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HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE

TRANS-SASAKIAN MANIFOLD

Dae Ho Jin

Abstract. We study half lightlike submanifold M of an indefinite trans-
Sasakian manifold such that its structure vector field is tangent to M .
First we study the general theory for such half lightlike submanifolds.
Next we prove some characterization theorems for half lightlike subman-
ifolds of an indefinite generalized Sasakian space form.

1. Introduction

The theory of lightlike submanifolds is an important topic of research in
modern differential geometry due to its application in mathematical physics,
especially in the general relativity. The study of such notion was initiated by
Duggal and Bejancu [5] and later studied by many authors (see recent results
in two books [7, 11]). The class lightlike submanifolds of codimension 2 is
compose of two classes by virtue of the rank of its radical distribution, which are
called half lightlike submanifold or coisotropic submanifold [6]. Half lightlike
submanifold is a special case of r-lightlike submanifold [5] such that r = 1 and
its geometry is more general form than that of coisotrophic submanifolds or
lightlike hypersurfaces. Much of the theory on half lightlike submanifolds will
be immediately generalized in a formal way to r-lightlike submanifolds. For
this reason, we study only half lightlike submanifolds in this article.

Recently many authors have studied lightlike submanifolds M of indefinite
Sasakian manifolds ([8]∼[13], [19]) or indefinite Kenmotsu manifolds ([15], [16])
or indefinite cosymplectic manifolds ([14], [18]). Oubina [20] introduced the
notion of a trans-Sasakian manifold of type (α, β). Indefinite Sasakian manifold
is an important kind of indefinite trans-Sasakian manifold with α = 1 and
β = 0. Indefinite cosymplectic manifold is another kind of indefinite trans-
Sasakian manifold such that α = β = 0. Indefinite Kenmotsu manifold is also
an example with α = 0 and β = 1. Alegre, Blair and Carriazo [2] introduced
the notion of indefinite generalized Sasakian space form.
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In this article, we study half lightlike submanifolds of an indefinite trans-
Sasakian manifold M̄ such that its structure vector field is tangent to M .
In Section 3, we obtains some new results which are related to the structure
tensor on M induced by the structure tensor J on M̄ . Furthermore we study
screen conformal half lightlike submanifolds M of an indefinite trans-Sasakian
manifold M̄ . In Section 4, we prove some characterization theorems for half
lightlike submanifolds M of an indefinite generalized Sasakian space form.

2. Half lightlike submanifold

It is well-known [6] that the radical distribution Rad(TM) = TM ∩ TM⊥

of half lightlike submanifold (M, g) of a semi-Rimannian manifold (M̄, ḡ) of
codimension 2 is a subbundle of the tangent bundle TM and the normal bundle
TM⊥, of rank 1. Thus there exist complementary non-degenerate distributions
S(TM) and S(TM⊥) of Rad(TM) in TM and TM⊥, respectively, which are
called the screen distribution and co-screen distribution on M , such that

(2.1) TM = Rad(TM)⊕orth S(TM), TM⊥ = Rad(TM)⊕orth S(TM⊥),

where ⊕orth denotes the orthogonal direct sum. We denote such a half lightlike
submanifold by M = (M, g, S(TM), S(TM⊥)). Denote by F (M) the algebra
of smooth functions on M , by Γ(E) the F (M) module of smooth sections of
any vector bundle E over M and by (−.−)i the i-th equation of (−.−). We
use same notations for any others. Consider the orthogonal complementary
distribution S(TM)⊥ to S(TM) in TM̄ , certainly TM⊥ is a vector subbundle
of S(TM)⊥. As S(TM⊥) is a non-degenerate subbundle of S(TM)⊥, the
orthogonal complementary distribution S(TM⊥)⊥ of S(TM⊥) in S(TM)⊥ is
also a non-degenerate vector bundle such that

S(TM)⊥ = S(TM⊥)⊕orth S(TM⊥)⊥.

Clearly Rad(TM) is a subbundle of S(TM⊥)⊥. Choose L ∈ Γ(S(TM⊥)) as a
unit spacelike vector field without loss of generality. It is well-known [6] that,
for any null section ξ of Rad(TM) on a coordinate neighborhood U ⊂ M , there
exists a uniquely defined null vector field N ∈ Γ(S(TM⊥)⊥) satisfying

ḡ(ξ,N) = 1, ḡ(N,N) = ḡ(N,X) = ḡ(N,L) = 0, ∀X ∈ Γ(S(TM)).

Denote by ltr(TM) the subbundle of S(TM⊥)⊥ locally spanned byN . Then we
show that S(TM⊥)⊥ = Rad(TM)⊕ ltr(TM). Let tr(TM) = S(TM⊥) ⊕orth

ltr(TM). We call N, ltr(TM) and tr(TM) the lightlike transversal vector

field, lightlike transversal vector bundle and transversal vector bundle of M

with respect to the screen distribution S(TM), respectively. Then the tangent
bundle TM̄ of M̄ is decomposed as

TM̄ = TM ⊕ tr(TM) = {Rad(TM)⊕ tr(TM)} ⊕orth S(TM)(2.2)

= {Rad(TM)⊕ ltr(TM)} ⊕orth S(TM)⊕orth S(TM⊥).



