BOUNDED COMPOSITION OPERATORS FROM THE BERGMAN SPACE TO THE HARDY SPACE

Kazuhiro Kasuga and Takahiko Nakazi

Abstract

Let ϕ be an analytic self map of the open unit disc D. In this paper, we study the composition operator C_{ϕ} from the Bergman space on D to the Hardy space on D

1. Introduction

Let D be the open unit disc in the complex plane. L_{a}^{2} and H^{2} denote the Bergman space and the Hardy space on D, respectively. Then H^{2} is contained in L_{a}^{2}. If H^{∞} is a set of all bounded analytic functions, then H^{∞} is contained in H^{2}. For an analytic self map ϕ of D, the composition operator C_{ϕ} is defined by $\left(C_{\phi} f\right)(z)=f(\phi(z))(z \in D)$ for f in H, the set of all analytic functions on D. The Nevanlinna counting function of ϕ, is defined on $D \backslash\{\phi(0)\}$ by

$$
N_{\phi}(w)=\sum_{\phi(z)=w} \log \frac{1}{|z|}
$$

T. Nakazi [4, Theorem 4] gives a necessary and sufficient condition for an isometric operator C_{ϕ} from L_{a}^{2} to H^{2}. That is, C_{ϕ} is isometric from L_{a}^{2} to H^{2} if and only if $N_{\phi}(w)=2 \int_{|w|}^{1} \log \frac{r}{|w|} r d r$ for nearly all $w \in D \backslash\{0\}$.
W. Smith [6, Theorem 1.1] gives a necessary and sufficient condition for a bounded composition operator C_{ϕ} from L_{a}^{2} to H^{2}. That is, C_{ϕ} is bounded from L_{a}^{2} to H^{2} if and only if $N_{\phi}(w)=O\left([\log 1 /|w|]^{2}\right)(|w| \rightarrow 1)$. For given ϕ, we can use some times this result in order to show C_{ϕ} is bounded but it may not be easy to use it.

A function ϕ in H^{∞} with $\|\phi\|_{\infty}=1$ is called a Rudin's orthogonal function in H^{2} if $\left\{\phi^{n}: n=0,1,2, \ldots\right\}$ is a set of orthogonal functions in H^{2}. It should be also called a Choe's function because B. R. Choe told W. Rudin about such a function. An inner function which has zeros at the origin is a Rudin's orthogonal function. Hence the Möbius transform of a Rudin's (Choe's)

Received July 22, 2013.
2010 Mathematics Subject Classification. 47B33.
Key words and phrases. Bergman space, Hardy space, isometry, bounded composition, Nevanlinna counting function.
orthogonal function is a generalization of an inner function. There exists a Rudin's (Choe's) orthogonal function which is not an inner function ([1], [7]).

In Section 2, we study isometric C_{ϕ} from L_{a}^{2} to H^{2}. In Section 3, we study bounded C_{ϕ} from L_{a}^{2} to H^{2}. In Section 4, we give few examples using a theorem of W. Smith. In Section 5, we study bounded C_{ϕ} from L_{a}^{2} onto H^{2}.

2. Isometric composition operator from L_{a}^{2} to $\boldsymbol{H}^{\mathbf{2}}$

Lemma 1. Let ϕ be a Rudin's (Choe's) orthogonal function. Then, C_{ϕ} is isometric from L_{a}^{2} to H^{2} if and only if

$$
\int_{0}^{2 \pi}|\phi|^{2 j} d \theta / 2 \pi=\frac{1}{j+1}(j=0,1,2, \ldots)
$$

