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BOUNDED COMPOSITION OPERATORS FROM THE

BERGMAN SPACE TO THE HARDY SPACE

Kazuhiro Kasuga and Takahiko Nakazi

Abstract. Let φ be an analytic self map of the open unit disc D. In this
paper, we study the composition operator Cφ from the Bergman space
on D to the Hardy space on D.

1. Introduction

Let D be the open unit disc in the complex plane. L2
a and H2 denote the

Bergman space and the Hardy space on D, respectively. Then H2 is contained
in L2

a. If H
∞ is a set of all bounded analytic functions, then H∞ is contained

in H2. For an analytic self map φ of D, the composition operator Cφ is defined
by (Cφf)(z) = f(φ(z)) (z ∈ D) for f in H , the set of all analytic functions on
D. The Nevanlinna counting function of φ, is defined on D\{φ(0)} by

Nφ(w) =
∑

φ(z)=w log
1

|z|
.

T. Nakazi [4, Theorem 4] gives a necessary and sufficient condition for an
isometric operator Cφ from L2

a to H2. That is, Cφ is isometric from L2
a to H2

if and only if Nφ(w) = 2
∫ 1

|w| log
r
|w|rdr for nearly all w ∈ D\{0}.

W. Smith [6, Theorem 1.1] gives a necessary and sufficient condition for a
bounded composition operator Cφ from L2

a to H
2. That is, Cφ is bounded from

L2
a to H2 if and only if Nφ(w) = O ([log 1/|w|]2) (|w| → 1). For given φ, we

can use some times this result in order to show Cφ is bounded but it may not
be easy to use it.

A function φ in H∞ with ‖φ‖∞ = 1 is called a Rudin’s orthogonal function
in H2 if {φn : n = 0, 1, 2, . . .} is a set of orthogonal functions in H2. It
should be also called a Choe’s function because B. R. Choe told W. Rudin
about such a function. An inner function which has zeros at the origin is a
Rudin’s orthogonal function. Hence the Möbius transform of a Rudin’s (Choe’s)

Received July 22, 2013.
2010 Mathematics Subject Classification. 47B33.
Key words and phrases. Bergman space, Hardy space, isometry, bounded composition,

Nevanlinna counting function.

c©2014 Korean Mathematical Society

1005



1006 K. KASUGA AND T. NAKAZI

orthogonal function is a generalization of an inner function. There exists a
Rudin’s (Choe’s) orthogonal function which is not an inner function ([1], [7]).

In Section 2, we study isometric Cφ from L2
a to H2. In Section 3, we study

bounded Cφ from L2
a to H

2. In Section 4, we give few examples using a theorem
of W. Smith. In Section 5, we study bounded Cφ from L2

a onto H2.

2. Isometric composition operator from L
2

a
to H

2

Lemma 1. Let φ be a Rudin’s (Choe’s) orthogonal function. Then, Cφ is

isometric from L2
a to H2 if and only if
∫ 2π

0

|φ|2jdθ/2π =
1

j + 1
(j = 0, 1, 2, . . .).

Proof. Suppose f =
∑∞

j=0 ajz
j and f ∈ H . If Cφ is isometric, then

∞
∑

j=0

1

j + 1
|aj |

2 =

∞
∑

j=0

|aj |
2

∫ 2π

0

|φ|2jdθ/2π

because ‖f‖L2
a
= ‖f ◦ φ‖H2 . Since f is arbitrary in L2

a, we can show
∫ 2π

0

|φ|2jdθ/2π =
1

j + 1
(j = 0, 1, 2, . . .).

The converse is clear. �

Theorem 1. Let φ be an analytic self map of the open unit disc. Then, Cφ
is an isometric composition operator if and only if φ is a Rudin’s (Choe’s)
orthogonal function and

∫ 2π

0

|φ|2jdθ/2π =
1

j + 1
(j = 0, 1, 2, . . .).