HALF LIGHTLIKE SUBMANIFOLDS OF AN ITS-MANIFOLD 981

Let ∇̄ be the Levi-Civita connection of M̄ and P the projection morphism of
TM on S(TM) with respect to the decomposition (2.1). Then the local Gauss
and Weingarten formulas of M and S(TM) are given respectively by

∇̄XY = ∇XY +B(X,Y )N +D(X,Y )L,(2.3)

∇̄XN = −A
N
X + τ(X)N + ρ(X)L,(2.4)

∇̄XL = −A
L
X + φ(X)N ;(2.5)

∇XPY = ∇∗

XPY + C(X,PY )ξ,(2.6)

∇Xξ = −A∗

ξX − τ(X)ξ, ∀X, Y ∈ Γ(TM),(2.7)

where ∇ and ∇∗ are induced connections on TM and S(TM), respectively,
B and D are called the local second fundamental forms of M , C is called
the local second fundamental form on S(TM). A

N
, A∗

ξ and A
L
are called the

shape operators, and τ, ρ and φ are 1-forms on TM . We say that h(X,Y ) =
B(X,Y )N +D(X,Y )L is the second fundamental form tensor of M .

Since the connection ∇̄ on M̄ is torsion-free, the induced connection ∇ on M

is also torsion-free, and B and D are symmetric. The above three local second
fundamental forms of M and S(TM) are related to their shape operators by

B(X,Y ) = g(A∗

ξX,Y ), ḡ(A∗

ξX,N) = 0,(2.8)

C(X,PY ) = g(A
N
X,PY ), ḡ(A

N
X,N) = 0,(2.9)

D(X,Y ) = g(A
L
X,Y )− φ(X)η(Y ), ḡ(A

L
X,N) = ρ(X),(2.10)

for any X, Y ∈ Γ(TM), where η is a 1-form on TM such that

η(X) = ḡ(X,N), ∀X ∈ Γ(TM).

From (2.8), (2.9) and (2.10), we see that B and D satisfy

(2.11) B(X, ξ) = 0, D(X, ξ) = −φ(X), ∀X ∈ Γ(TM),

A∗

ξ and A
N

are S(TM)-valued, and A∗

ξ is self-adjoint on TM such that

(2.12) A∗

ξξ = 0.

Replacing Y by ξ to (2.3) and using (2.6) and (2.11), we have

(2.13) ∇̄Xξ = −A∗

ξX − τ(X)ξ − φ(X)L, ∀X ∈ Γ(TM).

Definition. A half lightlike submanifold M of M̄ is said to be
(1) totally umbilical [5] if there is a smooth vector field H on tr(TM) on any

coordinate neighborhood U such that

h(X,Y ) = Hg(X,Y ), ∀X, Y ∈ Γ(TM).

In case H = 0, i.e., h = 0 on U , we say that M is totally geodesic.
(2) screen totally umbilical [5] if there exist a smooth function γ on U such

that A
N
X = γPX , or equivalently,

(2.14) C(X,PY ) = γg(X,Y ), ∀X, Y ∈ Γ(TM).

In case γ = 0 on U , we say that M is screen totally geodesic.
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(3) screen conformal [6] if there exists a non-vanishing smooth function ϕ on
U such that A

N
= ϕA∗

ξ , or equivalently,

(2.15) C(X,PY ) = ϕB(X,Y ), ∀X, Y ∈ Γ(TM).

It is easy to see that M is totally umbilical if and only if there exist smooth
functions σ and δ on each coordinate neighborhood U such that

(2.16) B(X,Y ) = σg(X,Y ), D(X,Y ) = δg(X,Y ), ∀X, Y ∈ Γ(TM).

The induced connection ∇ of M is not metric and satisfies

(2.17) (∇Xg)(Y, Z) = B(X,Y ) η(Z) +B(X,Z) η(Y )

for all X, Y, Z ∈ Γ(TM). But the connection ∇∗ on S(TM) is metric.

3. Indefinite trans-Sasakian manifolds

An odd-dimensional semi-Riemannian manifold (M̄, ḡ) is said to be an in-

definite almost contact metric manifold ([8]∼[19]) if there exists a structure set
{J, ζ, θ, ḡ}, where J is a (1, 1)-type tensor field, ζ is a vector field which is
called the structure vector field of M̄ and θ is a 1-form such that

(3.1) J2X = −X + θ(X)ζ, ḡ(JX, JY ) = ḡ(X, Y )− ǫθ(X)θ(Y ), θ(ζ) = 1,

for any vector fields X and Y on M̄ , where ǫ = 1 or −1 according as ζ is
spacelike or timelike respectively. In this case, the structure set {J, ζ, θ, ḡ} is
called an indefinite almost contact metric structure of M̄ .

In an indefinite almost contact metric manifold, we show that Jζ = 0 and
θ ◦ J = 0. Such a manifold is said to be an indefinite contact metric manifold

if dθ = Φ, where Φ(X,Y ) = g(X, JY ) is called the fundamental 2-form of M̄ .
The indefinite almost contact metric structure of M̄ is said to be normal if
[J, J ](X,Y ) = −2dθ(X,Y )ζ for any vector fields X and Y on M̄ , where [J, J ]
denotes the Nijenhuis (or torsion) tensor field of J given by

[J, J ](X,Y ) = J2[X,Y ] + [JX, JY ]− J [JX, Y ]− J [X, JY ].

An indefinite almost contact metric manifold M̄ = (M̄, J, ζ, θ, ḡ) is called
(1) indefinite Sasakian manifold [8]∼[13] if

(∇̄XJ)Y = ḡ(X,Y )ζ − ǫ θ(Y )X,

(2) indefinite Kenmotsu manifold [15, 16] if

(∇̄XJ)Y = ḡ(JX, Y )ζ − ǫ θ(Y )JX,

(3) indefinite cosymplectic [14, 18] if ∇̄XJ = 0,
for any vector fields X and Y on M̄ , where ∇̄ is the Levi-Civita connection of
M̄ with respect to the semi-Riemannian metric ḡ.

