{\alpha}}$ is not onto from L^2_a to H^2 by Lemma 9. Suppose C_{ϕ} is bounded from L^2_a onto H^2 . Since C_{ϕ} is bounded from L^2_a to H^2 , there exist $0 < \varepsilon, \gamma < \infty$ such that

$$\varepsilon ||f||_{L_a^2}^2 \le ||C_{\phi}f||_{H^2} = ||C_{\psi}C_{\phi_{\alpha}}f||_{H^2}$$
$$\le \gamma ||C_{\phi_{\alpha}}f||_{H^2} \ (f \in L_a^2).$$

The inequality above contradicts Lemma 9.

If ϕ is inner it is known that C_{ϕ} is not bounded and onto. In fact, by (2) of Theorem 2 C_{ϕ} is not bounded. But we can give a direct simple proof. If ϕ is inner and C_{ϕ} is bounded and onto by Proposition 1 ϕ is one to one and so ϕ is a single Blaschke product. Hence $\phi(D) = D$ and this contradicts Proposition 1

When $\phi = (1+q)/2$ and q is inner, we could not show whether C_{ϕ} is bounded or not in general (see Section 4). But C_{ϕ} is not onto in general. For, by Proposition 1, q is a single Blaschke product and by Corollary 4, C_{ϕ} is not bounded and so not onto.

References

- [1] C. Bishop, Orthogonal functions in H^{∞} , Pacific J. Math. **220** (2005), no. 1, 1–31.
- [2] J. Moorhouse and C. Toews, Differences of composition opertors, Contemporary Mathematics 321 (2003), 207–213.
- [3] T. Nakazi, The Nevanlinna counting functions for Rudin's orthogonal functions, Proc. Amer. Math. Soc. 131 (2003), no. 4, 1267–1271.
- [4] _____, Isometric composition operators between two weighted Hardy spaces, Nihonkai Math. J. 17 (2006), no. 2, 111–124.
- [5] T. Nakazi and T. Watanabe, Properties of a Rudin's orthogonal function which is a linear combination of two inner functions, Sci. Math. Jpn. 57 (2003), no. 2, 413–418.
- [6] W. Smith, Composition operators between Bergman and Hardy spaces, Trans. Amer. Math. Soc. 348 (1996), no. 6, 2331–2348.
- [7] C. Sundberg, Measures induced by analytic functions and a problem of Walter Rudin, J. Amer. Math. Soc. 16 (2003), no. 1, 69–90.

KAZUHIRO KASUGA ACADEMIC SUPPORT CENTER KOGAKUIN UNIVERSITY TOKYO 192-0015, JAPAN

E-mail address: kt13224@ns.kogakuin.ac.jp

Hokusei Gakuen University Sapporo 004-8631, Japan

 $E\text{-}mail\ address{:}\ \verb"z00547@hokusei.ac.jp"$