Proof. If Cφ is an isometric operator from L2
a to H2, then Theorem 4 in [4]

shows Nφ(w) = 2
∫ 1

|w| log
r
|w|rdr for nearly all w ∈ D\{0}. By Theorem 1

in [3] φ is a Rudin’s (Choe’s) orthogonal function. Now Lemma 1 shows the
theorem. �

In Theorem 1, if Cφ is onto, then by Theorem 3 in [4] φ is inner. This
contradicts Theorem 1. Hence there does not exist any isometric composition
operator from L2

a onto H2.

3. Bounded composition operator from L
2

a
to H

2

In the following theorem, (1) is known in [6] and (2) is known in [2].

Theorem 2. Let φ be an analytic self map of the open unit disc.

(1) Cφ is bounded from L2
a into H2 if and only if

Nφ(z) = O((log
1

|z|
)2) as |z| → 1.
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(2) If φ has radial limits of modulus one on a set of positive measure, then

Cφ does not map L2
a into H2.

Lemma 2. Let φ be a Rudin’s (Choe’s) orthogonal function. Then Cφ is

bounded from L2
a to H2 if and only if

∫ 2π

0
|φ|2jdθ/2π ≤ γ

j+1 (j = 0, 1, 2, . . .) for

some finite constant γ > 0.

Proof. It is clear by the proof of Lemma 1. �

Theorem 3. Let φ be a polynomial of a Rudin’s (Choe’s) orthogonal function

φ0 with ‖φ‖∞ = 1. If Cφ is bounded from L2
a into H2, then

∞
∑

j=0

∣

∣

∣

∣

(

− 1
2
j

)∣

∣

∣

∣

2 ∫ 2π

0

|φ0|
2jdθ/2π < ∞.

In order to prove the Theorem 3 we need to prove two lemmas.

Lemma 3. If p is a polynomial with ‖p‖∞ = 1, then 1 − p(z) =
∏n
j=1(z −

aj)g(z), where |aj | = 1 (1 ≤ j ≤ n) and |g(z)| > 0 on D̄.

Proof. Obvious. �

Lemma 4. For a with |a| = 1, (z − a)−1/2 belongs to L2
a but does not belong

to H2.

Proof. It is enough to show that (1− z)−1/2 ∈ L2
a but (1− z)−1/2 6∈ H2. This

is a result of Wallis formula. �

The proof of Theorem 3. Suppose ‖φ‖∞ = 1. Let φ0 be a Rudin’s (Choe’s)
orthogonal function and p a polynomial and φ(z) = p(φ0(z)) where ‖p‖∞ =
1. Suppose Cφ maps L2

a into H2. Then by the hypothesis and Lemma 4,

(1− φ)−1/2 belongs to H2. By Lemma 3

1− φ(z) =

n
∏

j=1

(φ0(z)− aj)g(φ0(z)).

Hence (φ0(z)−aj)
−1/2 ∈ H2 and so (1−φ0(z))

−1/2 ∈ H2. Since φ0 is a Rudin’s
(Choe’s) orthogonal function,

‖(1− φ0)
−1/2‖22 =

∞
∑

j=0

∣

∣

∣

∣

(

− 1
2
j

)∣

∣

∣

∣

2 ∫ 2π

0

|φ0|
2jdθ/2π <∞.

�

By Theorem 3, if φ is a polynomial of an inner function φ0 with zero at the
origin, then Cφ is not bounded by Lemma 4. In general, it is clear that Cφ is
bounded when ‖φ‖∞ < 1. By (1) of Theorem 2, if φ is an inner function, then
Cφ is not bounded.
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4. Some special case

In this section, we study whether Cφ is not bounded from L2
a to H2 when

φ = (1+q)/2 and q is inner. If q(0) = 0, then by Theorem 3 Cφ is not bounded
because q is a Rudin’s (Choe’s) orthogonal function. Hence we have to study in
case q(0) 6= 0. Our main tools are (1) of Theorem 2 and the following Lemma
5.

Lemma 5. For nearly all w in D,

Nφ(w) =

∫ 2π

0

log

∣

∣

∣

∣

w − φ(eiθ)

1− w̄φ(eiθ)

∣

∣

∣

∣

dθ/2π − log

∣

∣

∣

∣

w − φ(0)

1− w̄φ(0)

∣

∣

∣

∣

.