Definition. An indefinite almost contact metric manifold M̄ is called indefinite

trans-Sasakian manifold [2, 17, 20] if, for any vector fields X and Y on M̄ , there
exist smooth functions α and β on M̄ such that

(3.2) (∇̄XJ)Y = α{ḡ(X,Y )ζ − ǫθ(Y )X}+ β{ḡ(JX, Y )ζ − ǫθ(Y )JX}.
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We say that {J, ζ, θ, ḡ} is an indefinite trans-Sasakian structure of type (α, β).

Replacing Y by ζ in (3.2), we get

(3.3) ∇̄Xζ = −ǫαJX + ǫβ(X − θ(X)ζ).

Remark 3.1. If β = 0, then M̄ is said to be an indefinite α-Sasakian mani-

fold. Indefinite Sasakian manifolds appear as examples of indefinite α-Sasakian
manifolds, with α = 1. Another important kind of indefinite trans-Sasakian
manifold is that of indefinite cosymplectic manifolds obtained for α = β = 0.
If α = 0, then M̄ is said to be an indefinite β-Kenmotsu manifold. Indefinite
Kenmotsu manifolds are particular examples with α = 0 and β = 1.

From now, let M be a half lightlike submanifold of an indefinite trans-
Sasakian manifold M̄ . It is known [13, 14] that, for any half lightlike sub-
manifold M of an indefinite almost contact metric manifold M̄ , J(Rad(TM)),
J(ltr(TM)) and J(S(TM⊥)) are subbundles of S(TM), of rank 1. In the en-
tire discussion of this article, we shall assume that ζ to be tangent vector field
to M , such an M is called a tangential half lightlike submanifold of M̄ . Cǎlin
[3] proved that if ζ is tangent to M , then it belongs to S(TM) which many
authors assumed in their works [9, 10, 11, 14, 17, 19]. We also assume this
result. Therefore

(3.4) θ(ξ) = ǫg(ζ, ξ) = 0, θ(N) = ǫg(ζ,N) = 0, θ(L) = ǫg(ζ, L) = 0.

In this case, there exists a non-degenerate almost complex distribution Ho with
respect to the structure tensor field J , i.e., J(Ho) = Ho, such that

S(TM) = {J(Rad(TM))⊕ J(ltr(TM))} ⊕orth J(S(TM⊥))⊕orth Ho.

Denote by H the almost complex distribution with respect to J such that

H = Rad(TM)⊕orth J(Rad(TM))⊕orth Ho.

Therefore the general decomposition (2.1)1 of TM is reduced to

(3.5) TM = H ⊕ J(ltr(TM))⊕orth J(S(TM⊥)).

Consider a pair of local null vector fields {U, V }, a local unit spacelike vector
field W on S(TM) and their 1-forms u, v and w defined by

U = −JN, V = −Jξ, W = −JL,(3.6)

u(X) = g(X,V ), v(X) = g(X,U), w(X) = g(X,W ).(3.7)

Denote by S the projection morphism of TM on H with respect to (3.5). Then
any vector field X on M and its action JX by J are expressed as follows:

X = SX + u(X)U + w(X)W,(3.8)

JX = FX + u(X)N + w(X)L,(3.9)

where F is a tensor field of type (1, 1) globally defined on M by

FX = JSX, ∀X ∈ Γ(TM).
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Applying ∇̄X to (3.6)1, 2, 3 and (3.9) by turns and using (2.3), (2.4), (2.5),
(2.8)∼ (2.10), (2.13) and (3.6)∼ (3.9), for all X, Y ∈ Γ(TM), we have

B(X,U) = C(X,V ), B(X,W ) = D(X,V ), C(X,W ) = D(X,U),(3.10)

∇XU = F (A
N
X) + τ(X)U + ρ(X)W − {αη(X) + βv(X)}ζ,(3.11)

∇XV = F (A∗

ξX)− τ(X)V − φ(X)W − βu(X)ζ,(3.12)

∇XW = F (A
L
X) + φ(X)U − βw(X)ζ,(3.13)

(∇XF )(Y ) = u(Y )A
N
X + w(Y )A

L
X −B(X,Y )U −D(X,Y )W(3.14)

+ α{g(X,Y )ζ − ǫθ(Y )X}+ β{ḡ(JX, Y )ζ − ǫθ(Y )FX}.

Theorem 3.2. (1) Any indefinite trans-Sasakian manifold M̄ admitting a

totally umbilical tangential half lightlike submanifold M is an indefinite β-

Kenmotsu manifold, i.e., α = 0. In this case M is totally geodesic.

(2) Any indefinite trans-Sasakian manifold M̄ admitting either a screen con-

formal or a screen totally umbilical tangential half lightlike submanifold is an

indefinite cosymplectic manifold, i.e., α = β = 0. In case M is screen totally

umbilical, it is screen totally geodesic.

Proof. Applying ∇̄X to (3.4)1, 2, 3 and using (3.1) and (3.3), we have

B(X, ζ) = −ǫαu(X), D(X, ζ) = −ǫαw(X),(3.15)

C(X, ζ) = ǫβη(X)− ǫαv(X), ∀X ∈ Γ(TM).

(1) In case M is totally umbilical: From (2.16) and (3.15)1, 2, we have

σθ(X) = −αu(X), δθ(X) = −αw(X), ∀X ∈ Γ(TM).

Taking X = ζ and X = U or W , we get σ = δ = 0 and α = 0 respectively.
Thus M̄ is an indefinite β-Kenmotsu manifold and M is totally geodesic.

(2) In case M is screen conformal: From (2.15) and (3.15)1, 3, we have

αϕu(X) = αv(X)− βη(X), ∀X ∈ Γ(TM).