Proof. Suppose $f=\sum_{j=0}^{\infty} a_{j} z^{j}$ and $f \in H$. If C_{ϕ} is isometric, then

$$
\sum_{j=0}^{\infty} \frac{1}{j+1}\left|a_{j}\right|^{2}=\sum_{j=0}^{\infty}\left|a_{j}\right|^{2} \int_{0}^{2 \pi}|\phi|^{2 j} d \theta / 2 \pi
$$

because $\|f\|_{L_{a}^{2}}=\|f \circ \phi\|_{H^{2}}$. Since f is arbitrary in L_{a}^{2}, we can show

$$
\int_{0}^{2 \pi}|\phi|^{2 j} d \theta / 2 \pi=\frac{1}{j+1}(j=0,1,2, \ldots)
$$

The converse is clear.
Theorem 1. Let ϕ be an analytic self map of the open unit disc. Then, C_{ϕ} is an isometric composition operator if and only if ϕ is a Rudin's (Choe's) orthogonal function and

$$
\int_{0}^{2 \pi}|\phi|^{2 j} d \theta / 2 \pi=\frac{1}{j+1}(j=0,1,2, \ldots)
$$

Proof. If C_{ϕ} is an isometric operator from L_{a}^{2} to H^{2}, then Theorem 4 in [4] shows $N_{\phi}(w)=2 \int_{|w|}^{1} \log \frac{r}{|w|} r d r$ for nearly all $w \in D \backslash\{0\}$. By Theorem 1 in [3] ϕ is a Rudin's (Choe's) orthogonal function. Now Lemma 1 shows the theorem.

In Theorem 1, if C_{ϕ} is onto, then by Theorem 3 in [4] ϕ is inner. This contradicts Theorem 1. Hence there does not exist any isometric composition operator from L_{a}^{2} onto H^{2}.

3. Bounded composition operator from L_{a}^{2} to $\boldsymbol{H}^{\mathbf{2}}$

In the following theorem, (1) is known in [6] and (2) is known in [2].
Theorem 2. Let ϕ be an analytic self map of the open unit disc.
(1) C_{ϕ} is bounded from L_{a}^{2} into H^{2} if and only if

$$
N_{\phi}(z)=O\left(\left(\log \frac{1}{|z|}\right)^{2}\right) \text { as }|z| \rightarrow 1
$$

(2) If ϕ has radial limits of modulus one on a set of positive measure, then C_{ϕ} does not map L_{a}^{2} into H^{2}.

Lemma 2. Let ϕ be a Rudin's (Choe's) orthogonal function. Then C_{ϕ} is bounded from L_{a}^{2} to H^{2} if and only if $\int_{0}^{2 \pi}|\phi|^{2 j} d \theta / 2 \pi \leq \frac{\gamma}{j+1}(j=0,1,2, \ldots)$ for some finite constant $\gamma>0$.

Proof. It is clear by the proof of Lemma 1.
Theorem 3. Let ϕ be a polynomial of a Rudin's (Choe's) orthogonal function ϕ_{0} with $\|\phi\|_{\infty}=1$. If C_{ϕ} is bounded from L_{a}^{2} into H^{2}, then

$$
\sum_{j=0}^{\infty}\left|\binom{-\frac{1}{2}}{j}\right|^{2} \int_{0}^{2 \pi}\left|\phi_{0}\right|^{2 j} d \theta / 2 \pi<\infty
$$

In order to prove the Theorem 3 we need to prove two lemmas.
Lemma 3. If p is a polynomial with $\|p\|_{\infty}=1$, then $1-p(z)=\prod_{j=1}^{n}(z-$ $\left.a_{j}\right) g(z)$, where $\left|a_{j}\right|=1(1 \leq j \leq n)$ and $|g(z)|>0$ on \bar{D}.

Proof. Obvious.
Lemma 4. For a with $|a|=1,(z-a)^{-1 / 2}$ belongs to L_{a}^{2} but does not belong to H^{2}.

Proof. It is enough to show that $(1-z)^{-1 / 2} \in L_{a}^{2}$ but $(1-z)^{-1 / 2} \notin H^{2}$. This is a result of Wallis formula.