Proof. This is well known (see [3]). �

Lemma 6.

lim sup
|w|→1
|w|≤1

|2w−1|≤1

− log |2w − 1|2

(log |w|)2
= ∞.

Proof. Put w = r(x + iy), 0 ≤ r < 1 and x2 + y2 = 1. Then r ≤ x when
|2w − 1| ≤ 1. Hence

lim sup
|w|→1,|2w−1|≤1

− log |2w − 1|2

(log |w|)2
= lim sup

r→1,r≤x

− log(4r2 − 4rx + 1)

(log r)2
= ∞.

In fact, put r = 1− t, x = 1− 1
2 t and t→ 0. �

Lemma 7.

lim
|w|→1

log |1 + āw|2 − log |w + a|2

(log |w|)2
= ∞.

Proof. Put w = reiα and a = beiβ where r = |w| and b = |a|, then 1 +
āw = 1 + brei(α−β) and w + a = (rei(α−β) + b)eiβ . Hence we may assume
w = reiα = r(x + iy) and a = b. Then

lim
r→1

log(1 + a2r2 + 2arx)− log(r2 + a2 + 2arx)

(log r)2

= lim
r→1

{

2a2r + 2ax

1 + a2r2 + 2arx
−

2r + 2ax

r2 + a2 + 2arx

}

2r

log r

= lim
r→1

(2a3x− 2ax)r2 + (2a4 − 2)r + 2a3x− 2ax

(1 + a2r2 + 2arx)(r2 + a2 + 2arx)
×

2r

log r
= ∞.

�

Corollary 4. If φ = (1+qn)/2, n is a positive integer and q = (z−a)/(1− āz)
with |a| < 1, then Cφ is not bounded.

Proof. By Lemma 5, for nearly all reiα

Nφ(re
iα) =

∫ 2π

0

log

∣

∣

∣

∣

(2reiα − 1)−

(

z − a

1− āz

)n∣
∣

∣

∣

dθ/2π− log |2reiα−1− (−a)n|.
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Put s1, s2, . . . , sn are distinct nth roots of s and s = 2reiα − 1 when |s| < 1.

Moreover put bj =
sj+a
1+āsj

(1 ≤ j ≤ n). Since |bj | < 1 (1 ≤ j ≤ n), by Jensen’s

formula
∫ 2π

0

log

∣

∣

∣

∣

(2reiα−1)−

(

z − a

1− āz

)n∣
∣

∣

∣

dθ/2π=

n
∑

j=1

log
1

|bj|
+log |(2reiα−1)−(−a)n|.

Hence for nearly all reiα

Nφ(re
iα) =











−

n
∑

j=1

log |bj| (|2reiα − 1| < 1)

0 (|2reiα − 1| ≥ 1).

By Lemma 7,

lim sup
r→1,|s|<1

Nφ(re
iα)

(log r)2
= −

1

2
lim inf
r→1,|s|<1

n
∑

j=1

log
∣

∣

∣

sj+a
1+āsj

∣

∣

∣

2

(log r)2

≥ −
1

2

n
∑

j=1

lim sup
r→1,|s|<1

log
∣

∣

∣

sj+a
1+āsj

∣

∣

∣

2

(log r)2

≥ −
1

2

n
∑

j=1

lim sup
r→1,|s|<1

log
∣

∣

∣

sj+a
1+āsj

∣

∣

∣

2

(log |sj |)2
(log |sj |)

2

(log |s|)2
(log |s|)2

(log r)2

= ∞

because lim supr→1,|s|<1(log |s|)
2/(log r)2 = ∞ by Lemma 6 and

(log |sj|)
2/(log |s|)2 = 1/n2 (1 ≤ j ≤ n).

Hence (1) of Theorem 2 shows that Cφ is not bounded. �

Now we are interested in the case

q =
z − a

1− āz

z − b

1− b̄z
(z ∈ D, |a| < 1 and |b| < 1).

We would like to prove if φ = (1+q)/2, then Cφ is not bounded. Unfortunately
we could not prove it except two special cases.