Taking X = V and X = ξ to this equation by turns, we have α = 0 and β = 0
respectively. Thus M̄ is an indefinite cosymplectic manifold.

In case M is screen totally umbilical: From (2.14) and (3.15)3, we have

γθ(X) = βη(X)− αv(X), ∀X ∈ Γ(TM).

Taking X = ζ, X = V and X = ξ to this equation by turns, we have γ = 0,
α = 0 and β = 0 respectively. Thus M̄ is an indefinite cosymplectic manifold
and M is screen totally geodesic. �

Theorem 3.3. Let M be a tangential half lightlike submanifold of an indefinite

trans-Sasakian manifold M̄ . If either U or V is parallel with respect to ∇, then

M̄ is an indefinite cosymplectic manifold, i.e., α = β = 0, and τ = 0. In case

U is parallel, we get ρ = 0. In case V is parallel, we get φ = 0.
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Proof. In case U is parallel: From (3.9) and (3.11) we have

J(A
N
X)− u(A

N
X)N − w(A

N
X)L+ τ(X)U + ρ(X)W(3.16)

−{αη(X) + βv(X)}ζ = 0, ∀X ∈ Γ(TM).

Taking the scalar product with ζ to (3.16) and using (3.1) and (3.4), we get
αη(X) + βv(X) = 0 for all X ∈ Γ(TM). Taking X = ξ and X = V to
this equation by turns, we have α = 0 and β = 0 respectively. Thus M̄ is
an indefinite cosymplectic manifold. Taking the scalar product with V and
W to (3.16) by turns and using (3.1) and the facts ḡ(J(A

N
X), V ) = 0 and

ḡ(J(A
N
X),W ) = 0, we have τ = 0 and ρ = 0 respectively.

In case V is parallel: From (3.9) and (3.12), for all X ∈ Γ(TM), we have

(3.17) J(A∗

ξX)− u(A∗

ξX)N − w(A∗

ξX)L− τ(X)V − φ(X)W − βu(X)ζ = 0.

Taking the scalar product with ζ to (3.17) and using (3.1) and (3.4), we get
βu(X) = 0. Taking X = U to this equation, we have β = 0. Taking the
scalar product with U and W to (3.17) by turns and using (3.1) and the facts
ḡ(J(A∗

ξX), U) = ḡ(J(A∗

ξX),W ) = 0, we have τ = φ = 0. Applying J to (3.17)

and using (3.1) and τ = φ = β = 0, we have

(3.18) A∗

ξX = θ(A∗

ξX)ζ + u(A∗

ξX)U + w(A∗

ξX)W, ∀X ∈ Γ(TM).

Taking the scalar product with U to this equation, we get

(3.19) B(X,U) = g(A∗

ξX,U) = v(A∗

ξX) = 0.

Replacing X by U in (3.15)1 and using (3.19), we get

−ǫα = −ǫαu(U) = B(U, ζ) = 0.

Thus α = β = 0 and M̄ is an indefinite cosymplectic manifold. �

Theorem 3.4. Let M be a tangential half lightlike submanifold of an indefinite

trans-Sasakian manifold M̄ . If W is parallel with respect to ∇, then M̄ is an

indefinite α-Sasakian manifold, i.e., β = 0, and φ = ρ = 0.

Proof. If W is parallel, then, for all X ∈ Γ(TM), from (3.9) and (3.13) we get

(3.20) J(A
L
X)− u(A

L
X)N − w(A

L
X)L+ φ(X)U − βw(X)ζ = 0.

Taking the scalar product with ζ to (3.20) and using (3.1) and (3.4), we have
βw(X) = 0. Taking X = W to this, we have β = 0. Thus M̄ is an indefinite
α-Sasakian manifold. Taking the scalar product with V to (3.20) and using
(3.1) and the fact ḡ(J(A

L
X), V ) = 0, we have φ = 0. Applying J to (3.20) and

using (3.1) and the fact τ = φ = β = 0, we have

A
L
X = θ(A

L
X)ζ + u(A

L
X)U + w(A

L
X)W, ∀X ∈ Γ(TM).

Taking the scalar product withN to this and using (2.10)2, we obtain ρ = 0. �

Theorem 3.5. Let M be a tangential half lightlike submanifold of an indefinite

trans-Sasakian manifold M̄ . If all of {V, U, W} are parallel with respect to ∇,

then M is screen totally geodesic.
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Proof. As U is parallel, we get α = β = 0. By (3.15)3, we have C(X, ζ) =
θ(A

N
X) = 0. Applying J to (3.16) and using (3.1) and (3.6), we have

A
N
X = u(A

N
X)U + w(A

N
X)W.

From the fact α = 0 and (3.15)1, we have B(X, ζ) = θ(A∗

ξX) = 0. As V is

parallel, from (3.18) we have

A∗

ξX = u(A∗

ξX)U + w(A∗

ξX)W, ∀X ∈ Γ(TM).

Taking the scalar product with U to this, we obtain u(A
N
X) = v(A∗

ξX) = 0.

Thus we show that A
N
= w(A

N
X)W . As W is parallel and α = 0, by (3.15)2

we obtain D(X, ζ) = θ(A
L
X) = 0. Thus we have

A
L
X = u(A

L
X)U + w(A

L
X)W, ∀X ∈ Γ(TM).

Taking the scalar product with U to this equation, we get v(A
L
X) = w(A

N
X)

= 0. Thus A
N
= 0. Consequently M is screen totally geodesic. �

Let m =rank(S(TM)). Denote by H ′ the distribution on S(TM) such that

H ′ = J(ltr(TM))⊕orth J(S(TM⊥)).

Then the decomposition (3.5) of TM is reduced to TM = H ⊕H ′.

