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BOUNDED COMPOSITION OPERATORS FROM THE
BERGMAN SPACE TO THE HARDY SPACE

KAZUHIRO KASUGA AND TAKAHIKO NAKAZI

ABSTRACT. Let ¢ be an analytic self map of the open unit disc D. In this
paper, we study the composition operator Cy from the Bergman space
on D to the Hardy space on D.

1. Introduction

Let D be the open unit disc in the complex plane. L2 and H? denote the
Bergman space and the Hardy space on D, respectively. Then H? is contained
in L2. If H* is a set of all bounded analytic functions, then H> is contained
in H2. For an analytic self map ¢ of D, the composition operator C, is defined
by (Cyf)(z) = f(¢(2)) (z € D) for fin H, the set of all analytic functions on
D. The Nevanlinna counting function of ¢, is defined on D\{¢(0)} by

1
No(w) =3 (2)=w 108 =k

T. Nakazi [4, Theorem 4] gives a necessary and sufficient condition for an
isometric operator C, from L2 to H?. That is, Cy is isometric from L2 to H>
if and only if Ny(w) =2 [, log (Zyrdr for nearly all w € D\{0}.

W. Smith [6, Theorem 1.1] gives a necessary and sufficient condition for a
bounded composition operator Cy, from L2 to H?. That is, Cy is bounded from
L2 to H? if and only if Ny(w) = O ([log1/|w|]?) (|lw| — 1). For given ¢, we
can use some times this result in order to show Cy is bounded but it may not
be easy to use it.

A function ¢ in H* with ||¢|lcc = 1 is called a Rudin’s orthogonal function
in H? if {¢" : n = 0,1,2,...} is a set of orthogonal functions in H2. Tt
should be also called a Choe’s function because B. R. Choe told W. Rudin
about such a function. An inner function which has zeros at the origin is a
Rudin’s orthogonal function. Hence the Mobius transform of a Rudin’s (Choe’s)
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orthogonal function is a generalization of an inner function. There exists a
Rudin’s (Choe’s) orthogonal function which is not an inner function ([1], [7]).

In Section 2, we study isometric Cy from L2 to H2. In Section 3, we study
bounded Cy from L2 to H?. In Section 4, we give few examples using a theorem
of W. Smith. In Section 5, we study bounded Cy from LZ onto H?.

2. Isometric composition operator from L2 to H?

Lemma 1. Let ¢ be a Rudin’s (Choe’s) orthogonal function. Then, Cy4 is
isometric from L? to H? if and only if

2m
i 1
/O |¢|2Jd9/2ﬂ':m (]:0,1,2,>

Proof. Suppose f = Z;io a;jz) and f € H. If Cy is isometric, then

o] 1 00 2m
2 — |2 27
S gl = Sl [ ooy
j=0 j=0
because || |12 = [|f o ¢||g2. Since f is arbitrary in L2, we can show

27
< 1
/O 627 df /2 = T (j=0,1,2,...).

The converse is clear. O

Theorem 1. Let ¢ be an analytic self map of the open unit disc. Then, Cy
is an isometric composition operator if and only if ¢ is a Rudin’s (Choe’s)
orthogonal function and

2m
. 1 _
/0 |¢|2]d9/2ﬂ':m (]:0,1,2,)

Proof. 1f Cy is an isometric operator from L2 to H?, then Theorem 4 in [4]
shows Ng(w) = 2fliu|log rorrdr for nearly all w € D\{0}. By Theorem 1
in [3] ¢ is a Rudin’s (Choe’s) orthogonal function. Now Lemma 1 shows the
theorem. 0

In Theorem 1, if Cy4 is onto, then by Theorem 3 in [4] ¢ is inner. This
contradicts Theorem 1. Hence there does not exist any isometric composition
operator from L2 onto H2.

3. Bounded composition operator from L2 to H?
In the following theorem, (1) is known in [6] and (2) is known in [2].

Theorem 2. Let ¢ be an analytic self map of the open unit disc.
(1) Cy is bounded from L2 into H? if and only if

Ny(z) = O((log %)2) as |z| — 1.
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(2) If ¢ has radial limits of modulus one on a set of positive measure, then
Cy does not map L2 into H>.
Lemma 2. Let ¢ be a Rudin’s (Choe’s) orthogonal function. Then Cg is
bounded from L% to H? if and only if fOQﬂ |p27d6 /21 < J% (7=0,1,2,...) for
some finite constant v > 0.