The proof of Theorem 3. Suppose $\|\phi\|_{\infty}=1$. Let ϕ_{0} be a Rudin's (Choe's) orthogonal function and p a polynomial and $\phi(z)=p\left(\phi_{0}(z)\right)$ where $\|p\|_{\infty}=$ 1. Suppose C_{ϕ} maps L_{a}^{2} into H^{2}. Then by the hypothesis and Lemma 4, $(1-\phi)^{-1 / 2}$ belongs to H^{2}. By Lemma 3

$$
1-\phi(z)=\prod_{j=1}^{n}\left(\phi_{0}(z)-a_{j}\right) g\left(\phi_{0}(z)\right)
$$

Hence $\left(\phi_{0}(z)-a_{j}\right)^{-1 / 2} \in H^{2}$ and so $\left(1-\phi_{0}(z)\right)^{-1 / 2} \in H^{2}$. Since ϕ_{0} is a Rudin's (Choe's) orthogonal function,

$$
\left\|\left(1-\phi_{0}\right)^{-1 / 2}\right\|_{2}^{2}=\sum_{j=0}^{\infty}\left|\binom{-\frac{1}{2}}{j}\right|^{2} \int_{0}^{2 \pi}\left|\phi_{0}\right|^{2 j} d \theta / 2 \pi<\infty .
$$

By Theorem 3, if ϕ is a polynomial of an inner function ϕ_{0} with zero at the origin, then C_{ϕ} is not bounded by Lemma 4. In general, it is clear that C_{ϕ} is bounded when $\|\phi\|_{\infty}<1$. By (1) of Theorem 2, if ϕ is an inner function, then C_{ϕ} is not bounded.

4. Some special case

In this section, we study whether C_{ϕ} is not bounded from L_{a}^{2} to H^{2} when $\phi=(1+q) / 2$ and q is inner. If $q(0)=0$, then by Theorem $3 C_{\phi}$ is not bounded because q is a Rudin's (Choe's) orthogonal function. Hence we have to study in case $q(0) \neq 0$. Our main tools are (1) of Theorem 2 and the following Lemma 5.

Lemma 5. For nearly all w in D,

$$
N_{\phi}(w)=\int_{0}^{2 \pi} \log \left|\frac{w-\phi\left(e^{i \theta}\right)}{1-\bar{w} \phi\left(e^{i \theta}\right)}\right| d \theta / 2 \pi-\log \left|\frac{w-\phi(0)}{1-\bar{w} \phi(0)}\right| .
$$

Proof. This is well known (see [3]).

Lemma 6.

$$
\limsup _{\substack{|w| \rightarrow 1 \\|w| \leq 1 \\|2 w-1| \leq 1}} \frac{-\log |2 w-1|^{2}}{(\log |w|)^{2}}=\infty .
$$

Proof. Put $w=r(x+i y), 0 \leq r<1$ and $x^{2}+y^{2}=1$. Then $r \leq x$ when $|2 w-1| \leq 1$. Hence

$$
\limsup _{|w| \rightarrow 1,|2 w-1| \leq 1} \frac{-\log |2 w-1|^{2}}{(\log |w|)^{2}}=\limsup _{r \rightarrow 1, r \leq x} \frac{-\log \left(4 r^{2}-4 r x+1\right)}{(\log r)^{2}}=\infty
$$

In fact, put $r=1-t, x=1-\frac{1}{2} t$ and $t \rightarrow 0$.

Lemma 7.

$$
\lim _{|w| \rightarrow 1} \frac{\log |1+\bar{a} w|^{2}-\log |w+a|^{2}}{(\log |w|)^{2}}=\infty .
$$