Theorem 3.6. Let M be a tangential half lightlike submanifold of an indefinite

trans-Sasakian manifold M̄ . If F is parallel with respect to ∇, then α = β = 0
and M̄ is an indefinite cosymplectic manifold. Furthermore H and H ′ are

parallel distributions on M and M is locally a product manifold M2 ×Mm−2,

where M2 and Mm−2 are leaves of H ′ and H respectively.

Proof. If F is parallel with respect to ∇, then, taking the scalar product with
U to (3.14) and using the facts g(ζ, U) = 0 and g(FX,U) = −η(X), we get

u(Y )v(A
N
X) + w(Y )v(A

L
X)− ǫθ(Y ){αv(X)− βη(X)} = 0

for all X, Y ∈ Γ(TM). Taking Y = U , Y = W and Y = ζ by turns, we get

(3.21) v(A
N
X) = 0, v(A

L
X) = 0, αv(X)− βη(X) = 0.

Taking X = V and X = ξ to αv(X)−βη(X) = 0 by turns, we have α = β = 0.
Thus M̄ is an indefinite cosymplectic manifold. From (3.14) we have

(3.22) u(Y )A
N
X + w(Y )A

L
X = B(X,Y )U +D(X,Y )W

for all X, Y ∈ Γ(TM). Replacing Y by ξ to (3.22) and using (2.11), we have

(3.23) D(X, ξ) = −φ(X) = 0, ∀X ∈ Γ(TM).

Taking Y ∈ Γ(D) to (3.22), we have B(X,Y )U +D(X,Y )W = 0. Therefore

(3.24) B(X,Y ) = 0, D(X,Y ) = 0, ∀X ∈ Γ(TM), Y ∈ Γ(D).

Taking the scalar product with Z ∈ Γ(Do) to (3.22), we get u(Y )C(X,Z) +
w(Y )D(X,Z) = 0 for all X, Y ∈ Γ(TM). Taking Y = U to this, we have

(3.25) C(X,Y ) = 0, ∀X ∈ Γ(TM), Y ∈ Γ(Do).
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Taking the scalar product with N to (3.22) and then, taking Y = W , we have

(3.26) ρ(X) = 0, ∀X ∈ Γ(TM).

By using (2.3), (3.1), (3.9), (3.12) and (3.24), we derive

g(∇Xξ, V ) = −g(ξ, ∇̄XV ) = −B(X,V ) = 0, g(∇XV, V ) = 0,

g(∇XY, V ) = −g(Y,∇XV ) = g(A∗

ξX, JY ) = B(X,FY ) = 0,

g(∇Xξ,W ) = −D(X,V ) = 0, g(∇XV, W ) = −φ(X) = 0,

g(∇XY,W ) = −g(Y,∇XW ) = D(X,FY ) + u(Y )ρ(X) = 0,

for all X ∈ Γ(TM) and Y ∈ Γ(Ho), or equivalently, we get

∇XY ∈ Γ(H), ∀X ∈ Γ(TM), ∀Y ∈ Γ(H).

This result implies that H is a parallel distribution on M .
For all X ∈ Γ(TM) and Y ∈ Γ(Ho), using (3.11) and (3.25), we derive

g(∇XU,N) = v(A
N
X) = 0, g(∇XU,U) = −g(A

N
X,N) = 0,

g(∇XU, Y ) = g(F (A
N
X), Y ) = −g(A

N
X, JY ) = −C(X,FY ) = 0,

g(∇XW,N) = v(A
L
X) = 0, g(∇XW,U) = −ρ(X) = 0,

g(∇XW,Y ) = −g(A
L
X, JY ) = D(X,FY )− u(Y )ρ(X) = 0,

that is, ∇XZ ∈ Γ(H ′) for all X ∈ Γ(TM) and Z ∈ Γ(H ′). Thus J(H ′) is also
a parallel distribution of M .

As TM = H ⊕H ′, and H and H ′ are parallel distributions, by the decom-
position theorem of de Rham [4], M is locally a product manifold M2×Mm−2,
where M2 and Mm−2 are leaves of H ′ and H respectively. �

Corollary 3.7. Let M be a tangential half lightlike submanifold of an indefinite

trans-Sasakian manifold M̄ . If F and V are parallel with respect to ∇, then M

is screen totally geodesic.

Proof. As F is parallel with respect to ∇, from (3.10) and (3.21)2 we have
D(X,U) = C(X,W ) = 0. Taking Y = U to (3.22) and using (3.10), we have

A
N
X = u(A

N
X)U + w(A

N
X)W = u(A

N
X)U.

As V is also parallel with respect to ∇, from (3.10) and (3.19), we have
u(A

N
X) = 0. Thus A

N
= 0 and M is screen totally geodesic. �

Theorem 3.8. Let M be a screen conformal tangential half lightlike subman-

ifold of an indefinite trans-Sasakian manifold M̄ . If M is totally umbilical,

then M̄ is an indefinite cosymplectic manifold and M is locally a product man-

ifold M2 ×Mm−2, where M2 and Mm−2 are leaves of H ′ and H respectively.

Moreover, M is totally geodesic and screen totally geodesic.

Proof. By straightforward calculations from (2.15) and (3.10), we have

(3.27) B(X, U − ϕV ) = 0, D(X, U − ϕV ) = 0
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for any X ∈ Γ(TM). Assume that M is totally umbilical. Then we have

σg(X, U − ϕV ) = 0, δg(X, U − ϕV ) = 0.