Lemma 8. Let x and y be complex numbers with |x| < 1 and |y| < 1. Fix x
and as |y| → 1, log |y|/(log |y|+ log | x−y1−yx |) converges to a finite constant γ(x).

Proof. As |y| → 1

log |y|/

(

log |y|+ log

∣

∣

∣

∣

x− y

1− yx

∣

∣

∣

∣

)

= 1/

(

1 + log

∣

∣

∣

∣

x− y

1− yx

∣

∣

∣

∣

/ log |y|

)

≈
1− | x−y1−yx |

2

1− |y|
=

1− |x|2

|1− yx|
,
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where A(x) ≈ B(x) means const·A(x) ≤ B(x) ≤ const·B(x). �

Corollary 5. If φ = (1 + q)/2 and q = z−a
1−āz · z+a

1+āz with |a| < 1, then Cφ is

not bounded.

Proof. As in Corollary 4, for nearly all reiα

Nφ(re
iα) =

∫ 2π

0

log

∣

∣

∣

∣

(2reiα − 1)−
z − a

1− āz
·
z + a

1− āz

∣

∣

∣

∣

dθ/2π− log |2reiα−1+a2|.

Put s = 2reiα − 1 when |s| < 1. Moreover b2j = s+a2

1+ā2s (j = 1, 2) where b1, b2

are distinct roots of s+a2

1+ā2s . Since |bj | < 1 (j = 1, 2), by Jensen’s formula for

nearly all reiα

Nφ(re
iα) =











−

2
∑

j=1

log |bj| (|2reiα − 1| < 1)

0 (|2reiα − 1| ≥ 1).

By Lemma 7

lim sup
r→1,|s|<1

Nφ(re
iα)

(log r)2
= −

1

2
lim inf
r→1,|s|<1

2
∑

j=1

log |bj|
2

(log r)2

≥ −
1

2
lim sup
r→1,|s|<1

2
∑

j=1

log |bj |
2

(log |s|)2
(log |s|)2

(log r)2

≥ −
1

2

2
∑

j=1

lim sup
r→1,|s|<1

log |bj |
2

(log |s|)2
(log |s|)2

(log r)2
= ∞.

�

Corollary 6. If φ = (1 + q)/2 and q = z−a
1−az · z−b

1−bz with −1 < a < 1 and

−1 < b < 1, then Cφ is not bounded.

Proof. Put s = 2reiδ − 1 when |s| < 1 and Φ(z) = s− z−a
1−az

z−b
1−bz . Let α and β

such that Φ(α) = Φ(β) = 0, |α| < 1 and |β| < 1. Then

s =
α− a

1− aα
·
α− b

1− bα
=

β − a

1− aβ
·
β − b

1− bβ
.

Put s1 = (α − a)/(1 − aα), s2 = (α − b)/(1 − bα), s3 = (β − a)/(1 − aβ) and
s4 = (β − b)/(1− bβ). Then

b− a

1− ab
=

s1 − s2
1− s1s2

=
s3 − s4
1− s3s4

.

As in Corollary 5, for nearly all reiα

Nφ(re
iδ) =

{

log 1
|α| + log 1

|β| (|2reiδ − 1| < 1)

0 (|2reiδ − 1| ≥ 1).
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Hence

Nφ(re
iδ)

(log r)2
=

− log
∣

∣

∣

s1+a
1+as1

∣

∣

∣

∣

∣

∣

s3+a
1+as3

∣

∣

∣

(log r)2

=
1

(log r)2
·
1

2

(

− log

∣

∣

∣

∣

s1 + a

1 + as1

∣

∣

∣

∣

2

− log

∣

∣

∣

∣

s3 + a

1 + as3

∣

∣

∣

∣

2
)

≥
1

(log r)2

{(

log

∣

∣

∣

∣

s1 + a

1 + as1

∣

∣

∣

∣

2
)(

log

∣

∣

∣

∣

s3 + a

1 + as3

∣

∣

∣

∣

2
)}1/2

=
(log |s1|)(log |s3|)

(log r)2











− log
∣

∣

∣

s1+a
1+as1

∣

∣

∣

2

(log |s1|)2











1/2









− log
∣

∣

∣

s3+a
1+as3

∣

∣

∣

2

(log |s3|)2











1/2

.