Proof. Put $w=r e^{i \alpha}$ and $a=b e^{i \beta}$ where $r=|w|$ and $b=|a|$, then $1+$ $\bar{a} w=1+b r e^{i(\alpha-\beta)}$ and $w+a=\left(r e^{i(\alpha-\beta)}+b\right) e^{i \beta}$. Hence we may assume $w=r e^{i \alpha}=r(x+i y)$ and $a=b$. Then

$$
\begin{aligned}
& \lim _{r \rightarrow 1} \frac{\log \left(1+a^{2} r^{2}+2 a r x\right)-\log \left(r^{2}+a^{2}+2 a r x\right)}{(\log r)^{2}} \\
= & \lim _{r \rightarrow 1}\left\{\frac{2 a^{2} r+2 a x}{1+a^{2} r^{2}+2 a r x}-\frac{2 r+2 a x}{r^{2}+a^{2}+2 a r x}\right\} \frac{2 r}{\log r} \\
= & \lim _{r \rightarrow 1} \frac{\left(2 a^{3} x-2 a x\right) r^{2}+\left(2 a^{4}-2\right) r+2 a^{3} x-2 a x}{\left(1+a^{2} r^{2}+2 a r x\right)\left(r^{2}+a^{2}+2 a r x\right)} \times \frac{2 r}{\log r}=\infty .
\end{aligned}
$$

Corollary 4. If $\phi=\left(1+q^{n}\right) / 2$, n is a positive integer and $q=(z-a) /(1-\bar{a} z)$ with $|a|<1$, then C_{ϕ} is not bounded.

Proof. By Lemma 5, for nearly all $r e^{i \alpha}$
$N_{\phi}\left(r e^{i \alpha}\right)=\int_{0}^{2 \pi} \log \left|\left(2 r e^{i \alpha}-1\right)-\left(\frac{z-a}{1-\bar{a} z}\right)^{n}\right| d \theta / 2 \pi-\log \left|2 r e^{i \alpha}-1-(-a)^{n}\right|$.

Put $s_{1}, s_{2}, \ldots, s_{n}$ are distinct nth roots of s and $s=2 r e^{i \alpha}-1$ when $|s|<1$. Moreover put $b_{j}=\frac{s_{j}+a}{1+\bar{a} s_{j}}(1 \leq j \leq n)$. Since $\left|b_{j}\right|<1(1 \leq j \leq n)$, by Jensen's formula
$\int_{0}^{2 \pi} \log \left|\left(2 r e^{i \alpha}-1\right)-\left(\frac{z-a}{1-\bar{a} z}\right)^{n}\right| d \theta / 2 \pi=\sum_{j=1}^{n} \log \frac{1}{\left|b_{j}\right|}+\log \left|\left(2 r e^{i \alpha}-1\right)-(-a)^{n}\right|$.
Hence for nearly all $r e^{i \alpha}$

$$
N_{\phi}\left(r e^{i \alpha}\right)=\left\{\begin{array}{cc}
-\sum_{j=1}^{n} \log \left|b_{j}\right| & \left(\left|2 r e^{i \alpha}-1\right|<1\right) \\
0 & \left(\left|2 r e^{i \alpha}-1\right| \geq 1\right)
\end{array}\right.
$$

By Lemma 7,

$$
\begin{aligned}
\limsup _{r \rightarrow 1,|s|<1} \frac{N_{\phi}\left(r e^{i \alpha}\right)}{(\log r)^{2}} & =-\frac{1}{2} \liminf _{r \rightarrow 1,|s|<1} \sum_{j=1}^{n} \frac{\log \left|\frac{s_{j}+a}{1+\bar{a} s_{j}}\right|^{2}}{(\log r)^{2}} \\
& \geq-\frac{1}{2} \sum_{j=1}^{n} \limsup _{r \rightarrow 1,|s|<1} \frac{\log \left|\frac{s_{j}+a}{1+\bar{a} s_{j}}\right|^{2}}{(\log r)^{2}} \\
& \geq-\frac{1}{2} \sum_{j=1}^{n} \limsup _{r \rightarrow 1,|s|<1} \frac{\log \left|\frac{s_{j}+a}{1+\bar{a} s_{j}}\right|^{2}}{\left(\log \left|s_{j}\right|\right)^{2}} \frac{\left(\log \left|s_{j}\right|\right)^{2}}{(\log |s|)^{2}} \frac{(\log |s|)^{2}}{(\log r)^{2}} \\
& =\infty
\end{aligned}
$$

because $\lim \sup _{r \rightarrow 1,|s|<1}(\log |s|)^{2} /(\log r)^{2}=\infty$ by Lemma 6 and

$$
\left(\log \left|s_{j}\right|\right)^{2} /(\log |s|)^{2}=1 / n^{2}(1 \leq j \leq n) .
$$