Replacing X by V to these, we have ρ = B = 0 or δ = C = 0. As C = ϕB, we
have C = 0. Thus M is totally geodesic and screen totally geodesic. As M is
screen totally geodesic, by Theorem 3.2, we shown that α = β = 0. Thus M̄

is an indefinite cosymplectic manifold. As B = D = C = 0, F is parallel with
respect to ∇ by (3.14). Thus, from Theorem 3.6, we have our assertion. �

Definition. A half lightlike submanifold M of a semi-Riemannian manifold
M̄ is said to be irrotational [7] if ∇̄Xξ ∈ Γ(TM) for any X ∈ Γ(TM).

From (2.3) we see that a necessary and sufficient condition for M to be
irrotational is D(X, ξ) = 0 = φ(X) for all X ∈ Γ(TM).

Define a non-null vector field ω on S(TM) and a vector bundle H♮ by

ω = U + ϕV, H♮ = Ho ⊕orth J(S(TM⊥))⊕Rad(TM).

In this case, we show that ω ∈ Γ(J(Rad(TM))⊕ J(tr(TM))) and

TM = {J(Rad(TM))⊕ J(tr(TM))} ⊕orth H♮.

Theorem 3.9. Let M be a screen conformal irrotational tangential half light-

like submanifold of an indefinite trans-Sasakian manifold M̄ . If ω is parallel

with respect to ∇, then τ = 0 and ϕ is a constant and M is locally a product

manifold Cu×Cv×M ♮, where Cu and Cu are null curves tangent to J(tr(TM))
and J(Rad(TM)) respectively and M ♮ is a leaf of H♮.

Proof. From (3.11), (3.12) and the fact A
N
= ϕA∗

ξ , we have

∇Xω = 2F (A
N
X) + τ(X)U + {X [ϕ]− ϕτ(X)}V + ρ(X)W

for allX ∈ Γ(TM). From this and the facts g(F (A
N
X), V ) = g(F (A

N
X), U) =

g(F (A
N
X),W ) = 0, we show that ω is parallel with respect to ∇ if and only if

τ = ρ = 0, ϕ is a constant and F (A
N
X) = F (A∗

ξX) = 0. Thus if ω is parallel

with respect to ∇, then U and V are also parallel by (3.11) and (3.12), i.e.,
J(tr(TM)) and J(Rad(TM)) are parallel distributions of M . As V is parallel
with respect to ∇, from Theorem 3.5, we have B(X,U) = 0 by (3.19). Using
(2.15) and (3.10)1, we get B(X,V ) = ϕ−1C(X,V ) = ϕ−1B(X,U) = 0.

As U and V are parallel with respect to ∇, we get

g(∇Xξ, U) = −B(X,U) = 0, g(∇Xξ, V ) = −B(X,V ) = 0,

g(∇XW, U) = −ρ(X) = 0, g(∇XW, V ) = φ(X) = 0,

g(∇XY, U) = −g(Y, ∇XU) = 0, g(∇XY, V ) = −g(Y, ∇XV ) = 0,

for any X ∈ Γ(TM) and Y ∈ Γ(Ho). These equations imply

∇XY ∈ Γ(H♮), ∀X ∈ Γ(TM), Y ∈ Γ(H♮).

Thus H♮ is also a parallel distribution. We have our assertion. �
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4. Indefinite generalized Sasakian space form

An indefinite almost contact metric manifold (M̄, J, ζ, θ, ḡ) is called an
indefinite generalized Sasakian space form [2] and denote it by M̄(f1, f2, f3) if
there exist three functions f1, f2 and f3 on M̄ such that

R̄(X,Y )Z = f1{ḡ(Y, Z)X − ḡ(X,Z)Y }(4.1)

+ f2{ḡ(X, JZ)JY − ḡ(Y, JZ)JX + 2ḡ(X, JY )JZ}

+ f3{θ(X)θ(Z)Y − θ(Y )θ(Z)X

+ ḡ(X,Z)θ(Y )ζ − ḡ(Y, Z)θ(X)ζ},

for any vector fields X, Y and Z on M̄ , where R̄ is the curvature tensor of the
Levi-Civita connection ∇̄ on M̄ . This kind of a manifold appears as a natural
generalization of the well-known indefinite Sasakian space form, which can be
obtained as a particular case of indefinite generalized Sasakian space forms by
taking f1 = c+3

4 , f2 = f3 = c−1
4 and c is a constant. Moreover, we can also find

some other examples (see [1]).

Example 4.1. An indefinite Kenmotsu space form, i.e., an indefinite Ken-
motsu manifold with constant J-sectional curvature c, such that ζ is spacelike,
is an indefinite generalized Sasakian space form with f1 = c−3

4 , f2 = f3 = c+1
4 .

Example 4.2. An indefinite cosymplectic space form, i.e., an indefinite cosym-
plectic manifold with constant J-sectional curvature c, such that ζ is spacelike,
is an indefinite generalized Sasakian space form with f1 = f2 = f3 = c

4 .

Example 4.3. An indefinite almost contact metric manifold is said to be an
indefinite almost C(α)-manifold if its semi-Riemannian curvature satisfies

R̄(X,Y, Z,W ) = R̄(X,Y, JZ, JW )

+ α{ḡ(X,W )ḡ(Y, Z)− ḡ(X,Z)ḡ(Y,W )

+ ḡ(X, JY )ḡ(Y, JW )− ḡ(X, JW )ḡ(Y, JZ)},

where α is a real number. Moreover, if such a manifold has constant J-sectional
curvature equal to c, then its curvature tensor is given by

R̄(X, Y )Z =
c+ 3α2

4
{ḡ(Y, Z)X − ḡ(X,Z)Y }

+
c− α2

4
{ḡ(X, JZ)JY − ḡ(Y, JZ)JX + 2ḡ(X, JY )JZ}

+
c− α2

4
{θ(X)θ(Z)Y − θ(Y )θ(Z)X

+ ḡ(X,Z)θ(Y )ζ − ḡ(Y, Z)θ(X)ζ}.