Proof. Tt is clear by the proof of Lemma 1. O

Theorem 3. Let ¢ be a polynomial of a Rudin’s (Choe’s) orthogonal function
B0 with ||¢||lee = 1. If Cy is bounded from L% into H?, then

|(5)

In order to prove the Theorem 3 we need to prove two lemmas.

2

27
/ (bo[27dB/27 < 0.
0

=0

Lemma 3. If p is a polynomial with ||p|lec = 1, then 1 — p(z) = H?Zl(z -
a;j)g(z), where |a;] =1 (1 < j <n) and |g(z)| >0 on D.

Proof. Obvious. O

—1/2

Lemma 4. For a with |a| = 1,(z — a) belongs to L2 but does not belong

to H?.

Proof. Tt is enough to show that (1 — 2)~%/2 € L2 but (1 — 2)~%/2 ¢ H?. This
is a result of Wallis formula. O

The proof of Theorem 3. Suppose ||@|lcc = 1. Let ¢y be a Rudin’s (Choe’s)
orthogonal function and p a polynomial and ¢(z) = p(do(2z)) where ||p|lcc =
1. Suppose Cy maps L2 into H?. Then by the hypothesis and Lemma 4,
(1 — ¢)~'/2 belongs to H?. By Lemma 3

1—o(2) = [[(d0(2) = a;)9(¢0(2)).

Jj=1

Hence (¢o(2)—a;)~'/? € H? and so (1—¢o(z))~'/2 € H?. Since ¢y is a Rudin’s
(Choe’s) orthogonal function,
_1
2
(7)

By Theorem 3, if ¢ is a polynomial of an inner function ¢y with zero at the
origin, then Cy is not bounded by Lemma 4. In general, it is clear that Cy is
bounded when ||¢]| < 1. By (1) of Theorem 2, if ¢ is an inner function, then
Cy is not bounded.

o0

1L = o) 2115 =

Jj=0

2 2 _
/ |po|?db /27 < oo.
0

O
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4. Some special case

In this section, we study whether Cy is not bounded from L2 to H? when
¢ = (14¢)/2 and q is inner. If ¢(0) = 0, then by Theorem 3 Cy is not bounded
because ¢ is a Rudin’s (Choe’s) orthogonal function. Hence we have to study in
case ¢(0) # 0. Our main tools are (1) of Theorem 2 and the following Lemma

5.

Lemma 5. For nearly all w in D,

27 0
w — ¢(e) w — $(0)
N, = log | ——————~|df/27 — log | —————|.
ot = [ o £ ot am — e 0
Proof. This is well known (see [3]). O
Lemma 6.
i s —log 2w — 1]?
imsup —————— = oo.
w|—1 (log |w|)?
wl<1
l2w—1|<1

Proof. Put w = r(z +iy), 0 < r < 1 and 2% + y*> = 1. Then r < z when
|2w — 1| < 1. Hence

) —log 2w — 1]2 . —log(4r? —4rx +1)
limsup ~————5— = limsup 5 =00
lw|—1,)20—-1]<1  (log|w]) rolr<z (logr)
Infact,putrzl—t,aczl—%tandt—)(). O
Lemma 7.
. log |l +aw|* —log|w + al?
lim 5 =
jwl—1 (log w])
Proof. Put w = re’® and a = be’® where r = |w| and b = |a|, then 1 +

aw = 1+ bre?®=# and w4+ a = (re*(® ) 4 b)e?’. Hence we may assume
w =re'* =r(x +iy) and a = b. Then

I log(1 + a®r? + 2arz) — log(r? + a® + 2arx)

im

r—1 (logr)?

. 2a2r + 2ax 2r + 2ax 2r
= lim —

r—=1 | 14+ a?r?2 +2arz 12+ a2+ 2arz | logr

(2a3x — 2az)r? + (2a* — 2)r + 2a3x — 2ax 2r

=1l X = 00.
ro1 (1+ a2?r? + 2arz)(r? + a® + 2arx) logr O

Corollary 4. If ¢ = (14+¢")/2, n is a positive integer and ¢ = (z—a)/(1 —az)
with |a| < 1, then Cy is not bounded.