By Lemma 7

lim
|s1|→1
|s2|→1











− log
∣

∣

∣

s1+a
1+as1

∣

∣

∣

2

(log |s1|)2











1/2









− log
∣

∣

∣

s3+a
1+as3

∣

∣

∣

2

(log |s3|)2











1/2

= ∞.

Hence by Lemmas 7 and 8

log |s1|

log |s|
=

log |s1|

log |s1|+ log |s2|
=

log |s1|

log |s1|+ log
∣

∣

∣

x−s1
1−s1x

∣

∣

∣

and so

(log |s1|)(log |s3|)

(log r)2
=

(log |s|)2

(log r)2
·
log |s1|

log |s|
·
log |s3|

log |s|
→ ∞ as |s| → 1.

Therefore

lim sup
r→1,|s|<1

Nφ(re
iα)

(log r)2
= ∞.

�

5. Bounded composition operator from L
2

a
onto H

2

We would like to prove that there does not exist any bounded composition
operator from L2

a onto H2.

Proposition 1. If Cφ is bounded and onto, then φ is one-to-one on D and

φ(D) ( D.

Proof. If CφL
2
a = H2, then there exists f in L2

a such that f ◦ φ(z) = z and φ
is one-to-one on D. If φ(D) = D, then φ(z) = α z−a

1−āz when |α| = 1 and a ∈ D,

and f(z) = ᾱz+a
1+ᾱāz . Then φ ◦ f(z) = z. Suppose F ∈ L2

a but F 6∈ H2. Since

F ◦ φ ∈ H2, F ◦ φ ◦ f belongs to H2. It contradicts that F = F ◦ φ ◦ f . Thus
CφL

2
a 6= H2. �

Lemma 9. If φ(z) = αz and |α| < 1, then CφL
2
a ( H2.
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Proof. It is easy to see CφL
2
a ⊆ H2. If CφL

2
a = H2, then ‖f ◦ φ‖H2 ≥

δ‖f‖L2
a
(f ∈ L2

a). Hence

∑∞
n=0 |α|

2n|an|
2 ≥ δ2

∑∞
n=0

|an|
2

(n+ 1)

when f =
∑∞
n=0 anz

n and f ∈ L2
a. If fε =

∑∞
n=0(n+1)−εzn, then ‖fε◦φ‖

2
H2 =

∑∞
n=0 |α|

2n(n+ 1)−2ε and ‖fε‖
2
L2

a
=
∑∞

n=0(n+ 1)−(1+2ε). Hence ‖fε‖
2
L2

a
→ ∞

and ‖fε‖
2
H2 =

∑∞
n=0 |α|

2n as ε→ 0. This contradiction shows CφL
2
a ( H2. �

Proposition 2. If φ(D) ( D, then Cφ is bounded but not onto.

Proof. If φ(D) ( D, then α = ‖φ‖∞ < 1. Put ψ(z) = φ(z)/α and φα(z) = αz.
Then Cψ is bounded from H2 to H2 and Cφα

is not onto from L2
a to H2 by

Lemma 9. Suppose Cφ is bounded from L2
a onto H2. Since Cφ is bounded from

L2
a to H2, there exist 0 < ε, γ <∞ such that

ε‖f‖2L2
a
≤ ‖Cφf‖H2 = ‖CψCφα

f‖H2

≤ γ‖Cφα
f‖H2 (f ∈ L2

a).

The inequality above contradicts Lemma 9. �

If φ is inner it is known that Cφ is not bounded and onto. In fact, by (2) of
Theorem 2 Cφ is not bounded. But we can give a direct simple proof. If φ is
inner and Cφ is bounded and onto by Proposition 1 φ is one to one and so φ is
a single Blaschke product. Hence φ(D) = D and this contradicts Proposition
1.

When φ = (1 + q)/2 and q is inner, we could not show whether Cφ is
bounded or not in general (see Section 4). But Cφ is not onto in general. For,
by Proposition 1, q is a single Blaschke product and by Corollary 4, Cφ is not
bounded and so not onto.
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