It is an indefinite generalized Sasakian space form such that ζ is spacelike and

f1 = c+3α2

4 , f2 = f3 = c−α2

4 .
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Denote by R and R∗ the curvature tensors of ∇ and ∇∗ respectively. Us-
ing the Gauss-Weingarten formulas for M and S(TM), for any X,Y, Z,W ∈
Γ(TM), we have the Gauss-Codazzi equations for M and S(TM) such that

ḡ(R̄(X,Y )Z, PW ) = g(R(X,Y )Z, PW )(4.2)

+B(X,Z)C(Y, PW )−B(Y, Z)C(X,PW )

+D(X,Z)D(Y, PW )−D(Y, Z)D(X,PW ),

ḡ(R̄(X,Y )Z, ξ) = (∇XB)(Y, Z)− (∇Y B)(X,Z)(4.3)

+B(Y, Z)τ(X)−B(X,Z)τ(Y )

+D(Y, Z)φ(X)−D(X,Z)φ(Y ),

ḡ(R̄(X,Y )Z,N) = ḡ(R(X,Y )Z,N)(4.4)

+D(X,Z)ρ(Y )−D(Y, Z)ρ(X),

ḡ(R̄(X,Y )Z,L) = (∇XD)(Y, Z)− (∇Y D)(X,Z)(4.5)

+B(Y, Z)ρ(X)−B(X,Z)ρ(Y ),

ḡ(R(X,Y )PZ, PW ) = g(R∗(X,Y )PZ, PW )(4.6)

+C(X,PZ)B(Y, PW )− C(Y, PZ)B(X,PW ),

g(R(X,Y )PZ,N) = (∇XC)(Y, PZ)− (∇Y C)(X,PZ)(4.7)

+C(X,PZ)τ(Y )− C(Y, PZ)τ(X).

Theorem 4.1. Let M be a tangential half lightlike submanifold of an indefinite

generalized Sasakian space form M̄(f1, f2, f3). If α is non-zero constant, then

α2 = ǫf1 − f3 ; β = 0 and M̄(f1, f2, f3) is an indefinite α-Sasakian space form.

Proof. First we prove β = 0: Substituting (3.9) into (3.3), we have

(4.8) ∇Xζ = −ǫαFX + ǫβ(X − θ(X)ζ), ∀X ∈ Γ(TM).

Applying ∇̄X to u(Y ) = g(Y, V ) and using (3.9) and (3.12), we get

(4.9) (∇Xu)(Y ) = −u(Y )τ(X)− w(Y )φ(X)− ǫβθ(Y )u(X)−B(X,FY )

for all X, Y ∈ Γ(TM). Substituting (4.1) into (4.3), we have

f2{u(Y )ḡ(X, JZ)− u(X)ḡ(Y, JZ) + 2u(Z)ḡ(X, JY )}

= (∇XB)(Y, Z)− (∇Y B)(X,Z) +B(Y, Z)τ(X)−B(X,Z)τ(Y )

+ D(Y, Z)φ(X)−D(X,Z)φ(Y ).

Replacing Z by ζ to this equation and using (3.15), we have

(∇XB)(Y, ζ) − (∇Y B)(X, ζ) + ǫα{u(X)τ(Y )− u(Y )τ(X)}(4.10)

+ ǫα{w(X)φ(Y )− w(Y )φ(X)} = 0, ∀X, Y ∈ Γ(TM).

Applying ∇X to B(Y, ζ) = −ǫαu(Y ) and using (4.8) and (4.9), we have

(∇XB)(Y, ζ) = −ǫβB(X,Y ) + αβ{θ(Y )u(X)− θ(X)u(Y )}

+ ǫα{u(Y )τ(X) + w(Y )φ(X) +B(X,FY ) +B(Y, FX)}
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for all X, Y ∈ Γ(TM). Substituting this equation into (4.10), we have

αβ{θ(X)u(Y )− θ(Y )u(X)} = 0, ∀X, Y ∈ Γ(TM).

Taking X = ζ and Y = U and using α 6= 0, we get β = 0.
Next we prove α2 = ǫf1 − f3: Applying ∇̄X to v(Y ) = g(Y, U) and using

(3.7), (3.9), (3.10)1, (3.11) and the fact β = 0, we get

(4.11) (∇Xv)(Y ) = v(Y )τ(X) + w(Y )ρ(X)− g(A
N
X,FY )− ǫαθ(Y )η(X)

for all X, Y ∈ Γ(TM). Substituting (4.1) and (4.7) into (4.4), we have

f1{g(Y, PZ)η(X)− g(X,PZ)η(Y )}(4.12)

+ f2{v(Y )ḡ(X, JPZ)− v(X)ḡ(Y, JPZ) + 2v(PZ)ḡ(X, JY )}

+ f3{θ(X)θ(PZ)η(Y )− θ(Y )θ(PZ)η(X)}

= (∇XC)(Y, PZ)− (∇Y C)(X,PZ)

+ C(X,PZ)τ(Y )− C(Y, PZ)τ(X)

+ D(X,PZ)ρ(Y )−D(Y, PZ)ρ(X).

Replacing Z by ζ to the last equation and using (3.15)1, we have

(ǫf1 − f3){θ(Y )η(X)− θ(X)η(Y )}(4.13)

= (∇XC)(Y, ζ) − (∇Y C)(X, ζ) + ǫα{v(Y )τ(X)− v(X)τ(Y )}

+ ǫα{w(Y )ρ(X)− w(X)ρ(Y )}.