Proof. By Lemma 5, for nearly all re’®

27 _ n .
Ny(re'®) = / log |(2re™™ — 1) — (f < ) df/2m —log |2re'™ —1—(—a)"|.
0 az
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Put s1,s2,..., s, are distinct nth roots of s and s = 2re!® — 1 when |s| < 1.
Moreover put b; = fi;ri (1 <j <mn). Since |bj| <1 (1 <j <n), by Jensen’s
formula

27 n
; zZ—a
1 2re**—1)—
/0 og |(2re ) (ldz)

Hence for nearly all re!®

do/2r=" "log m+1og [(2re'® —1)—(—a)"|.
=1 !

—Zlog|bj| (|2re’* — 1] < 1)
j=1

Nd)(rem) =
0 (|2ret™ — 1] > 1).
By Lemma 7,
2

. n sjta
s N2CE) 1 sn Bl
SR ogm? 2 N 2 logn)
n log | 2112
1 g 14as;
> —— lim sup -
2 ;r%1,|s\<1 (1Og T)2
n sjta

> ISy log [ 7557 | (log|s;])? (log|s|)?

=24 TN Tosls; )2 (logls)? (logr)?

— r—1]s|<1 (1085 g g

<
Il

=00
because limsup,._,; | <1 (log |s])?/(log)? = oo by Lemma 6 and

(log |s;])?/(log |s])* = 1/n* (1 < j < n).
Hence (1) of Theorem 2 shows that Cy is not bounded. O

Now we are interested in the case
_z—a z—b
l1—azl—bz
We would like to prove if ¢ = (1+4¢)/2, then Cy is not bounded. Unfortunately
we could not prove it except two special cases.

q (z€ D, |a] <1 and |b| < 1).

Lemma 8. Let x and y be complex numbers with |z| < 1 and |y| < 1. Fiz x

and as [yl — 1, log |y|/(log |y| +log | {=%|) converges to a finite constant v(x).

Proof. As |y| — 1

z—y
1 1 1
og|y|/<0g|y|+ og 1_”‘)
- L= {25 1 |2)?
r—y 1—yz ||
=1/(1+log ‘ log y>z = ,
/< 1—yw/ o 1— [yl 11— yz|
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where A(x) ~ B(z) means const-A(z) < B(x) < const-B(x). O

Corollary 5. If ¢ = (1+¢q)/2 and ¢ = 5= - f:;z with |a| < 1, then Cy is
not bounded.

Proof. As in Corollary 4, for nearly all re*®

2
Nd)(rei”‘):/ log
0

zZ—a z+a

(2re™™ — 1) — df/2m —log |2re'™ —1+a?|.

l—az 1-—az

Put 5 = 2re’* — 1 when [s| < 1. Moreover b3 = %;225 (j = 1,2) where by, bo

are distinct roots of 15:;223' Since |bj] < 1 (j = 1,2), by Jensen’s formula for
nearly all re!®
2
; = log|b;| (|2re’> —1|<1
Nd)(rewz) — Z Oglbj| (| re | < )
Jj=1 )
0 (|2re™ —1| > 1).
By Lemma 7
; 2
N, e 1 log |b;|?
lim sup L@J = —— liminf o8| J|2
r—1,)s|<1 (logr) 2 r—1fsl<1 & (logr)
2
1 log |b;|? (1 2
o1 i S o8P (o o)
L) 2 Tog sl (logr)
2
1 log |b;|? (1 2
s L gy JEISE o
2 2, 2IRP, Tlog )7 (log ) -

Corollary 6. If ¢ = (1+q)/2 and ¢ = = - % with —1 < a < 1 and
—1 <b< 1, then Cy is not bounded.