Hence (1) of Theorem 2 shows that C_{ϕ} is not bounded.
Now we are interested in the case

$$
q=\frac{z-a}{1-\bar{a} z} \frac{z-b}{1-\bar{b} z} \quad(z \in D,|a|<1 \text { and }|b|<1) .
$$

We would like to prove if $\phi=(1+q) / 2$, then C_{ϕ} is not bounded. Unfortunately we could not prove it except two special cases.

Lemma 8. Let x and y be complex numbers with $|x|<1$ and $|y|<1$. Fix x and as $|y| \rightarrow 1, \log |y| /\left(\log |y|+\log \left|\frac{x-y}{1-y x}\right|\right)$ converges to a finite constant $\gamma(x)$.
Proof. As $|y| \rightarrow 1$

$$
\begin{aligned}
& \log |y| /\left(\log |y|+\log \left|\frac{x-y}{1-y x}\right|\right) \\
= & 1 /\left(1+\log \left|\frac{x-y}{1-y x}\right| / \log |y|\right) \approx \frac{1-\left|\frac{x-y}{1-y x}\right|^{2}}{1-|y|}=\frac{1-|x|^{2}}{|1-y x|},
\end{aligned}
$$

where $A(x) \approx B(x)$ means const $\cdot A(x) \leq B(x) \leq$ const $\cdot B(x)$.
Corollary 5. If $\phi=(1+q) / 2$ and $q=\frac{z-a}{1-\bar{a} z} \cdot \frac{z+a}{1+\bar{a} z}$ with $|a|<1$, then C_{ϕ} is not bounded.

Proof. As in Corollary 4, for nearly all $r e^{i \alpha}$
$N_{\phi}\left(r e^{i \alpha}\right)=\int_{0}^{2 \pi} \log \left|\left(2 r e^{i \alpha}-1\right)-\frac{z-a}{1-\bar{a} z} \cdot \frac{z+a}{1-\bar{a} z}\right| d \theta / 2 \pi-\log \left|2 r e^{i \alpha}-1+a^{2}\right|$.
Put $s=2 r e^{i \alpha}-1$ when $|s|<1$. Moreover $b_{j}^{2}=\frac{s+a^{2}}{1+\bar{a}^{2} s}(j=1,2)$ where b_{1}, b_{2} are distinct roots of $\frac{s+a^{2}}{1+\bar{a}^{2} s}$. Since $\left|b_{j}\right|<1(j=1,2)$, by Jensen's formula for nearly all $r e^{i \alpha}$

$$
N_{\phi}\left(r e^{i \alpha}\right)=\left\{\begin{array}{cc}
-\sum_{j=1}^{2} \log \left|b_{j}\right| & \left(\left|2 r e^{i \alpha}-1\right|<1\right) \\
0 & \left(\left|2 r e^{i \alpha}-1\right| \geq 1\right)
\end{array}\right.
$$