Applying ∇X to C(Y, ζ) = −ǫαv(Y ) and using (4.8) and (4.11), we have

(∇XC)(Y, ζ) = −ǫα{v(Y )τ(X) + w(Y )ρ(X)− g(A
N
X,FY )

− g(A
N
Y, FX)}+ α2θ(Y )η(X),

due to β = 0. Substituting this equation into (4.13), we have

(ǫf1 − f3 − α2){θ(Y )η(X)− θ(X)η(Y )}, ∀X, Y ∈ Γ(TM).

Taking X = ζ and Y = ξ to this equation, we get α2 = ǫf1 − f3. �

Theorem 4.2. Let M be a screen conformal tangential half lightlike sub-

manifold of an indefinite generalized Sasakian space form M̄(f1, f2, f3). Then

f1 = f2 = f3 = 0 and M̄(f1, f2, f3) is a semi-Euclidean space.

Proof. Substituting (2.15) into (4.12) and using (4.4) and (4.10), we have

f1{g(Y, PZ)η(X)− g(X,PZ)η(Y )}

+ f2{[v(Y )− ϕu(Y )]ḡ(X, JPZ)− [v(X)− ϕu(X)]ḡ(Y, JPZ)

+2[v(PZ)− ϕu(PZ)]ḡ(X, JY )}

+ f3{θ(X)θ(PZ)η(Y )− θ(Y )θ(PZ)η(X)}

= {X [ϕ]− 2ϕτ(X)}B(Y, PZ)− {Y [ϕ]− 2ϕτ(Y )}B(X,PZ)

+ D(X,PZ){ρ(Y ) + ϕφ(Y )} −D(Y, PZ){ρ(X) + ϕφ(X)}
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for all X, Y, Z ∈ Γ(TM). Replacing Y by ξ to the last equation, we obtain

{ξ[ϕ]− 2ϕτ(ξ)}B(X,PZ)− {ρ(ξ) + ϕφ(ξ)}D(X,PZ)

= f1g(X,PZ) + f2{v(X)− ϕu(X)}u(PZ)

+ 2f2{v(PZ)− ϕu(PZ)}u(X)− f3θ(X)θ(PZ).

Taking X = PZ = ζ to this equation and using (3.15)1, 2, we obtain ǫf1 = f3.
Also taking X = V, PZ = U and X = U, PZ = V by turns, we have

{ξ[ϕ]− 2ϕτ(ξ)}B(V, U)− {ρ(ξ) + ϕφ(ξ)}D(V, U) = f1 + f2,

{ξ[ϕ]− 2ϕτ(ξ)}B(U, V )− {ρ(ξ) + ϕφ(ξ)}D(U, V ) = f1 + 2f2,

respectively. From these two equations we show that f2 = 0.
As M is screen conformal, M̄ is an indefinite cosymplectic manifold by

Theorem 3.2 and f1 = f2 = f3 = c
4 by Example 4.2. Thus we have f1 = f2 =

f3 = 0 and M̄(f1, f2, f3) is a semi-Euclidean space. �

Let R(0, 2) denote the induced Ricci type tensor of M given by

R(0, 2)(X,Y ) = trace{Z → R(Z,X)Y }

for any X, Y ∈ Γ(TM). Consider the induced quasi-orthonormal frame field
{ξ;Wa} on M such that Rad(TM) = Span{ξ} and S(TM) = Span{Wa}. Put
m = rank(S(TM)). Using this quasi-orthonormal frame field, we obtain

R(0, 2)(X,Y ) =

m∑

a=1

ǫa g(R(Wa, X)Y, Wa) + ḡ(R(ξ,X)Y, N)

for any X, Y ∈ Γ(TM), where ǫa = g(Wa,Wa) is the causal character of Wa.
In general, R(0, 2) is not symmetric [5, 7]. A tensor field R(0, 2) of lightlike

submanifolds M is called its induced Ricci tensor if it is symmetric. A sym-
metric R(0, 2) tensor will be denoted by Ric. A lightlike manifold M equipped
with an induced Ricci tensor is called Ricci flat if its Ricci tensor vanishes. M
is called an Einstein manifold if the Ricci tensor of M satisfies Ric = κg.

Theorem 4.3. Any screen conformal irrotational Einstein tangential half light-

like submanifold of the space form M̄(f1, f2, f3) is Ricci flat.

Proof. If M is a screen conformal half lightlike submanifold of an indefinite
generalized Sasakian space form M̄(f1, f2, f3), then, using (4.2), (4.4) and the
fact R̄ = fi = 0 for all i, we have

R(0, 2)(X,Y ) = ϕ{B(X,Y )trA∗

ξ − g(A∗

ξX,A∗

ξY )}(4.14)

+ D(X,Y )trA
L
− g(A

L
X,A

L
Y ) + ρ(X)φ(Y ).

This implies that if M is irrotational, then R(0, 2) is symmetric.
Let µ = U − ϕV . It follows from (3.27) that

(4.15) B(X,µ) = 0, D(X,µ) = 0, ∀X ∈ Γ(TM).
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From (2.8), (2.10) and the last equations, we show that

(4.16) A∗

ξµ = 0, A
L
µ = ρ(µ)ξ.

As M is Einstein, from (4.14) and the fact R(0, 2) = κg

κg(X,Y ) = ϕ{B(X,Y )trA∗

ξ − g(A∗

ξX,A∗

ξY )}

+ D(X,Y )trA
L
− g(A

L
X,A

L
Y ).

Taking X = Y = µ to this equation and using (4.15) and (4.16), we get κ = 0.
Therefore, M is Ricci flat. �
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