Proof. Put s = 2re”® — 1 when |s| < 1 and ®(2) = s — - 1z:be. Let o and 3

such that ®(a) = ®(8) =0, |a] < 1 and |B| < 1. Then
_a—-a a—-b fB-a B-D
s_lfaa.lfba_l—aﬂll—bﬂ'
Put 51 = (@ —a)/(1 — aat), s2 = (e —b)/(1 = ba), s3 = (8 —a)/(1 —af) and
sa=(B8—=0)/(1—0b8). Then

b—a S1 — 89 S3 — S84

1—ab 1—s185 1—s384
As in Corollary 5, for nearly all re!®

, log & +log & (|2re® — 1] < 1)
N.(re®) = la] E]] _
s(re”) { 0 (|2rei® — 1] > 1).
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Hence
. s14+a s3+a
N¢(7‘€Zé) o _1Og 14+as1 1Jia53
(logr)? (logr)?
1 1 1 s1+a 2 s3+a 2
=——.—|-1o —lo
(logr)? 2 811+ as & 1+ ass
1/2
S 1 1 s1+a 2 1 s3+a 2
o 0
~ (logr)? ST+ asy g ass
1/2 1/2
s14a s3+a
~ (log|s1])(log |ss]) | ~ 108 |THas —log | T,
(log7)? (log [s1])? (log |s5])?
By Lemma 7
1/2 1/2
i —log | —log | 1355
im { —M—M——— _— = o0.
[s1|—1 (log|s1])? (log|ss3])?
|52|*>1
Hence by Lemmas 7 and 8
log |s1] _ log |1 _ log |1
10g|5| 10g|81| +10g|52| 10g|51| +10g 1I7;ilx
and so
(ogs1)og ol) _ (oglsl)? loglsal loglssl |
(logr)? (logr)?2  log|s| log]s]|
Therefore (reie)
Ng(re®
limsup —= = .
r—1,[s|]<1 (10gT)2 O

5. Bounded composition operator from L? onto H?

We would like to prove that there does not exist any bounded composition
operator from L2 onto H2.

Proposition 1. If Cy is bounded and onto, then ¢ is one-to-one on D and
6(D) € D.

Proof. 1f CyL% = H?, then there exists f in L2 such that f o ¢(z) = z and ¢
is one-to-one on D. If ¢(D) = D, then ¢(z) = 2=~ when |o| =1 and a € D,

l—az

and f(z) = £&2. Then ¢ o f(z) = z. Suppose F € L7 but F ¢ H?. Since
Fo¢ e H? Fog¢o f belongs to H2. It contradicts that F = F o ¢ o f. Thus
CyL? + H>. O

Lemma 9. If ¢(z) = az and |a| < 1, then C4L2 C H?.
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Proof. 1t is easy to see C,L2 C H2 1If C,L2 = H?, then ||f o ¢| u2
712 (7 € L2). Hence

Y

2
%0 2] 12 > 5237 lan|”
Zn70| | | | - ano (TL+ 1)
when f =Y japz"and f € L2 If fo =377 ((n+1)7°z", then || fo0 9|3, =
S o lal®™(n+1)7% and ||f6||%§ =Y o(n+1)~(+29) Hence ||fe||%§ — 00
and || fe]|32 = Yopeg |a|* as e — 0. This contradiction shows Cy L2 C H?. O

Proposition 2. If ¢(D) C D, then Cy is bounded but not onto.

Proof. If (D) C D, then a = ||¢|lcc < 1. Put ¢(2) = ¢(2)/a and ¢ (z) = az.
Then Cy is bounded from H? to H? and Cj, is not onto from L2 to H? by
Lemma 9. Suppose Cy is bounded from L2 onto H?2. Since C is bounded from
L2 to H?, there exist 0 < €, < oo such that

el flIZ: < NCsflluz = ICyCo, £l 2
<9||Co. fllm= (f € L2).

The inequality above contradicts Lemma 9. [

If ¢ is inner it is known that Cy is not bounded and onto. In fact, by (2) of
Theorem 2 Cy is not bounded. But we can give a direct simple proof. If ¢ is
inner and Cy is bounded and onto by Proposition 1 ¢ is one to one and so ¢ is
a single Blaschke product. Hence ¢(D) = D and this contradicts Proposition
1.

When ¢ = (1 + ¢)/2 and ¢ is inner, we could not show whether Cy is
bounded or not in general (see Section 4). But Cy is not onto in general. For,
by Proposition 1, g is a single Blaschke product and by Corollary 4, Cy is not
bounded and so not onto.
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