By Lemma 7

$$
\begin{aligned}
\limsup _{r \rightarrow 1,|s|<1} \frac{N_{\phi}\left(r e^{i \alpha}\right)}{(\log r)^{2}} & =-\frac{1}{2} \liminf _{r \rightarrow 1,|s|<1} \sum_{j=1}^{2} \frac{\log \left|b_{j}\right|^{2}}{(\log r)^{2}} \\
& \geq-\frac{1}{2} \limsup _{r \rightarrow 1,|s|<1} \sum_{j=1}^{2} \frac{\log \left|b_{j}\right|^{2}}{(\log |s|)^{2}} \frac{(\log |s|)^{2}}{(\log r)^{2}} \\
& \geq-\frac{1}{2} \sum_{j=1}^{2} \limsup _{r \rightarrow 1,|s|<1} \frac{\log \left|b_{j}\right|^{2}}{(\log |s|)^{2}} \frac{(\log |s|)^{2}}{(\log r)^{2}}=\infty .
\end{aligned}
$$

Corollary 6. If $\phi=(1+q) / 2$ and $q=\frac{z-a}{1-a z} \cdot \frac{z-b}{1-b z}$ with $-1<a<1$ and $-1<b<1$, then C_{ϕ} is not bounded.

Proof. Put $s=2 r e^{i \delta}-1$ when $|s|<1$ and $\Phi(z)=s-\frac{z-a}{1-a z} \frac{z-b}{1-b z}$. Let α and β such that $\Phi(\alpha)=\Phi(\beta)=0,|\alpha|<1$ and $|\beta|<1$. Then

$$
s=\frac{\alpha-a}{1-a \alpha} \cdot \frac{\alpha-b}{1-b \alpha}=\frac{\beta-a}{1-a \beta} \cdot \frac{\beta-b}{1-b \beta} .
$$

Put $s_{1}=(\alpha-a) /(1-a \alpha), s_{2}=(\alpha-b) /(1-b \alpha), s_{3}=(\beta-a) /(1-a \beta)$ and $s_{4}=(\beta-b) /(1-b \beta)$. Then

$$
\frac{b-a}{1-a b}=\frac{s_{1}-s_{2}}{1-s_{1} s_{2}}=\frac{s_{3}-s_{4}}{1-s_{3} s_{4}} .
$$

As in Corollary 5 , for nearly all $r e^{i \alpha}$

$$
N_{\phi}\left(r e^{i \delta}\right)=\left\{\begin{array}{cl}
\log \frac{1}{|\alpha|}+\log \frac{1}{|\beta|} & \left(\left|2 r e^{i \delta}-1\right|<1\right) \\
0 & \left(\left|2 r e^{i \delta}-1\right| \geq 1\right)
\end{array}\right.
$$

Hence

$$
\begin{aligned}
\frac{N_{\phi}\left(r e^{i \delta}\right)}{(\log r)^{2}} & =\frac{-\log \left|\frac{s_{1}+a}{1+a s_{1}}\right|\left|\frac{s_{3}+a}{1+a s_{3}}\right|}{(\log r)^{2}} \\
& =\frac{1}{(\log r)^{2}} \cdot \frac{1}{2}\left(-\log \left|\frac{s_{1}+a}{1+a s_{1}}\right|^{2}-\log \left|\frac{s_{3}+a}{1+a s_{3}}\right|^{2}\right) \\
& \geq \frac{1}{(\log r)^{2}}\left\{\left(\log \left|\frac{s_{1}+a}{1+a s_{1}}\right|^{2}\right)\left(\log \left|\frac{s_{3}+a}{1+a s_{3}}\right|^{2}\right)\right\}^{1 / 2} \\
& =\frac{\left(\log \left|s_{1}\right|\right)\left(\log \left|s_{3}\right|\right)}{(\log r)^{2}}\left\{\frac{-\log \left|\frac{s_{1}+a}{1+a s_{1}}\right|^{2}}{\left(\log \left|s_{1}\right|\right)^{2}}\right\}^{1 / 2}\left\{\frac{-\log \left|\frac{s_{3}+a}{1+a s_{3}}\right|^{2}}{\left(\log \left|s_{3}\right|\right)^{2}}\right\}^{1 / 2}
\end{aligned}
$$

By Lemma 7

$$
\lim _{\substack{\left|s_{1}\right| \rightarrow 1 \\\left|s_{2}\right| \rightarrow 1}}\left\{\frac{-\log \left|\frac{s_{1}+a}{1+a s_{1}}\right|^{2}}{\left(\log \left|s_{1}\right|\right)^{2}}\right\}^{1 / 2}\left\{\frac{-\log \left|\frac{s_{3}+a}{1+a s_{3}}\right|^{2}}{\left(\log \left|s_{3}\right|\right)^{2}}\right\}^{1 / 2}=\infty .
$$

Hence by Lemmas 7 and 8

$$
\frac{\log \left|s_{1}\right|}{\log |s|}=\frac{\log \left|s_{1}\right|}{\log \left|s_{1}\right|+\log \left|s_{2}\right|}=\frac{\log \left|s_{1}\right|}{\log \left|s_{1}\right|+\log \left|\frac{x-s_{1}}{1-s_{1} x}\right|}
$$

and so

$$
\frac{\left(\log \left|s_{1}\right|\right)\left(\log \left|s_{3}\right|\right)}{(\log r)^{2}}=\frac{(\log |s|)^{2}}{(\log r)^{2}} \cdot \frac{\log \left|s_{1}\right|}{\log |s|} \cdot \frac{\log \left|s_{3}\right|}{\log |s|} \rightarrow \infty \text { as }|s| \rightarrow 1
$$

Therefore

$$
\limsup _{r \rightarrow 1,|s|<1} \frac{N_{\phi}\left(r e^{i \alpha}\right)}{(\log r)^{2}}=\infty
$$

5. Bounded composition operator from L_{a}^{2} onto H^{2}

We would like to prove that there does not exist any bounded composition operator from L_{a}^{2} onto H^{2}.
Proposition 1. If C_{ϕ} is bounded and onto, then ϕ is one-to-one on D and $\phi(D) \subsetneq D$.
Proof. If $C_{\phi} L_{a}^{2}=H^{2}$, then there exists f in L_{a}^{2} such that $f \circ \phi(z)=z$ and ϕ is one-to-one on D. If $\phi(D)=D$, then $\phi(z)=\alpha \frac{z-a}{1-\bar{a} z}$ when $|\alpha|=1$ and $a \in D$, and $f(z)=\frac{\bar{\alpha} z+a}{1+\bar{\alpha} \bar{a} z}$. Then $\phi \circ f(z)=z$. Suppose $F \in L_{a}^{2}$ but $F \notin H^{2}$. Since $F \circ \phi \in H^{2}, F \circ \phi \circ f$ belongs to H^{2}. It contradicts that $F=F \circ \phi \circ f$. Thus $C_{\phi} L_{a}^{2} \neq H^{2}$.
Lemma 9. If $\phi(z)=\alpha z$ and $|\alpha|<1$, then $C_{\phi} L_{a}^{2} \subsetneq H^{2}$.

Proof. It is easy to see $C_{\phi} L_{a}^{2} \subseteq H^{2}$. If $C_{\phi} L_{a}^{2}=H^{2}$, then $\|f \circ \phi\|_{H^{2}} \geq$ $\delta\|f\|_{L_{a}^{2}}\left(f \in L_{a}^{2}\right)$. Hence

$$
\sum_{n=0}^{\infty}|\alpha|^{2 n}\left|a_{n}\right|^{2} \geq \delta^{2} \sum_{n=0}^{\infty} \frac{\left|a_{n}\right|^{2}}{(n+1)}
$$

when $f=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $f \in L_{a}^{2}$. If $f_{\varepsilon}=\sum_{n=0}^{\infty}(n+1)^{-\varepsilon} z^{n}$, then $\left\|f_{\varepsilon} \circ \phi\right\|_{H^{2}}^{2}=$ $\sum_{n=0}^{\infty}|\alpha|^{2 n}(n+1)^{-2 \varepsilon}$ and $\left\|f_{\varepsilon}\right\|_{L_{a}^{2}}^{2}=\sum_{n=0}^{\infty}(n+1)^{-(1+2 \varepsilon)}$. Hence $\left\|f_{\varepsilon}\right\|_{L_{a}^{2}}^{2} \rightarrow \infty$ and $\left\|f_{\varepsilon}\right\|_{H^{2}}^{2}=\sum_{n=0}^{\infty}|\alpha|^{2 n}$ as $\varepsilon \rightarrow 0$. This contradiction shows $C_{\phi} L_{a}^{2} \subsetneq H^{2}$.

Proposition 2. If $\overline{\phi(D)} \subsetneq D$, then C_{ϕ} is bounded but not onto.
Proof. If $\overline{\phi(D)} \subsetneq D$, then $\alpha=\|\phi\|_{\infty}<1$. Put $\psi(z)=\phi(z) / \alpha$ and $\phi_{\alpha}(z)=\alpha z$. Then C_{ψ} is bounded from H^{2} to H^{2} and $C_{\phi_{\alpha}}$ is not onto from L_{a}^{2} to H^{2} by Lemma 9. Suppose C_{ϕ} is bounded from L_{a}^{2} onto H^{2}. Since C_{ϕ} is bounded from L_{a}^{2} to H^{2}, there exist $0<\varepsilon, \gamma<\infty$ such that

$$
\begin{aligned}
\varepsilon\|f\|_{L_{a}^{2}}^{2} & \leq\left\|C_{\phi} f\right\|_{H^{2}}=\left\|C_{\psi} C_{\phi_{\alpha}} f\right\|_{H^{2}} \\
& \leq \gamma\left\|C_{\phi_{\alpha}} f\right\|_{H^{2}}\left(f \in L_{a}^{2}\right) .
\end{aligned}
$$

The inequality above contradicts Lemma 9.
If ϕ is inner it is known that C_{ϕ} is not bounded and onto. In fact, by (2) of Theorem $2 C_{\phi}$ is not bounded. But we can give a direct simple proof. If ϕ is inner and C_{ϕ} is bounded and onto by Proposition 1ϕ is one to one and so ϕ is a single Blaschke product. Hence $\phi(D)=D$ and this contradicts Proposition 1.

When $\phi=(1+q) / 2$ and q is inner, we could not show whether C_{ϕ} is bounded or not in general (see Section 4). But C_{ϕ} is not onto in general. For, by Proposition $1, q$ is a single Blaschke product and by Corollary $4, C_{\phi}$ is not bounded and so not onto.

References

[1] C. Bishop, Orthogonal functions in H^{∞}, Pacific J. Math. 220 (2005), no. 1, 1-31.
[2] J. Moorhouse and C. Toews, Differences of composition opertors, Contemporary Mathematics 321 (2003), 207-213.
[3] T. Nakazi, The Nevanlinna counting functions for Rudin's orthogonal functions, Proc. Amer. Math. Soc. 131 (2003), no. 4, 1267-1271.
[4] _, Isometric composition operators between two weighted Hardy spaces, Nihonkai Math. J. 17 (2006), no. 2, 111-124.
[5] T. Nakazi and T. Watanabe, Properties of a Rudin's orthogonal function which is a linear combination of two inner functions, Sci. Math. Jpn. 57 (2003), no. 2, 413-418.
[6] W. Smith, Composition operators between Bergman and Hardy spaces, Trans. Amer. Math. Soc. 348 (1996), no. 6, 2331-2348.
[7] C. Sundberg, Measures induced by analytic functions and a problem of Walter Rudin, J. Amer. Math. Soc. 16 (2003), no. 1, 69-90.

Kazuhiro Kasuga

Academic Support Center
Kogakuin University
Tokyo 192-0015, Japan
E-mail address: kt13224@ns.kogakuin.ac.jp
Takahiko Nakazi
Hokusei Gakuen University
Sapporo 004-8631, Japan
E-mail address: z00547@hokusei.ac.jp

